
Improving the Performance and Scalability of
Differential Evolution

Antony W. Iorio and Xiaodong Li

School of Computer Science and Information Technology,
RMIT University,

Melbourne Australia
iantony@gmail.com,

xiaodong@goanna.cs.rmit.edu.au
http://goanna.cs.rmit.edu.au/∼xiaodong/ecml

Abstract. Differential Evolution (DE) is a powerful optimization pro-
cedure that self-adapts to the search space, although DE lacks diversity
and sufficient bias in the mutation step to make efficient progress on non-
separable problems. We present an enhancement to Differential Evolution
that introduces greater diversity. The new DE approach demonstrates
fast convergence towards the global optimum and is highly scalable in
the decision space.
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1 Introduction

Despite the power of many population-based stochastic optimization algorithms,
they can meet with difficulties on optimization problems which are non-
separable. Traditional Genetic Algorithms fail to optimize these problems ef-
ficiently because they typically perform independent perturbations of decision
variables. Unfortunately, many real-world problems are not linearly separable.
On problems which are not aligned with the principle coordinate axes, the small
mutation rates frequently used in Genetic Algorithms are known to be even less
efficient than a random search [1]. One approach for optimizing such problems
is to use a vector-based scheme such as Differential Evolution.

The Differential Evolution (DE) optimization algorithm works by generating
difference vectors between points in the search space, and using the resulting
scaled difference vector to perturb existing points in the population [2]. For ex-
ample offspring can be generated using the DE scheme x(i) + F (x(r1) − x(r2))
where r1 and r2 refer to the indices of two distinct randomly selected individuals
from a population, and i is the index of the current individual in the popula-
tion. In this approach, individuals are selected for a DE operation such that the
resulting difference vector, (x(r1) − x(r2)), has a magnitude greater than 0. The
addition of (x(r1) −x(r2)) to x(i) is considered to be a mutation operation which
perturbs x(i). F is a scaling factor for the difference vector.
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Differential Evolution has a number of attractive features; difference vectors
can be correlated with the search space, it uses only O(Np) processes (where
Np is the population size), it doesn’t need a predefined probability distribution
for generating offspring, the objective functions do not need to be differentiable,
it can provide multiple solutions from a single run of the algorithm, it is very
simple to implement, and is a parallel optimization procedure like many other
population based schemes.

Of course DE has some limitations, which we attempt to address in this pa-
per. It has been reported that DE performs poorly on problems that are not
linearly separable because of inefficient exploitation during the differential mu-
tation phase [3]. Two hypotheses were explored by Sutton; when the crossover
rate (Cr) is low, DE can exploit the separability of a function. When DE has
a Cr of 1.0, DE becomes rotationally invariant and depends entirely on the
differential mutation step. In order to efficiently solve non-separable problems,
DE typically must depend more on mutation than crossover, although DE lacks
selection pressure in the differential mutation step to make efficient progress. Fur-
thermore, making Cr equal to 1.0 is not recommended as it reduces the number
of trial vectors and can result in stagnation [4]. Finally, DE becomes highly de-
pendent on population size in order to avoid stagnation when no crossover is
employed.

2 Problem Statement

The use of crossover in DE introduces diversity to the population, far more than
mutation alone. As the decision space dimension scales, the importance of hav-
ing a diverse population from which to sample becomes significantly important
in order to make efficient progress towards more optimal solutions in the search
space. Unfortunately, because the offspring that crossover can generate are de-
pendent on the principle coordinate axes, crossover provides little benefit to the
optimization of non-separable problems.

For an algorithm to be rotationally invariant in the context of optimization
algorithms it should produce offspring in the same relative location, irrespective
of the orientation of the fitness landscape. Although the rotationally invariant
DE/rand/1/bin approach provides vector wise samples which are not biased with
respect to any particular coordinate axes it also lowers the number of potential
offspring dramatically because it does not use crossover [4]. Our contention is
that in order for an optimization algorithm to perform efficiently on a non-
separable problem it must not exhibit an extreme dependency on the principle
coordinate axes. In addition, we contend that it is unnecessary for it to be strictly
rotationally invariant, as long as it is capable of generating sufficient diversity.

It is important to elucidate further on one of the reasons for why the rota-
tionally invariant DE/rand/1/bin used in this study performs poorly on non-
separable problems. In Figure 1 the offspring and parents are represented for
a population size of 4. The number of potential unique offspring that can be
sampled for a single base-vector by such a scheme is determined by Equation 1,
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Fig. 1. (a) The offspring generated from a population of 4 using the CSDE scheme. (b)
The offspring generated from a population of 4 using the basic DE/rand/1/bin scheme
with and without crossover.

(Np − 1)(Np − 2)(2D − 1) (1)

where D is the decision space dimension. The term 2D represents the number
of possible offspring that can be generated from binomial crossover. The term
(Np − 1)(Np − 2) is the number of possible offspring that can be generated from
vector-wise mutation. Also, crossover can produce duplicate individuals that were
already sampled. In order to not count these individuals, we subtract the dupli-
cates. It deserves to be noted that Equation 1 is equivalent to previous results
which reported upon the number of samples possible in an entire population [4].

In accordance with this equation and the offspring distributions in Figure 1(b),
an enumeration of all 18 possible offspring for a single target vector is provided
in Table 1. The first column of this table details all possible differentials from
Figure 1(b). The second contains the location of offspring produced by a muta-
tion operation with F=0.5. The third column contains the coordinates of unique
offspring resulting from crossover, which do not overlap with offspring resulting
from a mutation operation or any existing parents. The total number of offspring
possible from a population of 4 individuals where 0 < CR < 1.0 is 18.

It is apparent from Equation 1 that as the decision space dimension scales,
crossover is responsible for the majority of the offspring individuals that the
algorithm can generate through the 2D term [4]. It is also clear from this figure
that crossover samples along the principle coordinate axes, so although it gen-
erates many offspring, it also constrains them to this region. It is only capable
of independent sampling in each decision space dimension.

If we consider Figure 1(b), where crossover is absent, but rotational invariance
is maintained, significantly fewer offspring can be sampled for a single base-
vector. The number of potential offspring that can be sampled is equal to (Np−
1)(Np − 2). The implication here is that a rotationally invariant DE scheme is
highly dependent on the population size in order to maintain sample diversity.
Although it samples offspring independent of any particular coordinate axes, it
does not scale in the decision space as well as a scheme incorporating crossover.
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Table 1. An enumeration of all 18 possible unique offspring for a single target vector
resulting from crossover and mutation operations in Figure 1(b). The base-vector, x(i)

is located at (2.0,2.5). In addition, the coordinates of A, B, and C are respectively
(0.0,0.0), (2.3,-1.0) and (4.0,1.0).

(x(r1) − x(r2)) x(i)+F(x(r1) − x(r2)) Crossed with x(i)

A-B = (-2.3,1.0) (1.15,3.0) {(1.15,2.5),(2.0,3.0)}
B-A = (2.3,1.0) (3.15,2.0) {(3.15,2.5),(2.0,2.0)}

A-C = (-4.0,-1.0) (0.0,2.0) {(0.0,2.5),(2.0,2.0)}
C-A = (4.0,1.0) (4.0,3.0) {(4.0,2.5),(2.0,3.0)}
B-C = (-1.7,-2.0) (1.85,1.5) {(1.85,2.5),(2.0,1.5)}
C-B = (1.7,2.0) (2.85,3.5) {(2.85,2.5),(2.0,3.5)}

Ideally, we would like a scheme which is biased in order to accelerate con-
vergence, is capable of generating a diverse variety of offspring solutions in a
manner which minimizes distribution bias, and is capable of optimizing non-
separable and separable problems equally well. Furthermore, it should be simple
to implement and computationally efficient.

As we mentioned earlier, traditional crossover offers sampling diversity, but
is really only effective on separable problems because of the way it generates
points. It would be desirable for DE to have the capability of producing a large
number of samples, while still remaining effective on non-separable problems in
high decision space dimensions.

3 An Improved Sample-Based DE Algorithm

In this section we describe the Combinatorial Sampling Differential Evolution
(CSDE) algorithm which uses a ‘target’ best individual and maintains diver-
sity using the sampling of difference vectors from two parent vectors. For the
purpose of simplicity we describe the behavior of the algorithm in a two di-
mensional decision space, although the process easily generalizes to an arbitrary
number of decision space dimensions. We also discuss some of the advantages
and characteristics of the approach which are different from the typical DE.

Firstly, the algorithm loops over all individuals in a population such that
each individual x(i) has an opportunity to participate in the DE calculation. A
second individual x(r) is chosen for a difference vector calculation such that the
population index r is not equal to i, and r is an index randomly chosen from the
population.

Two types of samples are performed in this algorithm around an individual
that is deemed to be better than another. The first type of sample we call a C-
sample (correlated sample) such that the vector difference and perturbation are
in the same direction, around a better individual (In Figure 2, x(i) is better than
x(r), for the purpose of explaining the operation of the algorithm. Of course, if
the opposite was true, then sampling would occur around individual x(r)). The
point labeled by 1© 2© corresponds to the point specified by Equation (2) and (3).
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Fig. 2. In a 2-dimensional decision space vectors are sampled around a ‘better’ indi-
vidual

In these equations, u
(i)
1 represents the offspring parameter from the DE mutation

equation for the first parameter in the decision vector, and u
(i)
2 represents the

offspring for the second parameter in the decision vector. Similarly, the point
labeled by 3© 4© corresponds to the point specified by Equation (4) and (5).
Both points 1© 2© and 3© 4© are correlated because they are in the same direction
as the difference vector. The points at 1© 2© and 3© 4© are sampled with the same
probability.

u1
(i) = x1

(i) + F (x1
(i) − x1

(r)) (2)

u2
(i) = x2

(i) + F (x2
(i) − x2

(r)) (3)

u1
(i) = x1

(i) + F (x1
(r) − x1

(i)) (4)

u2
(i) = x2

(i) + F (x2
(r) − x2

(i)) (5)

The second type of sample is labeled in Figure 2 by 1© 4© and 3© 2© which
respectively correspond to the points generated by Equation 2 and 5 and Equa-
tion 4 and 3. Both of these samples are uncorrelated and not rotationally
invariant because the magnitudes of the difference vectors for these samples
is the result of the difference between x(i) and x(r) and they vary depending
on the orientation of x(i) and x(r). It is this second type of sampling that
contributes diversity to the search. In traditional DE, only a single difference
vector can result from two points. Our approach dramatically increases the num-
ber of possible samples at the expense of always generating rotationally invari-
ant correlated samples. We call these sample points UC-samples (uncorrelated
and correlated samples), and if the algorithm samples such points, it does so
with equal probability for each possible point, including the rotationally invari-
ant correlated sample points 1© 2© and 3© 4© and the uncorrelated points 1© 4©
and 3© 2©. As the decision space dimension scales, the number of such samples
increases in proportion to 2D, where D is the decision space dimension. In two
decision space dimensions, there are four equations that can specify the possi-
ble sample points. In three dimensions, there will be eight equations. This can
easily be implemented programmatically by specifying an equal probability for
uj

(i) = xj
(i) + F (xj

(i) − xj
(r)) and uj

(i) = xj
(i) + F (xj

(r) − xj
(i)) to be used for

each decision space parameter j = 1 to D, so that all possible samples have an
equal chance of occurring.

Whether a C-sample or UC-sample occurs is determined probabilistically by
a control parameter κ. This parameter is responsible for controlling the balance
between C-sampling and UC-sampling in the generation of offspring.
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Fig. 3. Distribution of all possible offspring from 3 parent individuals and a mutation
scaling factor F=0.5. (a) CSDE and (b) DE/rand/1/bin with crossover.

3.1 Characteristics and Advantages

In CSDE there are two pressures in the generation of offspring; exploitation
results from the highly correlated rotationally invariant samples (C-samples)
being generated, which rapidly drives the algorithm towards better solutions, and
exploration occurs from the UC-sampling, which attempts to discover new and
diverse points around the better individual. The UC-sampling method sacrifices
emphasis on correlated rotationally invariant points for a dramatic increase in
diversity as the decision space dimension scales to higher dimensions. The general
idea of this approach is to increase the diversity that DE is capable of generating
using a relatively small population size. A critical point to consider here is that
although crossover is also not a rotationally invariant scheme, it only generates
points which are aligned with the target parent. The UC-samples are not biased
in such a fashion, and although they do not result in rotational invariance, they
do produce offspring sample vectors distributed around the target vector.

An attractive feature of CSDE is that the number of potential offspring that
can be sampled is bounded by 2D, as in the crossover based DE described in Fig-
ure 1(b). Figure 1(a) shows how offspring are sampled using our approach. The
number of candidates that can potentially be sampled around a base-vector in
the sampling based approach is in proportion to (Np−1)2D. It is apparent from
Figure 1(a) that CSDE is superior to standard DE with crossover because it can
generate points that are not solely sampled along the principle coordinate axes,
unlike DE with crossover in Figure 1(b). As a result, CSDE can be highly ef-
fective on problems which are non-separable compared with an algorithm which
only produces biased samples along the principle coordinate axes aligned with a
parent target vector. Furthermore, it bears mentioning that the smallest popu-
lation size that CSDE can work with is 2, unlike standard DE which requires 4
individuals.

The difference in efficiency between the CSDE approach and DE/rand/1/bin
is detailed further in Figure 3 where the CSDE is capable of generating offspring
in near optimal regions of the search space with far fewer samples than the
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Fig. 4. Fitness over 200,000 evaluations on rotated problems in 100 dimensions of the
decision space for the rotated Ackley, Griewangk, Rastrigin and Rosenbrock functions

DE/rand/1/bin approach. Although crossover based DE generates more points,
it is apparent from this figure that the sampling based CSDE scheme is superior
because of the greater focus it produces on more promising regions of the search
space. In contrast, it is apparent that crossover based DE/rand/1/bin samples
many more offspring but such offspring may not be advantageous towards finding
the optima efficiently.

The proposed sampling based approach can be efficiently directed towards
more optimal regions using appropriate vector selection. The CSDE approach is
also capable of generating more points than standard rotationally invariant DE
and like standard DE, only O(Np) processes are required.

4 Experiments and Methodology

In the CSDE approach described in this paper, an individual is deemed to be
better than another individual with respect to fitness in order to determine
an appropriate direction for the vector difference. If a better direction is not
apparent from the measures of fitness associated with both individuals, then a
direction is chosen randomly. In addition, if an individual has better fitness than
another individual it replaces the inferior individual in the population.

Four DE variants are evaluated in this study. Firstly, a baseline DE technique
incorporating three vectors is employed. This baseline approach was briefly dis-
cussed in the introductory section. For our purposes the baseline DE algorithm



138 A.W. Iorio and X. Li

 0.0001

 0.01

 1

 100

 10000

 0  100  200  300  400  500

F
itn

es
s

Number of decision space dimensions

(a) Decision space dimension size vs Fitness (200,000 evaluations)

Directed CSDE κ=0
Directed CSDE κ=0.5
Directed CSDE κ=1.0

DE
 10

 100

 1000

 10000

 0  50  100  150  200  250  300  350  400  450

F
itn

es
s

Population size

(b) Population size vs Fitness (200,000 evaluations)

Directed CSDE κ=0
Directed CSDE κ=0.5
Directed CSDE κ=1.0

DE

Fig. 5. Problem dimensionality vs. fitness and population size vs fitness after 200,000
evaluations on the rotated Rosenbrock function

used here for benchmarking is equivalent to the DE/rand/1/bin approach [4]
because we use it with CR = 1.0 in this study.

Secondly, the CSDE algorithm is evaluated with κ set to 1.0, 0.5 and 0. When
κ is set to 0.5, half the time the algorithm favors C-samples that are highly
directed towards better solutions, otherwise it performs UC-sampling. When κ
is set to 0 there is no bias, and vectors are sampled using UC-sampling only. In
addition, when κ is set to 1.0, the algorithm solely performs C-samples.

A population size of 100 individuals is used for each of the algorithms on each
of the test problems for the performance evaluation of the variants over time,
with fitness on the vertical axis. For the DE variants, F is set to 0.5.

The problems that are used in the evaluation of each of the algorithms evalu-
ated in this paper are the rotated Rosenbrock, Griewangk, Ackley and Rastrigin
functions. In addition, the Rosenbrock function is evaluated with the algorithm
variants in order to determine sensitivity to population size and scalability in
the decision space.

A rotation matrix is used to introduced parameter interactions between de-
cision variables, thereby making the problem non-separable. Rotations for each
of these test problems are performed in the decision space, on each plane, using
a random uniform rotation matrix, which introduces parameter interactions be-
tween all parameters [7]. Each algorithm is run 50 times on each test problem,
for a total of 200,000 problem evaluations for each run. A new random uniform
rotation matrix is generated for each run of each algorithm for the purpose of
an unbiased assessment.

5 Scalability in the Decision Space and Sensitivity to
Population Size

From Figure 5(a) it is apparent that CSDE with κ = 0.5 is insensitive to an
increase in decision space size on the 100 dimensional rotated Rosenbrock func-
tion. In addition, it is able to find highly competitive solutions which are far
superior to a canonical rotationally invariant DE/rand/1/bin approach, which
performed poorly. In addition, in Figure 5(b) it is apparent that the CSDE
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approach with κ = 0.5 is highly insensitive to a change in population size and
is capable of finding similarly good solutions after 200,000 evaluations because
of the order of magnitude higher degree of sampling that is possible compared
with the canonical rotationally invariant DE/rand/1/bin. In contrast, the per-
formance of CSDE with κ = 0 where only U-sampling is performed, peaks in
performance between a population size of 20 to 100 individuals on the rotated
Rosenbrock function in 100 dimensions. This indicates that a large population
size detracts from the performance of CSDE when U-sampling is used. The
reasons for this are that as the number of individuals in the population in-
creases, the probability of sampling highly directed correlated samples reduces
when U-sampling is employed. It is apparent that rotationally invariant cor-
related sampling is beneficial to the performance of the CSDE approach, in
order to make it more insensitive to the population size. In contrast, the CSDE
approach with κ = 1.0 is highly dependent on population size for sampling di-
versity, and the performance only begins to approach CSDE with κ = 0.5 as
the population size approaches 500 individuals on this problem. It is also clear
from Figure 5 that rotationally invariant DE/rand/1/bin performs extremely
poorly on the 100 dimensional Rosenbrock problem in the presence of parameter
interactions.

From these results it is clearly apparent that when κ = 0.5, the CSDE al-
gorithm has superior performance over the UC-sampling approach which uses
κ = 0. This indicates that sampling of highly directed rotationally invariant
correlated vectors is critically important in order for the algorithm to remain
insensitive to population size variations as well as discover highly fit solutions in
extremely large decision spaces.

In order to test the performance of the variants over time, the rotated Ack-
ley, Rastrigin, Griewangk and Rosenbrock functions were employed with 100
dimensions. The results in Figure 4 indicate that the performance of the CSDE
approach with κ = 0.5 are dramatically superior to the rotationally invariant
DE/rand/1/bin algorithm which does not employ sampling.

6 Implications and Conclusion

In this work we have addressed the stagnation issue discussed by [4] with the
CSDE approach. Until now, in order to overcome stagnation in DE a very large
population size had to be employed, or crossover was used in order to add more
sampling diversity even though crossover is typically ineffective when optimiza-
tion problems have many parameter interactions. Furthermore, rotationally in-
variant DE applied to non-separable problems is limited to rather low decision
space dimensions and is highly dependent on population size. In contrast, the
CSDE approach is insensitive to population size on the test problems used, even
though it does not employ crossover in the traditional sense. It can also handle
problems with parameter interactions in high dimensional spaces very well even
though it is not a strict rotationally invariant algorithm. The results presented
in this paper are significantly important to practitioners who are interested in
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optimizing non-separable problems. Until now, previous work in this area fo-
cussed on computationally expensive Evolutionary Strategy techniques.

We have presented a computationally efficient, simple optimization algorithm
for dramatically improving optimization performance on non-separable problems
in high dimensional spaces. Although the comparative evaluation presented here
was rather limited and only showed a comparison with the DE/rand/1/bin al-
gorithm, the results are very promising. We intend to perform a more compre-
hensive study with a variety of DE algorithms and test problems in a future
study.
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