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Abstract

This paper describes a computational learning model inspired by the technology of optical thin-film multilayers
from the field of optics.  With the thicknesses of thin-film layers serving as adjustable “weights” for the
computation, the optical thin-film multilayer (OTFM) model is capable of approximating virtually any kind of
nonlinear mapping.  This paper describes the architecture of the model and how it can be used as a
computational learning model. Some sample simulation calculations that are typical of connectionist models,
including  a pattern recognition of alphabetic characters,  iris plant classification, and time series modelling of
a gas furnace process, are given to demonstrate the model’s learning capability.
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1. Introduction

Current works on computational learning, especially those using connectionist approach, have been

focused largely on artificial neural networks [1],[2]. Although these models have taken their

inspiration from the networks of biological neurons in the human brain, the essence of this form of

computation does not require strict adherence to the biological exemplar - architectures that differ

significantly from the biological model may exhibit interesting computational properties [2],[3].

With this in mind, we considered optical computing as a potential area worth exploring, since optical

systems offer many desirable computational features (e.g., in an optical system, waves can cross

without interfering with one another, so optical connections can be made by crossing light waves, and

operations on different data can be done in parallel).  This paper describes an optical thin-film

multilayer model (OTFM) which takes advantage of the optical properties for the purpose of

computational learning.  The paper is an extended version by Purvis and Li [4], that we place more

emphasis on describing the architecture of the thin-film multilayer model, its calculation algorithm,

and how it can be used as a computational learning model.  Thin film problems are highly nonlinear

[5].  A single thin-film layer can be used as a simple processing unit that is highly nonlinear in terms

of its input and output mapping.  The proposed model consists of multiple thin-film layers each with

a different refractive index and thickness.  A light beam incident perpendicular to the surface of the

multilayer stack is used to propagate information through the structure.  The reflectance values (or

alternatively, reflection coefficients) of the light incident can be used as the general measurement of

the outputs.  Inputs can be fed into the model by encoding them into some system parameters such as

refractive indices of thin-film layers, and individual layer thicknesses can be used as adjustable

parameters.



In Section 2 we first describe the structure of the thin-film multilayer model, its computational

algorithm, and how it can be used as a learning model.  Section 3 briefly discusses the input encoding

scheme.  In Section 4 we describe the training procedure adopted for the OTFM learning.  Section 5

presents some sample experimental calculations with the simulation model and compares the results

to those performed with a conventional neural network architecture.  In Section 6 we discuss the

experimental results.  Finally in the last Section we conclude with a summary and some pointers for

future research.

2. The Optical Thin-Film Multilayer Model

We will first consider the optical properties of a single (ideal) thin-film and then go on to consider

the case when there are several contiguous thin-films.  We assume the material of the thin-film is

uniform, mostly transparent,  non-dispersive, and can be characterised by a single index of refraction

ñ.  Its physical configuration can be represented by a plane parallel plate existing in a medium, such

as a vacuum, whose index of refraction is equal to 1.

When a light beam of a single wavelength is incident on such a plane parallel (Fig. 1), the beam is

split into two parts - a reflected beam and a transmitted (refracted) beam that enters the material.  The

respective angles and magnitudes of these newly created beams are determined by the polarization

and wavelength of the incident light beam, the angle of incidence of the beam with the plate (thin-

film) and the index of refraction of the plate material [6].  Fig. 1 shows the amplitudes of these

individual light beam components, with the incident beam shown (on the left) to have an amplitude of

a.  The amplitude of the reflected beam component (on the left of the Fig. 1) is reduced by the

reflection coefficient, r, so its amplitude is ar. Similarly the amplitude of the transmitted component

of the beam is reduced by a transmission coefficient, t, and has a resulting amplitude of at.  When the

transmitted beam inside the plate material reaches the other surface, it is again split up into a

reflected beam (which moves back upward towards the original surface) and a refracted beam which
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Figure 1. Multiple reflections and refractions at a single thin film layer.



exits the plate.  The amplitude of the newly reflected beam is again attenuated by the same reflection

coefficient, r, and the amplitude of the newly transmitted beam is attenuated by a second transmission

coefficient, t’, associated with light that passes from a refractive material back into the vacuum.  As

can be seen in Fig. 1, the light beam component inside the plate continues to undergo a (theoretically

infinite) number of reflections and refractions, such that there are a number of reflected beams (ar,

atrt’, atr3t’, atr5t’, atr7t’,..., etc.) and transmitted beams (att’, atr2t’, atr4t’, atr6t’, ..., etc.) that come off

the top and bottom of the plate.

Since the reflected beams, ar, atrt’, atr3t’, atr5t’, etc., are waves, they differ from each other in both

amplitude and phase, and the overall reflection of the light beam off the plate will be determined by

the multiple-beam interference of this infinite series of reflected component waves [6].  An algebraic

expression for this overall reflection of the light beam off the plate can be determined in a

straightforward and self-consistent manner if we make the simplifying assumption that the incident

beam is perpendicular to the surface of the plate, thereby eliminating the polarization as a factor.  The

parameters used in this expression are characterised in Fig. 2.

A monochromatic light beam (1 in Fig. 2) with wavelength λ is incident on the left side and, to

simplify the discussion, is taken to have an electric field vector amplitude normalized to 1.0 (The

light wave also has a magnetic field vector component, but it is sufficient to consider only the electric

field vector here.  The phase of the wave is customarily incorporated into the description by

representing the component as having a complex amplitude). At the left surface of the thin-film, the

incident beam is split into a transmitted component and reflected component with amplitudes -f and t,

respectively, where

Figure 2. A single thin-film with light incident (1) on the left.
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ñ is the complex refractive index of the thin-film, and ñ =  n + ik, where n is the ordinary index of

refraction and k is the attenuation coefficient.  The transmitted beam component with amplitude t

now undergoes a phase shift as it travels a distance d (the thickness of the film) up to the right hand

surface of the film, so the phase shifted amplitude of the transmitted beam becomes εt, where
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At the right-hand boundary of the film, the beam is again divided up into transmitted and reflected

components.  The transmitted component that goes off the film at the right-hand surface has an

amplitude of εt(tn).  As the reflected component is one of an infinite series of reflected components at

this interface, they can be combined together to represent the interference combination of all of the

reflected components by b in Fig. 2;  εb is the phase shifted result of this leftward-travelling wave at

the inside left-hand surface of the film.  At the left-hand surface, the wave with amplitude εb is split

into a refracted (transmitted) component with amplitude ntεb and a reflected component travelling

back to the right with amplitude fεb.  At the right-hand surface, the phase-shifted rightward travelling

wave, here with amplitude fε2b, is also split into two components: a reflected component already

accounted for by b and a transmitted component with amplitude fε2bnt.

Expressions for the reflection and transmission coefficients of the thin-film can now be taken directly

from Fig. 2:

bntfrf ε+−= and ntbftt f )( 2εε += (3)

Eliminating the unknown b from Eq. (3), the complex reflection and transmission coefficients can be

given in terms of the refractive index and thickness of the film and the wavelength of the incident

light (using Eqs. (1) and (2)):
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Note that if an input is encoded into ñ or λ, ε is nonlinear (Eq. (2)).  As a result, the output of a thin-

film layer, reflection coefficient rf and the transmission coefficient tf , are highly nonlinear (Eqs. (4)

and (5)).  Nonlinearity is an important property for the model to carry out more complex

computational tasks.

If a second layer is added next to the first one as shown in Fig. 2, rf will change to some other value,

which cannot be calculated from Eq. (4), since the light wave at the incident boundary of the first

layer will no longer be 1.0, and it will change to the total amount of light transmitted through the

added layer.  Similar change applies to tf as well.  Thus whenever more layers are added, or the

thickness of an existing layer is varied, rf and tf of each layer will change accordingly.

Now consider the case when several thin-films with different refractive indices have been

successively deposited on top of a substrate material to form a multilayer thin-film stack, and a

monochromatic light beam, with wavelength λ, incident onto such a multilayer.  Fig. 3 shows such a

structure with N - 1 layers.  1 represents the total amount of light.  Let rN-1 denote the (complex)

reflection coefficient for the electric field vector in vacuum at the vacuum-multilayer interface, and

tN-1 denote the transmission coefficient in the output medium at the last boundary surface.  The values

of these coefficients depend on the refractive indices and thicknesses of all the films in the structure,

the refractive index of the output medium, and the wavelength of light.
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Figure 3. Multilayer thin-film stack of N – 1 layers.

In order to calculate the reflection and transmission coefficients for a multilayer thin-film structure, a

recursive approach is used.  Imagine an additional thin-film layer, with a complex refractive index of

ñN = nN + ikN and thickness dN, is brought up to the existing N - 1 layer structure (the imaginary

component of the complex refractive index accounts for any absorption of the thin-film material).

The distance between the Nth layer and the N-1 layer structure is going to be zero, but they are shown

separated in Fig. 4 for the purpose of explanation.



Figure 4. An additional thin-film layer is brought up to a multilayer structure of N - 1 layers.

Again, the incident light on the left is taken to have a normalized amplitude value of 1.  Expressions

(4) and (5) are used to determine rf and tf for the Nth layer.  Since the light incident on the N-1 layer

substructure does not have an amplitude of 1.0, the amplitude of light reflected off its front surface is

not its reflection coefficient rN-1, but some other value, which we take to be x.  This reflected light

with amplitude x is partially reflected by the Nth layer back towards the substructure and partially

transmitted through the Nth layer out to the left, and these components have amplitudes of xrf and xtf,

respectively. Since the N-1 layer substructure has a reflection coefficient of rN-1, self-consistency

requires that the following relations hold:
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Eliminating x from the above yields the following expressions for r and t:

1

1
22

1

)(

−

−

−
−+

=
Nf

Nfff

rr

rrtr
r (7)

and

1

1

1 −

−

−
=

Nf

Nf

rr

tt
t (8)

r and t are the reflection and transmission coefficients for a N layer thin-film stack and rN-1 and tN-1

are the corresponding coefficients for a N-1 layer thin-film stack. Re-labelling these terms so that

they correspond to the number of layers in the film stack and substituting in the equations for rf and tf
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from Eqs. (4) and (5) yields the following recursive expressions for calculating the thin-film stack

reflection and transmission coefficients:
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The recursive expressions shown in Eqs. (9) and (10) provide the means for computing the reflection

and transmission coefficients for a thin-film stack of any number of layers.  The optical reflectance

and transmittance, which are what is ordinarily obtained from optical measurements of thin-film

stacks, are directly derived from the reflection and transmission coefficients:

2|)(|)( λλ rR = and 2|)(|)( λλ tT = (12)

Note that Eq. (9) rN is a function, F, of a series of system variables,

),,...,,,~,...,~,~,~( 21210 λNNN dddnnnnFr = (13)

F is a highly nonlinear function of the refractive indices ñ1 , ñ2 ,..., ñN, thicknesses of individual

layers d1, d2,..., dN, λ (i.e. the wavelength used), and ñ0, the refractive indices of the output medium

(the substrate).

Suppose we have a thin-film layer suspended in a vacuum, with refractive index 2.4 and initial

thickness close to 0.0.  If we increase the layer thickness steadily, in Fig. 5 we can see how the

complex reflection coefficient of a single thin-film layer changes in counter-clockwise direction with

increasing thickness.  The reflection coefficient of the single layer traces out a half-circle within the

unit circle (complex reflection coefficients are always within this unit circle with radius 1.0), with

respect to its nonlinear association with thickness value, wavelength and refractive index.  If

somehow we could manipulate such behaviour, e.g., varying the layer thickness to produce the

reflection coefficient point towards a specified target point (i.e. a reflection coefficient point

somewhere in the unit circle shown in Fig. 5), we might be able to achieve certain kind of learning.

The reflection coefficient point of a single thin-film might not be so easily made to reach a specified



target, however when multiple thin-film layers are used, the reflection coefficient of the multiple

layer structure would trace out a much more complex dot pattern than the one shown in Fig. 5.

Therefore, training the system involves searching through many sets of layer thickness values and

eventually finding one that produces the desired reflection coefficients.
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Figure 5. Complex reflection coefficient of a thin-film layer changes when its layer thickness
is increased. RE(r) and IM(r) denote the real and imaginary components of the complex
reflection coefficient r.

The optical reflectance value is typically measured by the square of the absolute magnitude of the

reflection coefficient given by Eq. (9).  Almost any desired spectral characteristic of the reflection

can be obtained by choosing a sufficient number of layers with appropriate values of n and d for each

thin-film layer.

3. Encoding Scheme

Equations (9), (10) and (11) describe the reflection and transmission coefficients of a N-layered thin-

film stack in terms of the N refractive index and thickness values of the layers and the optical

wavelength of light.  For computational purposes, these coefficients, with real and imaginary values

always in the range of -1.0 to +1.0, may be considered to be a generalized output.  It is also possible,

by means of Eq. (12), to use reflectance and transmittance as generalized outputs and thereby

associate computations more directly to conventional optical measurements.  Both of these

approaches have been used in experiments reported in this paper.  With these generalized outputs and

for a specified range of optical wavelengths, virtually any desired spectral characteristic of these

coefficients can be obtained by choosing a set of thin-film layers with appropriate values of thickness

and refractive index.

There are several possible schemes for encoding input information to be used for computational

purposes with this model [7].  The approach employed here is to use the indices of refraction of the



various thin-film layers as input values (an alternative approach could use the thicknesses of various

layers).  Under this scheme if there are to be M input values for a computation, then there must be at

least M thin-film layer available. As shown in Section 4, the thicknesses of the various layers are then

used as adjustable “weights” to obtain the desired output.

Fig. 6 shows an example of this encoding scheme. A five-layer thin-film stack is shown, each layer

characterized by its refractive index, ni, and its thickness, di.  For each layer, i, one of the inputs is

encoded into an appropriately scaled value of the refractive index, n∆i, and added to a base value of

that layer’s refractive index, nBi (with n∆ << nBi), to arrive at the layer’s index value ni.  The value of

nBi are kept large enough relative to the encoded incremental values, n∆i, to ensure that there is

always a substantial variation of the refractive index from layer to layer, irrespective of the value of

the input for the layer.

Note that it is not necessary that every layer of the stack be used for input; a thin-film stack could be

designed with some extra layers that are not used for encoding input.

The thin-film stack provides output values of the reflection and transmission coefficients for each

value of the optical wavelength.  One can use a single wavelength for a computation, but it is often

more effective to use multiple wavelengths in order to provide better discrimination among the

various outputs.  When multiple wavelengths are used, an indexing scheme must be set up that maps

a desired computational output to a particular spectral responses of the system over the wavelength

range.
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Figure 6. A 5-layer thin-film stack with inputs encoded as incremental
values of the refractive indices, n∆i.



4. Training Procedure

Training the OTFM involves adjusting the individual layer thicknesses of the stack and then

calculating the multilayer reflection and transmission coefficients (or, alternatively, the reflectance

and transmittance), using Eqs. (9) - (12).   The goal of training in the context of the OTFM is to

determine a set of appropriate thicknesses of the thin-film layers in a multilayer model that satisfies

the target optical specifications.  This procedure can be viewed as the learning process of the OTFM.

The training described here is supervised learning [8], where learning is done on the basis of direct

comparison of the output of the model, r(λk) (or R(λk)), with a target output rT(λk) (or RT(λk)).  The

extent to which the output is acceptable can be measured by the value of a cost function, which

generally takes the form:
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where R = |r|2.  x is the vector of design variables including parameters such as individual layer

thicknesses; rT is the target reflection coefficient at λk; r is the computed value of the reflection

coefficient at λk for a particular value of x; and m is the number of wavelengths at which outputs are

measured.

Training is continued until a configuration of layer thicknesses is found that produces a satisfactory

value of the cost function.  Note that this thickness configuration is often a result of training using

more than one wavelength.  The training procedure is an iterative approach that can be described in

the following steps:

(1) Initialize the thickness and refractive index of each layer, and assign the initial overall cost

MB = ∞.   Specify the rT (or RT) at each λk (wavelength).  MB is the current lowest (best)

value of the cost function that has been found at each stage of training.

(2) Repeat until the MB is sufficiently small (or only repeat for a specified number of iterations).

(2a) Vary thicknesses of some layers (by using an appropriate search algorithm).

(2b) Calculate r (or R) at each λk, for all input-target example pairs provided in the training

data set.

(2c) Calculate M, the sum of the squares of the error,  (r - rT) (or alternatively (R - RT)), at

each λk, for all input-target example pairs, by using the cost function M(x) introduced

by Eq. (14) or (15).



(2d) If M < MB, then set MB = M, and update the thickness of each layer and other

parameters necessary for the later calculations.

(2e) Save and adjust the system parameters for the next round of calculation.

This process continues until a satisfactory solution, a set of appropriate thickness values, is found.

Since training the OTFM involves searching for an optimal set of thickness values and calculating the

cost function value for each set of thicknesses, this process is computationally expensive for thin-film

structures with many-layers.  Instead of exhaustive search through the thin-film thicknesses space, we

have adopted two search algorithms for effective training of the OTFM.  One is a so called N-squared

Scan method of Heavens and Liddell [9], and the second one is Genetic Algorithms (GAs) of Holland

[10].  In our experience, it has been found either search algorithm can sufficiently solve many

computational tasks.  However when dealing with a complex learning task, using GA first for a good

overall search, and then the N-squared Scan method for a fine-tuning local search can generally

improve the OTFM learning performance to some extent.

The N-squared Scan Method works in the following way: if there are N layers, initially the first layer

thickness is varied and the best thickness result is saved.  Then layers 2, 3, 4, etc. are varied in turn in

the same fashion.  Each time the best combination of thicknesses is retained.  After all layers of the

stack have been varied, the entire process is repeated, starting this time with layer 2 and ending with

layer 1.  This variation-of-all-stack-layers process continues, with successive trials beginning with

layers 3, 4, etc.  Thus if there are N layers and we evaluate q different thickness values for each layer,

the exhaustive approach would require qN evaluations, while the N-squared Scan approach would

require qN2 evaluations.  Experience with optical thin-film design has shown that this reduced search-

space can still yield acceptable results [9].  In conjunction with the use of  the N-squared Scan

method, we have also developed an algorithmic routine, that takes advantage of previously estimated

portions of thin-film stack evaluations for subsequent use, so that new stack evaluations need not re-

evaluate the entire stack.  This considerably reduces the cost of iterative many-layer film stack

evaluations [7].

The second search algorithm adopted, Genetic Algorithms, are adaptive searching methods originated

by Holland [10] and loosely based on the principles of genetic variation and natural selection - the

fittest survive and the worst die off.  The appeal of GAs comes from their algorithmic simplicity and

elegance as well as from their power to discover good solutions efficiently for difficult high-

dimensional problems.  In general, a GA performs a multi-directional search, and it encourages

information formation and exchange among such directions.  It does so by maintaining a population

of proposed solutions (chromosomes) for a given problem.  Each solution is represented in a fixed

alphabet (often binary) with an established meaning.  The population undergoes a simulated



evolution: relatively “good” solutions produce offspring, which subsequently replace the “worse”

ones.  The estimate of the quality of a solution is based on an evaluation function.  The existence of

such a population gives GAs an advantage over pure hill-climbing methods, as the GA provides for

both exploitation for the most promising solutions and exploration of the search space at any time.

Applying Genetic Algorithms to the thin-film model is quite straightforward because of its domain-

independency.  In general two issues are concerned: the problem encoding and the evaluation

function.  Eq. (14) or (15) can be used as an evaluation function to calculate the relative fitness of

chromosomes in the population during the OTFM training.  Problem encoding in a thin-film model is

often involved with mapping its system parameters into a genetic representation such as a binary

string.  Fig. 7 illustrates this encoding process for chromosome segments of 10 bits, which allows the

representation of integers {0,1,...,1023}.  These integers can be then mapped linearly to a desired

interval for thickness values, e.g.  d1, d2, ..., dN within the range [0.0, 5.0] (each integer is divided by

1023 and multiplied by 5 respectively).  Consider the thin-film model where a set of optimal layer

thickness values needs to be found to minimize the cost function Eq. (14) or (15).  These thickness

values are represented by a binary string and the resulting reflection coefficient at each wavelength is

evaluated by the cost function Eq. (14) or (15).

The GA search for an optimal set of layer thicknesses can be defined by the following procedure:

Start: generate initial population of binary bits which represent sets of layer thickness values.  For

each set of layer thicknesses, the OTFM model evaluates its cost.

Loop through the following steps:

1) Select parents whose genetic make-up contributes to fitter offspring.
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Figure 7. Mapping between chromosome segments and thin-film layer thickness values.



2) Produce offspring, using suitable genetic operators (reproduction, crossover and

mutation).

3) Evaluate the performance of these offspring.

4) Replace certain parents with new offspring.

5. Experiment

We provide three example simulation calculations with the optical thin-film model to compare the

OTFM’s learning behaviour with that of other typical connectionist models.  The first involves

pattern recognition of roman alphabetic characters presented by means of a 5-by-5 grid of pixels.  The

second example involves discrimination of data for varieties of iris plant into three recognized

species [11],[12].  The third example concerns time series prediction associated with the behaviour of

a gas furnace [13],[14].

The experiments were conducted on two versions of the OTFM simulation model: a N-squared Scan

Method Based OTFM run on a 486 PC platform; and a GA-based OTFM simulation model run on a

Sun SPARC station 5. In order to train the OTFM, its parameters must be initialized. However, the

initial values for these OTFM parameters were simply chosen by trials to find a good starting design,

based on our experience and knowledge of optical systems. To examine the performance of the

OTFM and compare it with other connectionist models, experiments were also conducted using the

same learning examples on a feed-forward neural network model employing the back-propagation

learning algorithm [8].  Random samples from the same data sets were used for training and testing.

The best training result was selected out of 5 trainings for each data set.

5.1 Pattern recognition of alphabetic characters

A pattern recognition of alphabetic characters was used as an example to demonstrate the OTFM’s

learning capability.  In this experiment, a computational model of an optical thin-film multilayer

stack was trained with the 5-by-5 pixel grid patterns representing ‘I’, ‘O’, ‘C’, and ‘X’ shown in Fig.

8.  The thin-film stack was specified to have 25 layers with values of the base refractive index nBi for

each layer alternating between 1.2 for the odd-number layers and 4.0 for the even-number layers.

These optical indices were chosen arbitrarily, but lie in the range characteristic of materials used in

microwave thin-film optics.  The inputs were encoded as small values to be added to nBi - either 0.0

or 0.4 depending on whether a pixel in the 5-by-5 grid is blank or shaded.

Figure 8. Four 5-by-5 pixel patterns used for training.



Target reflectances for each pattern at 8 different wavelengths ranging from 10.0 µm to 12.8 µm were

selected.  (For all calculations reported in this paper and in the figures, optical wavelengths and thin-

film layer thicknesses are expressed in terms of micrometers.  The range of values selected

correspond to values for optical thin-film multilayers in the microwave region.)  The target

reflectance values for the four 5-by-5 grid patterns are shown in Fig. 9.
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Figure 9. Target reflectances for ‘I’, ‘O’, ‘C’ and ‘X’.

The target spectral response for the character ‘I’ has a peak value of 1.0 in the wavelength range of

10.0 to 10.4, descends to 0.0 at a wavelength of 10.8, and then remains steady at 0.0 out to the

wavelength of 12.8.  The target response for the character ‘O’ has peak values in the wavelength

range of 10.8 to 11.2 and is zero for wavelengths below 10.4 and above 11.6.  The target response for

the character ‘C’ has peak values for wavelengths from 11.6 to 12.0, with zero values below a

wavelength of 11.2 and above a wavelength of 12.4.  The target response for the character ‘X’  has

peak values for wavelengths between 12.4 and 12.8, with zero values for wavelengths below 12.0.

After the optical thin-film stack was trained using the N-squared Scan method, its spectral behaviour

when presented with the four training set grid patterns is shown in Fig. 10.



Figure 10.  Training result for the four patterns.

As can be seen from Fig. 10, the trained thin-film stack approximates the target curves (although with

rounded shoulders).

After training, the thin-film stack was tested for its ability to recognize the bit-patterns in the presence

of noise.  Four “noisy” versions of the letter ‘I’ were used for this purpose, and their bit patterns are

shown in Fig. 11.

The first pattern, p1, as shown in Fig. 11, has only one pixel different from the original pattern for ‘I’

shown in Fig. 8.  The patterns p2, p3, and p4 are successively more deviant from the original ‘I’ grid

pattern.  The spectral response of the trained thin-film stack to the letter ‘I’ and the four noisy

patterns is shown in Fig. 12.
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Figure 11. Four “noisy” versions of the letter ‘I’.



Figure 12. Test result on ‘I’ and its four noisy versions.

The four response curves to the noisy patterns p1, p2, p3, and p4 shown in Fig. 12 show successively

greater deviation from the target curve ‘I’ shown in Fig. 9.  In particular the response curve for p4 is

considerably different from the target for ‘I’.  Each of the four noisy patterns have successively larger

values of cost function error evaluations (using Eq. (15)).  By setting an appropriate tolerance value

for cost function evaluations, we can tune the trained thin-film stack to accept some noisy patterns

versions of the letter ‘I’ and reject patterns that fall outside the tolerance range.

Thus the optical thin-film model can be trained to recognize certain bit-patterns and can respond

correctly even in the presence of noise, just as is the case with conventional neural network

architectures.

5.2 Iris Data Classification

The iris data set has been frequently used as an example for discriminant analysis of real data [11].

The data set was collected for three species of iris (setosa, versicolor and viginica) and comprised

four measurements (petal length, petal width, sepal length, and sepal width) for 50 samples of each

species.  One of the species is thought to have arisen as a hybrid species and displays a mixture of

features of the other two, making discrimination among the species by means of the measured
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properties somewhat difficult [12].  One class setosa is linearly separable from the other two, while

the versicolor and viginica are not linearly separable from each other.

Class 1 Class 2 Class 3
λ rRE rIM rRE rIM rRE rIM

5.0   0.2   0.2  -0.5   0.1   0.1   -0.5

5.3   0.3   0.3  -0.4   0.3   0.3   -0.4

5.6   0.4  0.4  -0.3   0.4   0.4   -0.3

For each iris data example used, e.g. {5.1, 3.5, 1.4, 0.2}, it is necessary to scale the values

appropriately for encoding into the thin-film system.  A thin-film stack of only four layers was

selected with values of the base refractive index for each nBi alternating between 1.2 and 2.5.  For this

example the complex-valued reflection coefficient was used for the OTFM output, rather than the

real-valued reflectance (see Eq. (14)).  The training was carried out for the optical wavelength values

5.0, 5.3, and 5.6 µm, and the target reflection coefficient values used are shown in Table 1.

The thin-film stack was then trained with Genetic Algorithm approach, using 120 examples (40

randomly chosen from each of the three classes).  Chromosome length 60 was chosen, since only 4

layer thicknesses are needed to map into a binary string.  After 6 generations, with initial population

size 300, crossover probability 0.6 and mutation probability 0.033, the training had the effect of

moving the response reflection coefficient points as close as possible to the 3 target points for each

optical wavelength value in an effort to separate the collection of output reflection coefficient values

as much as possible.  Although data from setosa were completely separated from the other two

classes, there were a couple of points from versicolor and viginica that always overlapped into each

other’s regions.

After training, a “winner-take-all” approach [15] was used to set points in the output range to be used

for discrimination of samples (during test runs) into the three species.  This was accomplished by

finding the average values of all the output points at each optical wavelength and for each training

class.  Thus each of the three species was set to have a set of characteristic values for output

reflection coefficients on the basis of the training.

When the test example is presented to the system, it is a matter of calculating the output reflection

coefficient for the test example (at each wavelength) and then using the cost function evaluation of

Eq. (14) to determine to which species class the example output is closest. Output for thirty novel

examples is shown in Figs. 13, 14 and 15.  Of the thirty examples only 2 were misclassified by the

thin-film system.  When the system was given all 150 samples, 5 were classified incorrectly.  The

Table 1. Target reflection coefficients.



result indicates that the trained model has shown satisfactory classification on the training data set

and has also generalized well on novel data from the test data set.

Ripley [12], Weiss and Kapouleas [16] reviewed some of the classification results on the iris data

using different computational methods.  The best neural network (with 3 hidden nodes) training result

they had makes 5 misclassifications out of 150 examples.  In this research we also used a feed-

forward neural network for training on the same training data set, and the trained feed-forward neural

network model had the same classification result as that of the trained OTFM: 5 out of 150 incorrect.

It is interesting to note that the same 5 examples which were classified incorrectly by the feed-

forward neural network model were also classified incorrectly by the OTFM.  This is doubtlessly

associated with the fact that in both training cases, the same training examples were used: both

models reached the same conclusion about the internal relationships among the training data, then

classified and generalized in the same way on the test data as well.
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Figure 13. Test results on 30 iris data
samples, λ=5.0µm.
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Figure 14. Test results on 30 iris data
samples, λ=5.3µm.

Figure 15. Test results on 30 iris data
samples, λ=5.6µm.
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5.3. Gas Furnace Time Series

In this experiment, we consider the qualitative modelling of a dynamical process of a gas furnace

with a single input (gas flow rate) u(t) and a single output (CO2 concentration) y(t) [13].  In order to

train the OTFM to produce an output as close as to the y(t) (time series prediction), we consider the

variables y(t-1), y(t-2), u(t-1) and u(t-2) as input attributes.  Out of 292 data pairs, 250 were used for

training and the remaining 42 were used for testing.  A 4-layer stack was used for training, with

values of the base refractive index for each nBi alternating between 1.2 and 3.2. The training was

carried out on a simulated single optical wavelength 12µm, and the target reflectance values are y(t)s

as given in the 250 training data pairs (scaled to be within the range 0.0 to 1.0).
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The Genetic Algorithm approach was used for training. With a population size of 400, a chromosome

length of 100 which can be interpreted as 4 thickness values, crossover probability 0.6 and mutation

rate 0.033, the training result is shown in Fig. 16.  These results compare favourably with training and

evaluations performed on the same data set with neural networks [14].

6. Discussion of Results

As illustrated in the previous section, the OTFM training is usually carried out by searching for a set

of appropriate layer thickness values to satisfy the target condition.  The initial values for parameters

nj, dj and λ (of j-th layer) are generally determined by the optical thin-film model designer.  The

range 0 ≤ 4πnjdj /λ ≤ 2π is normally considered [17], since the phase thickness of an individual layer

is invariant with respect to a change by the amount λ/2.

As to accuracy of classification, the OTFM's ability to represent concepts and correctly classify novel

examples appears to be comparable with that of the feed-forward neural network model.  For

Figure 16. Training result on the Gas Furnace time series data.



instance, after the OTFM was trained using the 120 examples in the training data set, it was then used

to classify the remaining 30 examples in the test data set that are previously unseen to the OTFM,

only 2 examples were classified incorrectly.  The same result, 2 misclassifications out of the 30

previously unseen data, was obtained from using the feed-forward neural network model employing

the back-propagation (but it took somewhat longer to train the neural network model).  Note that for

both of the training and test data - 150 examples in total, the same 5 examples classified incorrectly

by the feed-forward neural network model were also classified incorrectly by the OTFM.  Since in

both training cases, the same training examples were used, one possible explanation for this similarity

in performance is that both trained models reached the same conclusion about the internal

relationships among the training data, then classified and generalized in the same way on the test data

as well.  It has also been demonstrated that the OTFM degrades gracefully when noise in the input

pattern increases (see Fig. 12).

Using too many layers and wavelengths may lead to a slow OTFM training.  For instance, when using

the same initial setup for training the OTFM on the iris data classification employing the GA search

method, a 4-layer stack took only 3 minutes to converge to a satisfactory solution, but a 25-layer stack

took about 4 hours to converge to a similar solution.

The overall performance of the OTFM on various learning problems used in this research has been

shown to be comparable with a feed-forward neural network model in learning many complex

computational tasks [7], especially when it is applied to learning problems that are nonlinear and

have a moderate number of input attributes (i.e. where it is not necessary to have a large number of

layers for encoding the input attributes).  In some experiments, the OTFM could achieve a learning

that is even better than that of the feed-forward neural network using the back-propagation learning.

7. Conclusion

By using the optical properties of an optical thin-film multilayer model, we have developed a novel

computational learning model, OTFM, which has shown the learning capability that is typical of a

neural network model. We have also used the OTFM in solving of a number of more difficult, as well

as real-world learning problems.  The performance of the trained OTFM in some of the problem

solving is comparable or even better than that of a trained feed-forward neural network model

employing back-propagation learning algorithm [7].  Thus for implementing learning tasks it provides

an alternative to the neural network models.

The OTFM is still at its initial stages of development and exploration and further experimentation

with different learning problems are continuing.  The OTFM can stand as a viable computational

learning model in its own right, regardless of its feasibility for an optical realization.  Nevertheless,

such an optical realization would offer the possibility of more or less instantaneous evaluations of the



(trained) thin-film stack.  Variations in the refractive index can be achieved for some materials by

means of elastooptic, electrooptic, and magnetooptic effects, though the magnitude of the effects is

often relatively small [18].  This is an area that may offer promise for additional experimental

investigation.
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