
A Review of Population Initialization Techniques for
Evolutionary Algorithms

Borhan Kazimipour∗, Xiaodong Li∗, A. K. Qin∗†
∗School of Computer Science and Information Technology, RMIT University, Melbourne, 3000, Victoria, Australia

Email:{borhan.kazimipour, xiaodong.li, kai.qin}@rmit.edu.au
†School of Automation, Southeast University, Nanjing, China, 210096

Abstract— Although various population initialization tech-
niques have been employed in evolutionary algorithms (EAs),
there lacks a comprehensive survey on this research topic. To
fill this gap and attract more attentions from EA researchers
to this crucial yet less explored area, we conduct a systematic
review of the existing population initialization techniques. Specif-
ically, we categorize initialization techniques from three exclusive
perspectives, i.e., randomness, compositionality and generality.
Characteristics of the techniques belonging to each category are
carefully analysed to further lead to several sub-categories. We
also discuss several open issues related to this research topic,
which demands further in-depth investigations.

I. INTRODUCTION

Evolutionary algorithms (EAs) are typically a population-
based stochastic search technique, which share one common
algorithmic step: population initialization. The role of this step
is to provide an initial guess of solutions. Then, these initially
guessed solutions will be iteratively improved in the course
of the optimization process until a stopping criterion is met.
Generally, good initial guesses can facilitate EAs to locate the
optima [1], [2]. On the contrary, starting from bad guesses may
prevent EAs from finding the optima [3]. This issue becomes
more serious when solving large-scale optimization problems
using a population of finite size [4].

In black-box optimization (which EAs are apt to deal
with [5]), there exists no prior information about the search
landscape of a given problem [6]. Therefore, good and bad
initial populations cannot be determined. In such a case, EA
researchers often employ pseudo-random number generators
(PRNGs) to produce the initial population [7]. The rationale
behind this is that PRNGs can generate uniformly distributed
samples [8] and thus a population initialized using PRNGs
tends to cover promising regions (containing global optima or
good local optima) of the search space [3], [6], [9].

Since the population size is always limited, the chance for
a population to cover promising regions of the search space
decreases as increasing the dimension of the search space.
This fact becomes obvious when dealing with large-scale
optimization problems [4], [10]. Recently, research community
has started to study the effects of other initialization techniques
on the performance of EAs [11], [12]. These investigations
revealed that many promising alternatives are available to be
used as population initializers for EAs. For example, some
studies had claimed that advanced initialization techniques can
increase the probability of finding global optima [7], reduce
the variation of final searching results [13], decrease the com-
putational costs [7] and improve the solution quality [8]. Based

on these findings, a large and growing body of literatures has
been devoted to study the new ways of population initialization
for EAs [11].

While there exists a considerable number of publications
regarding population initialization techniques, little attention
has been paid to summarize and analyse them in a com-
prehensive and systematic way. To our best knowledge, [11]
is the only attempt ever made to provide a brief review of
some existing population initialization techniques. The current
paper, however, further expands the previous work in several
ways. Firstly, we provide a comprehensive survey by including
more initialization techniques, especially some very recent
techniques not mentioned in [11]. Secondly, we redefine the
categorization of population initialization techniques in a clear,
concise and systematic manner. Thirdly, we discuss the trends
and open questions in this research topic and provide some
guidelines for the future research. In fact, this study aims to
highlight the importance and challenges of the research of
population initialization for EAs. It will help EA researchers
to understand the whole picture of the current research in
this topic, and facilitate them to choose suitable population
initialization techniques in their research.

The remaining of this paper is organized as follows. Next
section introduces the new categorization. Sections III, IV
and V describe three general categories in detail and discuss
their involved sub-categories with representative techniques.
The limitations in the existing works, some open questions as
well as guidelines for future studies are provided in Section VI.
Finally, Section VII concludes the paper.

II. CATEGORIZATION

Population initialization techniques have various types of
different characteristics. Previously, a very few categorization
works had been done to group these techniques into different
categories [11]. Although the existing categorization works
are informative, they suffer from two major problems. Firstly,
most of them are not comprehensive enough to cover all types
of existing techniques. Secondly, they mostly categorize the
techniques from limited perspectives, e.g., randomness, with-
out considering other important factors that can exclusively
characterize the techniques.

In this paper, we propose the new categorization which
covers all of the existing population initialization techniques.
The proposed categorization groups the existing techniques
from three exclusive perspectives that are easy-to-understand

2585

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Fig. 1. Three categorizations of population initialization techniques, based
on randomness, compositionality and generality.

for general users. These aspects are: randomness, composition-
ality and generality. Within each of these three categories, we
further demarcate representative techniques into several sub-
categories and describe their properties in details. The hierar-
chy of the proposed categorization is illustrated in Figure 1.

As shown in Figure 1, three categories are further demar-
cated into several sub-categories according to more specific
criteria, and some of these sub-categories are further refined.

The three categorization criteria are determined based on
two facts. Firstly, each criterion describes the technique from
a unique and independent aspect. For example, whether a
technique is random or not does not depend on whether it
is compositional and/or general. Therefore, we can describe a
technique from exclusive perspectives. Secondly, each criterion
is easy-to-understand for both EA researchers and practition-
ers. For example, if an EA researcher wants to choose an
appropriate population initializer for a multi-start EA, the
randomness of a population initializer must be taken into
account. As another example, the generality of a technique
plays an important role when a practitioner needs to find a
proper initialization technique suitable for solving a specific
problem (see Section V for more information).

The following sections detail each of the three categories.
Their sub-categories with the pros and cons of the representa-
tive techniques also being discussed.

III. RANDOMNESS

From the aspect of randomness, a sequence of numbers
can be seen as completely deterministic to truly random [14].
While there is no agreement on a universal definition for
randomness [15], a true random sequence is usually described
as a sequence having strong properties such as complete un-
predictability, incompressibility and irregularity [16]. Although
several tools are available to measure these properties [17],
[18], it is impossible to prove that the given sequence is
truly random [19]. In turn, these tools can be employed as
tests to determine that the sequence is not truly random (if it
cannot pass the tests) [19]. Some of these tools may also be
useful to see if a given sequence is computationally random
or statistically random [8].

Obviously, the results of aforementioned tests (on unpre-
dictability, for example) are very sensitive to the power of
the adopted tools [14]. To avoid such confusion, a simple, yet
stable, alternative procedure is proposed here. In this paper,
initialization techniques are categorised only according to their

dependency on initial seeds. In other words, an initializer is
considered as stochastic if it generates different populations
while it is fed by different initial seeds. In contrast, techniques
which consistently produce exactly the same population, re-
gardless of any initial seed, are considered as deterministic.
Note that stochastic and deterministic are the attributes of the
resulted populations, not the generating algorithms.

A. Stochastic Techniques

As discussed above, population initialization techniques
where their results depend on initial seeds, are labelled as
stochastic initializers. In this paper, we assume that the initial
seed, which is provided by an external random source, is the
only cause of randomness. The group of stochastic techniques
can be divided into two subgroups: Pseudo-Random Number
Generators and Chaotic Number Generators. Following para-
graphs provide more details regarding these two subgroups.

1) Pseudo-Random Number Generator (PRNG): Due to
the disability of deterministic machines (i.e., digital computers)
in producing true random numbers [17], and also the lack of
efficient techniques to sample random numbers from physi-
cal phenomena (e.g., radioactive decay [20] or atmospheric
noise [21]), PRNGs are widely used in many applications to
generate numbers which look like random [14].

Generally speaking, PRNGs can be ranked based on two
key factors: cycle time (a.k.a. period length) and equidistribu-
tion. In literature, cycle time is defined as the smallest integer
that a PRNG repeats producing previously produced numbers;
and equidistribution means all points in the range have equal
frequency or probability of occurrence [14]. PRNGs which
pass some tests (e.g., DieHard [17], [18] and TestU01 [22])
can be considered as computationally or statistically random
number generators.

In EA literature, PRNGs are known as the most commonly
used population initializers [23], [24]. Among many PRNG
variants, WELL [25], KISS [26] and Mersenne Twister [27]
are the most widely used PRNG algorithms in the EA domain.
The main properties which make them very common are
simplicity and uniformity. Since fast PRNG tools are available
in every programming language and there is no restriction on
the number of points (i.e., population size) and dimension size
(i.e., number of decision variables), they can be easily applied
to every problem. Moreover, where the dimensionality of the
problem is not very high and population size is large enough,
PRNGs can provide initial populations with satisfactory level
of uniformity [8]. As mentioned earlier, using initial population
with a high level of uniformity can decrease the chance of
missing a considerable part of search space through optimiza-
tion process.

Uniform populations generated by PRNGs can be easily
transformed to biased populations. Here, biased means the
points in the population are not evenly distributed. In fact, they
are scattered according to other distributions such as normal
or Gaussian distribution. Some previous works prefer to use
biased randomly generated points as initial population [2], [8],
[10].

Apart from the interesting properties of PRNGs, they
suffer from the curse of dimensionality [3]. Indeed, PRNGs

2586

cannot produce perfect evenly distributed points [4], [10]. This
drawback gets worse when the search space dimensionality
grows or/and the population size decreases [11].

To lessen the adverse effect of dimensionality on the
performance of PRNGs, one may propose to increase the pop-
ulation size. However, as empirically shown in [11], increasing
population size while computational budget is fixed cannot
remedy the issue. In fact, blindly increasing the population size
may result to early termination which in turn may cause the
population not to converge at all. This can be even worse than
a converged algorithm which missed a considerable portion of
the search space due to poor uniformity of the initial popula-
tion [11]. Consequently, assuming uniformity as a key factor
of initial population, EAs need more advanced techniques to
provide better uniformly distributed initial populations.

2) Chaotic Number Generator (CNG): Beside PRNGs,
chaotic techniques are also employed to produce stochastic
initial populations [28], [29], [30], [31], [32]. Technically,
Chaos theory studies the behaviour of dynamical systems
which are very sensitive to their initial conditions. Ergodicity
(i.e., the ability to traverse all states in a certain region [28]),
randomness and regularity are the main properties of chaotic
systems [33]. Since these properties are desirable in many
applications, lots of CNGs are proposed and widely used [34],
[35]. In order to produce a chaotic population, a proper map
is required. In a very general form, one-dimensional chaotic
maps work as follows:

xk+1
i,j = fµ(x

k
i,j) (1)

where xki,j is jth variable of ith individual in kth iteration and
µ is the set of user defined parameters. Generally x0i,j is chosen
randomly and successive points are produced by iteratively
applying the chaotic map.

To the best of our knowledge, no study has been done
to compare the uniformity of PRNGs’ and CNGs’ generated
populations. However, it has been shown that adopting chaotic
initialization techniques can improve performance of EAs in
terms of population diversity, success rate and convergence
speed [30], [32], [36].

Apart from the advantages of CNGs, they suffer from a
number of disadvantages. Firstly, most of previously proposed
chaotic maps are designed for one, two or three dimensional
spaces [37]. This means that the interesting properties of chaos
may be visible in those low dimensional projections, but it can
hardly be generalized to higher dimensions. More studies are
required to investigate the performance of high dimensional
populations which are generated using low dimensional maps.

Secondly, the behaviour of CNGs are very sensitive to
the initial condition and its parameter settings [36], [37]. For
example, in Tent map with µ < 1, the resulting population
will converge towards 0 regardless of the initial seed. For
1 < µ < 2, however, all values close to 0 or µ/(µ + 1)
move away from them rapidly (but still remain in range [0, 1]).
On the other hand, when µ > 2 almost every point in range
[0, 1] eventually diverge towards infinity. For Tent map, the
only proper value for µ which produces chaotic sequences is
2 [28].

Thirdly, the performance of CNGs is very sensitive to
precision of their implementations. As impractically studied

in [38], different precision levels cause chaotic sequences
with different periodicities which can significantly affect EAs
performance.

Fourthly, existence of some attractors may cause the pop-
ulation to converge to a few fixed points. In the case of the
logistic map with parameter r = 4 and an initial seed in range
(0, 1), for example, 0, 0.25, 0.5 and 0.75 are known as strong
attractors [39]. The population must be checked against these
attractors; otherwise, it may converge towards 0 after a number
of iterations (depending on the precision).

Finally, it is not clear yet why in some cases a few maps
perform considerably better than the others [37]. While the
reason behind CNGs’ performance is not investigated, general
practitioners may face difficulties finding the best maps (along
with best parameter settings) for their particular problems.

B. Deterministic Techniques

As mentioned earlier, techniques which always generate
the same population (regardless of the initial seed) are known
as deterministic. In contrast with the stochastic techniques,
randomness and unpredictability are not important objectives
here [40]. In turn, deterministic initializers are specially de-
signed to provide evenly distributed points in the entire search
space [11]. Recently, these techniques attract more attention
because in the absence of prior knowledge about the problem,
uniformity of the initial population can enhance the exploration
ability of EAs in early iterations [6]. This may result in
converging to a better solution (in terms of objective value)
and saving a considerable amount of computational budget [3],
[8].

In literature, deterministic point generators are also referred
to as low-discrepancy techniques [40]. Literally, discrepancy
means non-uniformity and hence discrepancy measures are
tools for determining non-uniformity level of a given point
set [3], [40]. In other words, point sets with low discrepancy
are those with high level of uniformity. Generally, two slightly
different approaches for generating low-discrepancy sets are
proposed so far: quasi-random sequence and uniform experi-
mental design [14].

1) Quasi-Random Sequence (QRS): The term “random” in
the name of QRS should not confuse readers. These sequences
are neither true random nor pseudo-random. Indeed, QRSs
in the original form are completely deterministic and no
random element (e.g., random initial seed) is involved in their
algorithms [9].

Seeking low-discrepancy sequences, QRS techniques have
the support of theoretical upper-bounds on discrepancy of
the resulting sequences. Technically, when the population
size is large enough (i.e., n → ∞), these limits show how
much a particular QRS can be non-uniform in the worst case
scenario [40]. Knowing these limits, QRS techniques try to
find the optimal parameters to decrease the upper-bounds or to
approach the lower-bounds [14]. Assuming positive correlation
between the discrepancy of initial population and the objective
value of the final solution (in minimization problems), one can
select a proper QRS technique (with the least discrepancy)
prior running EA. Since discrepancy calculation is usually
easier than running several EA runs (in terms of computational

2587

complexity), having such theoretical limits is a worthy bonus
for QRSs in comparison with the others.

Although QRS techniques have strong theoretical advan-
tages over stochastic (and also other deterministic) techniques,
they suffer from some limitations. Firstly, the theoretical
bounds on discrepancy may not be very beneficial in practice
due to unsatisfied assumptions. In high dimensional spaces,
for example, population size is relatively smaller than what it
should be to satisfy the underlying assumptions [11]. Indeed,
some previous studies raised doubt about QRS techniques
having such superiority (in terms of discrepancy) over PRNGs
in high dimensions [41].

Secondly, various numerical algorithms for measuring dis-
crepancy of a given sequence have been proposed [42]. These
measures in some cases contradict each other. This means,
a sequence may look more uniform than another sequence
according to some discrepancy measures but less uniform in
terms of other discrepancy measures. This contradiction in dis-
crepancy measures makes it difficult for general practitioners
to compare QRSs in order to find the best technique prior
running the entire EA process.

Finally, any correlation between discrepancies and solu-
tion’s objective values has not been proven yet. Consequently,
even finding a QRS initializer with the least discrepancy
values might not result in the best final objective value after
running EA. These shortcomings can be the reasons behind
the unpopularity of QRS in high dimensional optimization.

2) Uniform Experimental Design (UED): UED is a kind
of space-filling algorithm which looks for points to be evenly
scattered in a given range. Since its first introduction in
1980, UED has been widely used in industrial and computer
simulation designs [43]. For some low-dimensional spaces,
UED tables have been calculated and published.

Suppose we seek a complete grid in a D dimensional
space which each variable has exactly q different values (i.e.,
levels). Then, the total number of points in the grid (i.e.,
population size) would be qD. In theory, having large enough q
results in a perfectly uniform population. However, evaluating
such big population is practically impossible even for small
scale problems. To lessen this difficulty, UEDs can be used
to systematically select a smaller number of points from the
complete grid which is still uniform. So far, a wide range of
UEDs such as uniform design [44] and orthogonal design [45]
has been employed as EA population initializer.

In comparison with QRSs, UEDs have two main advan-
tages over them. Firstly, QRSs only consider one-dimensional
projection uniformity; while non-orthogonal and orthogonal
UEDs consider two and D-dimensional (in addition to one-
dimensional) projection uniformities [43]. These extra consid-
erations can provide more desirable regularity and uniformity.
Secondly, UEDs generally generate discrete points while QRSs
are originally designed for real-value spaces. This property
helps UEDs to be directly applicable to nominal and discrete
optimization problems.

Obviously, UEDs have some limitations. Firstly, the per-
formance of many UEDs depends on the parameter settings.
In orthogonal design (OD) [46], for example, the number of
levels (i.e., q) plays a very important role. While large values

of q can result in more uniform population, they can increase
population size exponentially. This extremely large population
size prevents users from using OD directly on moderate or
large scale problems. To remedy this problem, [44] suggests to
evaluate all generated points and then pick the best subset ac-
cording to the objective values. This solution potentially wastes
a considerable portion of computational budget in the early
stage while it could be used in the course of optimization. In
contrast, [45] suggests to group variables using some heuristics
and use the same values for all variables in each group. This
solution can reduce the resulting population size, but seriously
affect the uniformity of the population. Moreover, variable
grouping forces extra computational costs to practitioners.

IV. COMPOSITIONALITY

In this paper, compositionality is defined as the number
of standalone procedures that are involved in a technique.
According to this criterion, population initialization techniques
fall into composite and non-composite groups. Following para-
graphs provide more details regarding these two groups.

A. Non-compositional

From the compositionality point of view, all basic tech-
niques which produce populations in only one single step
are labelled as non-compositional. Hence, regardless of being
stochastic, deterministic, generic or application specific, as
long as a technique cannot be divided into disjoint pop-
ulation initialization techniques, it is considered as a non-
compositional technique. Therefore, all techniques which were
reviewed in Section III are non-compositional unless one
hybridizes them.

B. Compositional

In contrast with non-compositional group, techniques
which comprise more than one stage are labelled as com-
positional. Two subgroups of compositional techniques are
previously proposed in literature: hybrid and multi-step tech-
niques [11]. Each component of a hybrid technique can be
separately applied as a non-compositional technique. For ex-
ample, while CNG and PRNG techniques can be separately
employed as individual population initializers, one may use a
CNG to generate the initial seed for a PRNG.

Another example of hybrid initialization techniques which
have been used in several studies are those that try to bring
some randomness to QRS techniques. This way, the resulting
population may have both uniformity of QRS population and
randomness of PRNGs. Based on the employed hybridiza-
tion techniques, the resulting algorithms may be different
in name and characteristics. The random start QRS [40],
scrambled QRS [7], [47], [48] or mixed pseudo-quasi-random
sequence [14] are some examples of this category of initial-
izations.

In general, hybrid techniques theoretically inherit the ad-
vantages and disadvantages of the basic techniques which
they are made from [11]. Consequently, studying the basic
components can shed more light on hybrid techniques as
well. On the other hand, when our knowledge about the basic
components (i.e., non-compositional techniques) is insufficient,

2588

studying hybrid techniques would provide little benefit and
interest.

As opposed to hybrid techniques, a multi-step technique
comprises of two or more components which at least one of
them cannot be employed as an standalone initializer. In other
words, multi-step techniques generally process and refine the
previously generated population in later steps. One of the most
popular multi-step techniques which is widely used in different
algorithms and applications is the family of opposition based
learning (OBL) techniques [24], [31], [49], [50].

In the first step, OBL techniques generate a set of
points called original population. Original population can be
generated using any initializer technique (e.g., PRNG [49],
CNG [31] or UED [51]). Then, some simple heuristic rules
are employed to produce another population with the same size
in the second step. This new population is generally referred
to as the opposite population. Finally, a subset of the union
of both populations is selected based on their fitness values.
Equation 2 shows the heuristic rule which produces an opposite
population based on the original population:

x̃i,j = aj + bj − xi,j , j = 1, ..., D. (2)

while Xi(xi,1, xi,2, ..., xi,D) is the ith individual of the original
population and each variable xi,j is bounded by (aj , bj).

Several variations of OBL techniques have been proposed,
so far [52], [53], [54]. In quasi-opposition based learning
(QBL), for example, quasi-opposite points are used instead of
the actual opposite points [1], [55]. A quasi-opposite point is a
randomly generated point located between the opposite point
and the middle point (i.e., aj + (bj − aj)/2 for j = 1, ..., D).
More information on other variants of OBL techniques such
as quasi-reflection opposition-based learning [56], center-based
sampling [57], generalized opposition-based learning [58] and
current optimum opposition-based learning [59] is available
in [54] and [60].

According to the probability theory, there is 50% chance
that an unknown solution is closer to the opposition point than
the original point [24]. In [1], Rahnamayan et al. proved that
points generated using QBL have more chances to be closer
to unknown solutions than points produced by OBL.

OBL and its variants are not the only multi-step techniques
that use fitness function as a guideline for enhancing the initial
population. Indeed, exploiting objective function to gain some
knowledge about fitness landscape is very common in the
initialization step [61]. For example, [62] proposed novel local
and global selections to generate high-quality initial population
for job-shop scheduling. In [63], authors suggest to apply a
hill-climbing local search to improve initial population quality.
More advanced searches such as quadratic interpolation [12],
non-linear local search (a.k.a. simplex) [64], [65], centroid-
based sampling [66], Tabu search [67] and smart sampling [68]
are also used as the second steps of some compositional
initialization techniques.

Although these multi-step techniques achieved good re-
sults, they suffer from three main problems; Firstly, these al-
gorithms consume a part of computation budget to evaluate the
fitness function and select the best subset of both populations.
Secondly, since these techniques calculate the secondary points

based on the original population, their performances to some
extent depends on the quality of the original points. Based on
this fact, some studies proposed to use more advanced point
generators for producing the original population [31], [51].
Finally, because of the greediness of the selection mechanism
in most of these techniques, the chance of losing informative
building blocks at the first stage is very high. In other words,
it is very probable that individuals which have useful subcom-
ponents are immediately excluded only due to their low fitness
values in comparison with the other individuals’.

Centroidal Voronoi Tessellation (CVT) is a different ex-
ample of multi-step techniques [69], [70] which does not use
fitness function, but other metrics to enhance initial population
quality. Generally, CVT tries to partition search space to equal
volumes. In the simplest form (a.k.a. Lloyd’s algorithm [71]),
a temporary population should be generated using PRNG or
more sophisticated techniques. Then, by the aid of many
randomly generated auxiliary points, search space is divided
into some partitions. These partitions and their centres are
iteratively enhanced till some criteria are met. Finally, partition
centres are used as initial population of EAs [69]. Similar to
CVT, simple sequential inhibition process (SSI) is also used
in a few studies to produce evenly scattered populations [9].

In comparison with other multi-step techniques, CVT and
SSI have two main advantages. Firstly, these algorithms are
able to produce geometrically uniform populations without
using any objective function evaluations while others evaluate
several function evaluations. Secondly, since CVT and SSI do
not select pints based on fitness values, it is less likely to miss
a great part of search space as greedy selection in some other
multi-step techniques sometimes do.

However, CVT also suffers from some problems. Firstly,
both CVT and SSI are known as a computationally expensive
technique. To lessen this problem, one can hybridize them with
QRS or UED techniques (to generate the temporarily popula-
tion in the first step) in order to increase their convergence
speed. Secondly, their performance depends on the internal
partitioning (or clustering) algorithm or employed distance
measures. Accordingly, practitioners must choose extra param-
eters (e.g., distance measure and stopping criterion) in addition
to EAs’ parameters. Thirdly, these iterative techniques might
not converge when the population size is relatively small. This
situation is more likely to happen when dealing with high
dimensional optimization problems.

V. GENERALITY

In this paper, generality of a population initializer refers to
the variety of the domains that it can be applied to. In terms of
generality, population initialization techniques are grouped into
two categories: generic and application specific techniques.

A. Generic

The population initialization techniques which can be di-
rectly applied to all types of optimization problems are called
generic techniques. In this sense, all techniques described in
previous parts belong to the generic category. These techniques
generally assume that the given optimization problem is a
black-box puzzle. Hence, no specific knowledge about the
region of interest or building blocks of potential solution is

2589

TABLE I. APPLICATION SPECIFIC TECHNIQUES

Authors Application Year Reference
Ma et al. antenna design 2012 [8]

Dong et al. circle detection 2012 [28]

Gutierrez FSS and antenna arrays 2011 [32]

Zhang et al. flexible job-shop scheduling 2011 [62]

Burke timetabling 1998 [72]

Garcia et al. breast cancer prognosis 2007 [73]

Pezzella et al. flexible job-shop scheduling 2008 [74]

Li at al. p-median problem 2011 [75]

Tometzki two-stage stochastic mixed-integer 2011 [76]

Guerrero segmentation 2012 [77]

available before running the EA. In the absence of such prior
knowledge about the problem, generic population initialization
techniques can be used easily and effectively [11].

B. Application Specific

The application specific group comprises a few techniques
which are specially designed to be applied to particular real-
world problems. In the design of such techniques, designers
exploit domain knowledge to avoid searching unnecessary
regions, producing more promising results and boosting EAs
convergence speed. Application specific techniques are poten-
tially beneficial in solving problems that they are specially
designed to deal with. However, they may not be effective,
efficient or even applicable in many other areas. Consequently,
study of these techniques must be only done with experts in
those specific domains. Table I presents previously published
studies on the application of specific population initialization
techniques.

VI. DISCUSSIONS

Although a big and growing body of literature is devoted
to the population initialization techniques for EAs, some areas
still remain to be explored. The followings are some open
research questions which require more investigations.

• Nearly all previous studies, have been done on low
dimensional single objective problems (less than 60
dimensions) [11]. Some studies on low dimensions
tried to generalize their findings to higher dimensions.
However, there has been little agreement on validation
of those findings in high dimensional spaces. For
example, [69] claimed that the desirable effect of
uniformity of initial population is more significant in
high dimensions (up to 50 dimensions) while [13], in
contrast, claimed that uniform initialization techniques
(e.g., QRS) loose their effectiveness in problems of 12
or more dimensions.

• Most comparison studies on population initialization
are limited to a few (mostly less than four) techniques.
In many cases, the techniques are selected arbitrarily
and without considering similarities and dissimilari-
ties of the selected techniques and their categories.
This may be due to the lack of a comprehensive
categorization. Therefore, the findings cannot easily
be generalized to other categories of initialization
techniques.

• The relationship between population initialization and
other parameters are almost completely neglected
in previous works [78]. For example, mutual ef-
fect of population size, computational budget, explo-
ration/exploitation ability of the algorithm and the
characteristics of the underlying problems are needed
to be carefully considered in future comparative stud-
ies in order to be able to draw strong conclusions.

• The effect of different population initialization tech-
niques on real-world problems are not explored
enough. In other words, most of the existing tech-
niques are only studied on well-known benchmark
suites. The potential influence of advanced population
initialization techniques on real-world application still
needs further investigations.

• Beside some theoretical advices (like this study), too
few practical rules of thumb are provided for choosing
proper initialization techniques according to different
situation. From a practitioners point of view, it is still
unclear which initializer matches a specific EA model
or suits to a given optimization problem. From this
point of view, providing simple rules of thumb for
selecting promising initializers in a specific situation
is crucial for practitioners.

• Too few studies tried to apply and investigate the
potential application of advanced initialization tech-
niques on multi and many objective optimization prob-
lems. The effect of these techniques on such problems
needs further investigations.

VII. CONCLUSION

This study provided a comprehensive and systematic survey
of the existing population initialization techniques for EAs.
Three categories were introduced to stamp existing techniques
in terms of some exclusive characteristics, i.e., randomness,
compositionality and generality. This categorization as well as
the representative techniques described in each (sub-)category
will benefit EA researchers for choosing from proper state-of-
the-art population initialization techniques for their research.
The volume of the surveyed techniques revealed that popula-
tion initialization has become an active research topic in the
EA domain. However, many open questions still remain to be
resolved. Some of these questions were discussed while more
future investigations were advocated.

ACKNOWLEDGEMENT

This work was supported by NSFC under Grant No.
61005051, SRFDP under Grant No. 20100092120027 and
ARC Discovery Grant (DP120102205).

REFERENCES

[1] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Quasi-
oppositional differential evolution,” in Evolutionary Computation, 2007.
CEC 2007. IEEE Congress on. IEEE, 2007, pp. 2229–2236.

[2] M. Clerc, “Initialisations for particle swarm optimisation,” Online at
http://clerc. maurice. free. fr/pso, 2008.

[3] H. Maaranen, K. Miettinen, and M. M. Mäkelä, “Quasi-random initial
population for genetic algorithms,” Computers & Mathematics with
Applications, vol. 47, no. 12, pp. 1885–1895, 2004.

2590

[4] S. Helwig and R. Wanka, “Theoretical analysis of initial particle swarm
behavior,” in Parallel Problem Solving from Nature–PPSN X. Springer,
2008, pp. 889–898.

[5] B. Kazimipour, B. Salehi, and M. Z. Jahromi, “A novel genetic-based
instance selection method: Using a divide and conquer approach,” in
Artificial Intelligence and Signal Processing (AISP), 2012 16th CSI
International Symposium on. IEEE, 2012, pp. 397–402.

[6] C.-H. Chou and J.-N. Chen, “Genetic algorithms: initialization schemes
and genes extraction,” in Fuzzy Systems, 2000. FUZZ IEEE 2000. The
Ninth IEEE International Conference on, vol. 2. IEEE, 2000, pp.
965–968.

[7] S. Kimura and K. Matsumura, “Genetic algorithms using low-
discrepancy sequences,” in Proceedings of the 2005 conference on
Genetic and evolutionary computation. ACM, 2005, pp. 1341–1346.

[8] Z. Ma and G. A. Vandenbosch, “Impact of random number generators
on the performance of particle swarm optimization in antenna design,”
in Antennas and Propagation (EUCAP), 2012 6th European Conference
on. IEEE, 2012, pp. 925–929.

[9] H. Maaranen, K. Miettinen, and A. Penttinen, “On initial populations
of a genetic algorithm for continuous optimization problems,” Journal
of Global Optimization, vol. 37, no. 3, pp. 405–436, 2007.

[10] M. Pant, T. Radha, and V. P. Singh, “Particle swarm optimization:
Experimenting the distributions of random numbers.” in IICAI, 2007,
pp. 412–420.

[11] B. Kazimipour, X. Li, and A. Qin, “Initialization methods for large
scale global optimization,” in Evolutionary Computation (CEC), 2013
IEEE Congress on. IEEE, 2013, pp. 2750–2757.

[12] M. Pant, M. Ali, and V. Singh, “Differential evolution using quadratic
interpolation for initializing the population,” in Advance Computing
Conference, 2009. IACC 2009. IEEE International. IEEE, 2009, pp.
375–380.

[13] R. W. Morrison, “Dispersion-based population initialization,” in Genetic
and Evolutionary ComputationGECCO 2003. Springer, 2003, pp.
1210–1221.

[14] C. Dutang and D. Wuertz, “A note on random number generation,”
2009.

[15] L. Smith, Chaos: a very short introduction. Oxford University Press,
2007.

[16] S. Ergün and S. Özoguz, “Truly random number generators based
on non-autonomous continuous-time chaos,” international journal of
circuit theory and applications, vol. 38, no. 1, pp. 1–24, 2010.

[17] B. Jun and P. Kocher, “The intel random number generator,” Cryptog-
raphy Research Inc. white paper, 1999.

[18] J. Soto, “Statistical testing of random number generators,” in Proceed-
ings of the 22nd National Information Systems Security Conference,
vol. 10, no. 99. NIST Gaithersburg, MD, 1999, p. 12.

[19] S. K. Park and K. W. Miller, “Random number generators: good ones
are hard to find,” Communications of the ACM, vol. 31, no. 10, pp.
1192–1201, 1988.

[20] J. Walker, “Hotbits: genuine random numbers,” HotBits: Genuine Ran-
dom Numbers. September, 2006.

[21] M. Haahr, “Random. org: True random number service,” School of
Computer Science and Statistics, Trinity College, Dublin, Ireland.
Website (http://www. random. org). Accessed, vol. 10, 2010.

[22] P. L’Ecuyer and R. Simard, “Testu01: Ac library for empirical testing
of random number generators,” ACM Transactions on Mathematical
Software (TOMS), vol. 33, no. 4, p. 22, 2007.

[23] M. Pant, R. Thangaraj, and A. Abraham, “Particle swarm optimization:
performance tuning and empirical analysis,” in Foundations of Compu-
tational Intelligence Volume 3. Springer, 2009, pp. 101–128.

[24] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “A novel population
initialization method for accelerating evolutionary algorithms,” Comput-
ers & Mathematics with Applications, vol. 53, no. 10, pp. 1605–1614,
2007.

[25] F. Panneton, P. L’ecuyer, and M. Matsumoto, “Improved long-period
generators based on linear recurrences modulo 2,” ACM Transactions
on Mathematical Software (TOMS), vol. 32, no. 1, pp. 1–16, 2006.

[26] G. Marsaglia and A. Zaman, “The kiss generator,” Tech. rep., Depart-
ment of Statistics, University of Florida, Tech. Rep., 1993.

[27] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[28] N. Dong, C.-H. Wu, W.-H. Ip, Z.-Q. Chen, C.-Y. Chan, and K.-
L. Yung, “An opposition-based chaotic ga/pso hybrid algorithm and
its application in circle detection,” Computers & Mathematics with
Applications, vol. 64, no. 6, pp. 1886–1902, 2012.

[29] Y. Gao and Y.-J. Wang, “A memetic differential evolutionary algorithm
for high dimensional functions’ optimization,” in Natural Computation,
2007. ICNC 2007. Third International Conference on, vol. 4. IEEE,
2007, pp. 188–192.

[30] W.-f. Gao and S.-y. Liu, “A modified artificial bee colony algorithm,”
Computers & Operations Research, vol. 39, no. 3, pp. 687–697, 2012.

[31] W.-f. Gao, S.-y. Liu, and L.-l. Huang, “Particle swarm optimization with
chaotic opposition-based population initialization and stochastic search
technique,” Communications in Nonlinear Science and Numerical Sim-
ulation, vol. 17, no. 11, pp. 4316–4327, 2012.

[32] A. Gutiérrez, M. Lanza, I. Barriuso, L. Valle, M. Domingo, J. Perez, and
J. Basterrechea, “Comparison of different pso initialization techniques
for high dimensional search space problems: A test with fss and antenna
arrays,” in Antennas and Propagation (EUCAP), Proceedings of the 5th
European Conference on. IEEE, 2011, pp. 965–969.

[33] M. Zhang, W. Zhang, and Y. Sun, “Chaotic co-evolutionary algorithm
based on differential evolution and particle swarm optimization,” in Au-
tomation and Logistics, 2009. ICAL’09. IEEE International Conference
on. IEEE, 2009, pp. 885–889.

[34] R. Senkerik, D. Davendra, I. Zelinka, and Z. Oplatkova, “Influence
of chaotic dynamics on the performance of evolutionary algorithms-an
initial study,” in AIP Conference Proceedings, vol. 1479, 2012, p. 627.

[35] M. Pluhacek, R. Senkerik, I. Zelinka, and D. Davendra, “Chaos pso
algorithm driven alternately by two different chaotic maps–an initial
study,” in Evolutionary Computation (CEC), 2013 IEEE Congress on.
IEEE, 2013, pp. 2444–2449.

[36] B. Liu, L. Wang, Y.-H. Jin, F. Tang, and D.-X. Huang, “Improved
particle swarm optimization combined with chaos,” Chaos, Solitons &
Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.

[37] R. Senkerik, M. Pluhacek, Z. K. Oplatkova, D. Davendra, and I. Zelinka,
“Investigation on the differential evolution driven by selected six chaotic
systems in the task of reactor geometry optimization,” in Evolutionary
Computation (CEC), 2013 IEEE Congress on. IEEE, 2013, pp. 3087–
3094.

[38] I. Zelinka, R. Senkerik, and M. Pluhacek, “Do evolutionary algorithms
indeed require randomness?” in Evolutionary Computation (CEC), 2013
IEEE Congress on. IEEE, 2013, pp. 2283–2289.

[39] C. Yanguang, M. Zhang, and C. Hao, “A hybrid chaotic quantum evo-
lutionary algorithm,” in Intelligent Computing and Intelligent Systems
(ICIS), 2010 IEEE International Conference on, vol. 2. IEEE, 2010,
pp. 771–776.

[40] N. Q. Uy, N. X. Hoai, R. McKay, and P. M. Tuan, “Initialising pso
with randomised low-discrepancy sequences: the comparative results,”
in Evolutionary Computation, 2007. CEC 2007. IEEE Congress on.
IEEE, 2007, pp. 1985–1992.

[41] W. J. Morokoff and R. E. Caflisch, “Quasi-random sequences and their
discrepancies,” SIAM Journal on Scientific Computing, vol. 15, no. 6,
pp. 1251–1279, 1994.

[42] X. Wang and I. H. Sloan, “Low discrepancy sequences in high
dimensions: How well are their projections distributed?” Journal of
Computational and Applied Mathematics, vol. 213, no. 2, pp. 366–386,
2008.

[43] K.-T. Fang and D. K. Lin, “Uniform experimental designs and their
applications in industry,” Handbook of Statistics, vol. 22, pp. 131–170,
2003.

[44] L. Peng, Y. Wang, G. Dai, and Z. Cao, “A novel differential evolution
with uniform design for continuous global optimization,” Journal of
Computers, vol. 7, no. 1, pp. 3–10, 2012.

[45] Y.-W. Leung and Y. Wang, “An orthogonal genetic algorithm with quan-
tization for global numerical optimization,” Evolutionary Computation,
IEEE Transactions on, vol. 5, no. 1, pp. 41–53, 2001.

2591

[46] M. Gong, L. Jiao, F. Liu, and W. Ma, “Immune algorithm with
orthogonal design based initialization, cloning, and selection for global
optimization,” Knowledge and information systems, vol. 25, no. 3, pp.
523–549, 2010.

[47] A. B. Owen, Randomly permuted (t, m, s)-nets and (t, s)-sequences.
Springer, 1995.

[48] J. Dick and F. Pillichshammer, “On the mean square weighted l2
discrepancy of randomized digital (t, m, s)-nets over z2,” Acta Arith,
vol. 117, no. 371-403, pp. 533–560, 2005.

[49] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Opposition-
based differential evolution for optimization of noisy problems,” in
Evolutionary Computation, 2006. CEC 2006. IEEE Congress on. IEEE,
2006, pp. 1865–1872.

[50] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “Opposition versus
randomness in soft computing techniques,” Applied Soft Computing,
vol. 8, no. 2, pp. 906–918, 2008.

[51] L. Peng and Y. Wang, “Differential evolution using uniform-quasi-
opposition for initializing the population,” Information Technology
Journal, vol. 9, no. 8, pp. 1629–1634, 2010.

[52] H. Wang, Z. Wu, S. Rahnamayan, Y. Liu, and M. Ventresca, “Enhancing
particle swarm optimization using generalized opposition-based learn-
ing,” Information Sciences, vol. 181, no. 20, pp. 4699–4714, 2011.

[53] F. S. Al-Qunaieer, H. R. Tizhoosh, and S. Rahnamayan, “Opposition
based computinga survey,” in Neural Networks (IJCNN), The 2010
International Joint Conference on. IEEE, 2010, pp. 1–7.

[54] M. Ergezer and I. Sikder, “Survey of oppositional algorithms,” in
Computer and Information Technology (ICCIT), 2011 14th International
Conference on. IEEE, 2011, pp. 623–628.

[55] B. Kazimipour, M. N. Omidvar, X. Li, and A. Qin, “A novel hybridiza-
tion of opposition-based learning and cooperative co-evolutionary for
large-scale optimization,” in Evolutionary Computation (CEC), 2014
IEEE Congress on. IEEE, 2014.

[56] M. Ergezer, D. Simon, and D. Du, “Oppositional biogeography-based
optimization,” in Systems, Man and Cybernetics, 2009. SMC 2009.
IEEE International Conference on. IEEE, 2009, pp. 1009–1014.

[57] S. Rahnamayan and G. G. Wang, “Center-based sampling for
population-based algorithms,” in Evolutionary Computation, 2009.
CEC’09. IEEE Congress on. IEEE, 2009, pp. 933–938.

[58] H. Wang, Z. Wu, J. Wang, X. Dong, S. Yu, and C. Chen, “A new
population initialization method based on space transformation search,”
in Natural Computation, 2009. ICNC’09. Fifth International Conference
on, vol. 5. IEEE, 2009, pp. 332–336.

[59] Q. Xu, N. Wang, and R. Fei, “Influence of dimensionality and popu-
lation size on opposition-based differential evolution using the current
optimum,” Information Technology Journal, vol. 12, pp. 105–112, 2013.

[60] Q. Xu, L. Wang, N. Wang, X. Hei, and L. Zhao, “A review of
opposition-based learning from 2005 to 2012,” Engineering Applica-
tions of Artificial Intelligence, 2014.

[61] D. Dasgupta, G. Hernandez, A. Romero, D. Garrett, A. Kaushal,
and J. Simien, “On the use of informed initialization and extreme
solutions sub-population in multi-objective evolutionary algorithms,”
in Computational intelligence in miulti-criteria decision-making, 2009.
mcdm’09. ieee symposium on. IEEE, 2009, pp. 58–65.

[62] G. Zhang, L. Gao, and Y. Shi, “An effective genetic algorithm for the
flexible job-shop scheduling problem,” Expert Systems with Applica-
tions, vol. 38, no. 4, pp. 3563–3573, 2011.

[63] R. Kumar, S. Narula, and R. Kumar, “A population initialization method
by memetic algorithm,” International Journal, vol. 3, no. 4, 2013.

[64] K. Parsopoulos and M. Vrahatis, “Initializing the particle swarm op-
timizer using the nonlinear simplex method,” Advances in intelligent
systems, fuzzy systems, evolutionary computation, vol. 216, 2002.

[65] M. Ali, M. Pant, and A. Abraham, “Unconventional initialization meth-
ods for differential evolution,” Applied Mathematics and Computation,
2012.

[66] R. A. Khanum and M. A. Jan, “Centroid-based initialized jade for
global optimization,” in Computer Science and Electronic Engineering
Conference (CEEC), 2011 3rd. IEEE, 2011, pp. 115–120.

[67] M. Sharma and S. Tyagi, “Novel knowledge based selective tabu

initialization in genetic algorithm,” International Journal, vol. 3, no. 5,
2013.

[68] V. V. de Melo and A. C. Botazzo Delbem, “Investigating smart
sampling as a population initialization method for differential evolution
in continuous problems,” Information Sciences, vol. 193, pp. 36–53,
2012.

[69] M. Richards and D. Ventura, “Choosing a starting configuration for
particle swarm optimization,” in Neural Networks, 2004. Proceedings.
2004 IEEE International Joint Conference on, vol. 3. IEEE, 2004, pp.
2309–2312.

[70] Y. Saka, M. Gunzburger, and J. Burkardt, “Latinized, improved lhs,
and cvt point sets in hypercubes,” International Journal of Numerical
Analysis and Modeling, vol. 4, no. 3-4, pp. 729–743, 2007.

[71] S. Lloyd, “Least squares quantization in pcm,” Information Theory,
IEEE Transactions on, vol. 28, no. 2, pp. 129–137, 1982.

[72] E. K. Burke, J. P. Newall, and R. F. Weare, “Initialization strategies
and diversity in evolutionary timetabling,” Evolutionary computation,
vol. 6, no. 1, pp. 81–103, 1998.

[73] M. Garcı́a-Arnau, D. Manrique, J. Rios, and A. Rodrı́guez-Patón,
“Initialization method for grammar-guided genetic programming,”
Knowledge-Based Systems, vol. 20, no. 2, pp. 127–133, 2007.

[74] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm for
the flexible job-shop scheduling problem,” Computers & Operations
Research, vol. 35, no. 10, pp. 3202–3212, 2008.

[75] X. Li, N. Xiao, C. Claramunt, and H. Lin, “Initialization strategies
to enhancing the performance of genetic algorithms for the¡ i¿ p¡/i¿-
median problem,” Computers & Industrial Engineering, vol. 61, no. 4,
pp. 1024–1034, 2011.

[76] T. Tometzki and S. Engell, “Systematic initialization techniques for
hybrid evolutionary algorithms for solving two-stage stochastic mixed-
integer programs,” Evolutionary Computation, IEEE Transactions on,
vol. 15, no. 2, pp. 196–214, 2011.

[77] J. L. Guerrero, A. Berlanga, and J. M. Molina, “Initialization procedures
for multiobjective evolutionary approaches to the segmentation issue,”
in Hybrid Artificial Intelligent Systems. Springer, 2012, pp. 452–463.

[78] B. Kazimipour, X. Li, and A. Qin, “Effects of population initialization
in differential evolution for large scale optimization,” in Evolutionary
Computation (CEC), 2014 IEEE Congress on. IEEE, 2014.

2592

