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Abstract—Opposition-based learning (OBL) and cooperative
co-evolution (CC) have demonstrated promising performance
when dealing with large-scale global optimization (LSGO) prob-
lems. In this work, we propose a novel framework for hybridizing
these two techniques, and investigate the performance of simple
implementations of this new framework using the most recent
LSGO benchmarking test suite. The obtained results verify the
effectiveness of our proposed OBL-CC framework. Moreover,
some advanced statistical analyses reveal that the proposed
hybridization significantly outperforms its component methods
in terms of the quality of finally obtained solutions.

I. INTRODUCTION

Optimization problems are ubiquitous. With the advances
in science and technology there is a growing need for solv-
ing complex optimization problems. Two major factors that
contribute to the complexity of an optimization problem are
dimensionality of the search space and variable interaction [1].
In the past decade, large-scale global optimization (LSGO) has
been an active area of research in the evolutionary computing
community [2], [3], [4].

A wide range of meta-heuristic algorithms have emerged,
especially for solving large-scale optimization problems [5],
[6], [7], [8], [9], [10], [11]. One paradigm that received the
most attention in the field of evolutionary optimization is
cooperative co-evolution (CC) [12]. Cooperative co-evolution
follows a divide-and-conquer paradigm where a large-scale
problem is decomposed into a set of lower-dimensional sub-
problems [13]. Each subproblem which is often easier to
optimize is co-adapted in a round-robin fashion. The modular
nature of a CC framework makes it ideal for solving large-scale
problems. A major challenge in using cooperative co-evolution
is finding the optimal decomposition of the decision variables
into several subcomponents. Many different algorithms such as
random grouping [5], delta grouping [14], variable interaction
learning [9], and differential grouping [6] have been proposed
for problem decomposition.

Another promising approach for dealing with large-scale
problems is opposition-based learning (OBL) [15], [16].
OBL [16] was initially introduced to the evolutionary com-
puting community in order to improve the performance of
differential evolution (DE) [17]. OBL has been successfully
applied to many applications such as multi-objective optimiza-
tion, optimization in noisy environments, and large-scale opti-
mization [18], [19]. The key concept of OBL is to check both

the current estimates (candidate solutions) and their opposites
simultaneously. The central opposition theorem [20] states that
the probability that the opposite of a candidate solution is
closer to the global optimum is higher than the probability
of a second random guess. Consequently, considering both the
estimate and its opposite increases the probability of finding a
solution closer to the global optimum.

In this study, a novel framework is proposed to introduce
the concept of OBL into a CC framework in order to improve
its performance when dealing with large-scale optimization
problems. Despite its simplicity, the proposed framework is
very general such that any OBL and CC technique can be
involved as its components. The most recent LSGO benchmark
suite [4] is used in this study to demonstrate the effectiveness
of the simplest implementations of the proposed framework.
Finally, several advanced non-parametric statistical methods
are applied to validate the significance of the findings.

The rest of the paper is organized as follows. A brief
review of the CC framework and OBL concept is provided
in Section II. The novel hybridization of OBL and CC is
discussed in Section III. Section IV is dedicated to the em-
pirical studies of the proposed methods, its comparison with
a baseline method and the discussions of the obtained results.
Some ideas for future works are also presented in Section V.
Finally Section VI concludes the paper.

II. BACKGROUND

In this section a brief review of a general cooperative co-
evolutionary framework, and the core concepts of opposition-
based learning are presented.

A. Cooperative Co-evolution

Cooperative Co-evolution (CC) [12] follows a divide-and-
conquer approach to deal with complex optimization problems.
The modular nature of a CC framework makes it ideal for
large-scale optimization problems [5], [6], [11], [21], [22]. In
the simplest form, CC divides a D-dimensional problem to
D 1-dimensional subproblems which are easier to optimize.
It is clear that there are many different ways of subdividing
a problem into a set of smaller subproblems. A major factor
that makes a particular decomposition (subdivision) superior
to another is variable interaction.

2833

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



Variable interaction or non-separability is defined as the
degree to which the quality of a variable is affected by values
taken by other variables [23]. In an extreme case where every
pair of decision variables interact with each other, the problems
are referred to as fully non-separable. In practice, not every
pair of the decision variables interact with each other. In a more
common class of problems called partially separable problems,
usually a subset of the decision variables interact, forming
several clusters of interacting variables where there is no
interaction between groups. Therefore, an ideal decomposition
of variables in a CC framework is to automatically identify
the underlying interaction structure of the decision variables
and form the subcomponents such that the inter-subcomponent
interactions are minimized.

Many decomposition methods have been proposed for a
CC framework. Random grouping [5], [24] is one of the early
attempts in tackling large-scale partially separable problems. In
random grouping the decision variables are randomly allocated
to a set of subcomponents the number of which is determined
by the user. Then, the subcomponents are optimized in a
round-robin fashion. In order to increase the probability of
placing two interacting variables in a common subcomponent
for several iterations, the decision variables are randomly
allocated to subcomponents at the beginning of each cycle.
Other decomposition methods such as delta grouping [14],
variable interaction learning [9], and differential grouping [6]
are more sophisticated techniques that have a higher accuracy
in detecting interacting variables. Since the focus of this
research is not on investigating the effect of various grouping
techniques, we confined our experiments to random grouping
only.

Algorithm 1 shows a general CC framework. The
grouping function is used to decompose a problem into a set
of smaller subproblems (line 1). This function represents any
grouping method such as random grouping [5] or differential
grouping [6]. The rand function is used to generate the initial
random population which is then evaluated to find the initial
best individual (lines 2, 3). The loop on line 4 forms the
main co-evolutionary cycle. At the beginning of each cycle the
subcomponents are reformed if a dynamic grouping algorithm
such as random grouping [5] or delta grouping [14] is used.
Static grouping algorithms such as differential grouping [6] are
only called once at the beginning of the algorithm. The inner
loop is used to iterate over the subcomponents and optimize
them in a round-robin fashion (lines 8-13). The optimizer
function is any evolutionary optimizer that is used to optimize
each subcomponent for a predetermined number of fitness
evolutions (FE).

It should be noted that the best individual that is found
so far is passed to optimizer as a context vector which
is used to evaluate the individuals in a subcomponent. This
is where the cooperation happens in a CC framework. Use
of a context vector is essential because the individuals in a
subcomponent are incomplete solutions and cannot be directly
evaluated using the objective function (f ). Therefore, the
variables of an individual must be evaluated within the context
of a complete solution. There are other ways of creating a
context vector such as randomly selecting an existing solution.
However, in this study we use the best individual as the
context vector. Once each subcomponent is optimized, the

Algorithm 1: CC(f, lbounds, ubounds, n, dynamic)
1. groups← grouping(f, lbounds, ubounds, n) . grouping stage.
2. pop← rand(popsize, n) . optimization stage.
3. (best, best val)← min(f(pop))
4. for i← 1 to cycles do
5. if dynamic = True then
6. groups← grouping(f, lbounds, ubounds, n)
7. end if
8. for j ← 1 to size(groups) do
9. indicies← groups[j]

10. subpop← pop[:, indicies]
11. (subpop, best, best val)← optimizer(f, best, subpop, FE)
12. pop[:, indicies]← subpop
13. end for
14. end for

corresponding subcomponent (subpop) and the context vector
(best) are updated (line 11).

B. Opposition-Based Learning

The concept of opposition-based learning (OBL) was
originally introduced to the machine learning community by
Tizhoosh in 2005 [25] and then to the evolutionary computing
field by Rahnamayan in 2006 [18]. The key idea of optimiza-
tion based on OBL is to simultaneously consider the estimates
(candidate solutions generated by an EA) and their opposites.
For a clear explanation of OBL, we need the concept of
opposite numbers to be defined. Let x = (x1, . . . , xD) be a D-
dimensional point where xi are real-valued variables bounded
by [ai, bi] for ∀i ∈ {1, . . . , D}. Then x̆ is the opposite of x
where each of its coordinates is defined as x̆i = ai + bi − xi.

Core theorems of opposition-based learning are summa-
rized next.

Theorem 1 (first opposition theorem). Given any function
f(x), x ∈ [a, b] with its global optimum at x? 6= a+b

2 , for
the estimate solution x and its opposite x̆ we have:

P (|x̆− x?| < |x− x?|) =
1

2
,

where P (·) is the probability function.

Theorem 1 states that a candidate solution x and its
opposite x̆ have the equal probability of being closer to the
global optimum.

Theorem 2 (second opposition theorem). For an increasingly
monotone function f(x) we have:

P (f(xr) < max {f(x), f(x̆)}) =
3

4
,

where x is the first random guess, x̆ is the opposite point of
x, and xr is the second random guess.

Theorem 3 (central opposition theorem). Assuming a black-
box optimization problem f(x), and letting x, and xr be the
first and second random guesses from a uniform distribution
over the interval [a, b]. We have:

P (|x̆− x?| < |xr − x?|) > P (|xr − x?| < |x̆− x?|) .

Theorem 3 states that the probability of the opposite of
a candidate solution x̆ being closer to the global optimum is
higher than the probability of a second random guess being
closer to the global optimum.
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As a consequence of opposition-based learning theorems,
an optimization algorithm should simultaneously evaluate both
the candidate solutions and their opposites in order to increase
the probability of finding solutions closer to the global op-
timum. In the context of evolutionary algorithms, instead of
performing pairwise comparisons between each individual and
its opposite, usually the original population of estimates and
the population of their opposites are merged and then the top
half of the candidate solutions (as ranked according to fitness
function) are selected for the next iteration and the remaining
candidate solutions are eliminated.

Several variants of OBL including quasi OBL
(QOBL) [26], quasi-reflection OBL (QROBL) [27],
generalized OBL (GOBL) [28], [29] and current optimum
OBL (COOBL) [30] have been proposed. The main difference
between these variations is in the way they produce opposite
points. In QOBL, for example, quasi-opposites are used instead
of actual opposites. A quasi-opposite of a point x is generally
defined as a real number randomly chosen from a uniform
distribution bounded by its opposite x̆ and the middle point
m = (m1, . . . ,mD) where mi = ai+ ai+bi

2 ,∀i ∈ {1, . . . , D}.
As another example, in COOBL, the current best estimate is
used as the opposition pivot instead of the middle point [30].

OBL can be used for population initialization at the
beginning of the optimization, and for generating random
variations during the optimization process. In initialization
step, a temporary population (a.k.a. original population) is
generated using conventional random number generators or
more advanced initialization techniques [31], [32]. Then, the
opposite population is produced and merged with the original
population. Finally, the best subpopulation of all generated
points is selected based on the fitness function and treated
as the initial population of evolutionary algorithms [33].

Similar approach to OBL initialization can also be applied
to the current population during the evolutionary process.
This idea which is generally referred as generation jumping
works as follows. After generating new population by conven-
tional evolutionary operators (e.g., crossover and mutation),
the opposite population is calculated with probability Jr (i.e.,
jumping rate) [34]. Then, both populations are merged and
all individuals are evaluated. Finally, the fittest individuals are
selected to survive and the worst ones are eliminated. Since
the boundaries of variables (i.e., ai and bi) may change during
each iteration, the opposite population must be calculated
dynamically according to the current boundaries (or in COOBL
according to the current best population member) [30].

III. PROPOSED METHODS

In this section the proposed method is discussed in de-
tails. As mentioned in Section II-A, CC framework generally
works as follow. The decision variables of a given problem
are divided into a number of groups using a decomposition
method. Then, an arbitrary optimization algorithm (e.g. DE)
is employed to optimize each subcomponent in a round-robin
fashion for a predetermined number of iterations.

Generally, the members of a subcomponent only contain
part of the decision variables. Therefore, a context vector
is needed for their evaluation. The context vector can be a
randomly chosen member or the current best candidate which

Algorithm 2: OBL-CC(f, lbounds, ubounds, n, dynamic, Jr)
1. groups← grouping(f, lbounds, ubounds, n) . grouping stage.
2. pop← rand(popsize, n) . optimization stage.
3. (best, best val)← min(f(pop))
4. for i← 1 to cycles do
5. if dynamic = True then
6. groups← grouping(f, lbounds, ubounds, n)
7. end if
8. for j ← 1 to size(groups) do
9. indicies← groups[j]

10. subpop← pop[:, indicies]
11. (subpop, best, best val)← optimizer(f, best, subpop, FE)
12. if rand(1, 1) < Jr then
13. oppsubpop← opposite(subpop, lbounds, ubounds, n)
14. allsubpop← union(subpop, oppsubpop, n)
15. subpop← select(f, best, allsubpop, FE)
16. end if
17. pop[:, indicies]← subpop
18. end for
19. end for

contains all D variables. Next, the corresponding variables
of each subcomponent member are plugged into the context
vector and evaluated using the fitness function.

In the traditional OBL framework, the OBL operators are
applied to the entire population for all the decision variables.
Unlike the traditional OBL, in a CC framework the OBL
operators are applied to each subcomponent separately. More
specifically, suppose a D-dimensional problem is divided into
N subcomponents, each of which has dj variables ∀j ∈
{1, . . . , N} where D = d1 + · · · + dN . Then, for the jth
subcomponent, the opposite of every candidate solution is
calculated only with respect to its dj dimensions and all
other D− dj variables remain unchanged. For evaluation, the
opposite points are plugged into the same context vector as
used to evaluate the original candidates.

Algorithm 2 shows the general proposed framework which
we call OBL-CC. The framework is very similar to a traditional
CC framework except for the inclusion of OBL operations
on lines 12-16. OBL’s generation jumping happens with Jr
probability (line 12). This means that if the random number
generated by the rand function is less than Jr, the algorithm
applies OBL operator on the jth subcomponent. Otherwise,
normal CC procedure will be continued. Note that different
schemes for generation jumping have been proposed [34]. For
example, Jr can be a fixed value or a monotonically increasing
or decreasing function of generation number. All variants of
generation jumping schemes can be applied to the proposed
framework.

On line 13 the opposite solutions of the jth subcompo-
nent is generated using the opposite function. Here the
opposite function represents any OBL variation such as
QOBL [26] or COOBL [30]. In this study, for example,
OBL [18], and QOBL [26] strategies are examined. Then,
the original subcomponent and its opposite are merged using
the union function. Finally, the merged subcomponent is
evaluated using the best context vector, and the top half of
the candidate solutions is chosen using the select function
to enter the next iteration (lines 14, 15). This procedure must
be repeated for every subcomponent when the random number
produced by the rand function is less than Jr.
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IV. EXPERIMENTS

In this section, we compare the performance of two simple
implementations of the proposed framework with DECC [5]
as the baseline method.

A. Experimental Setup

For the hybridized algorithm two opposition strategies are
used: OBL [18] and QOBL [26]. These two strategies are the
two most widely used opposition strategies according to [19].
In order to perform a fair comparison between algorithms,
the SaNSDE [22] algorithm is used as the subcomponent
optimizer, in all experiments. SaNSDE is a variation of DE that
dynamically adapts the crossover rate and the scaling factor of
DE. All common control parameters (e.g. population size and
DE strategies) are also fixed for all algorithms.

For each single strategy, four Jr schemes are examined
including two constants (0.3 and 0.6), one monotonically
increasing (0∼0.6) and one monotonically decreasing (0.6∼0)
schemes. In succeeding parts and tables, the generation jump-
ing rate schemes are denoted in the parenthesis following
the algorithm name. For example, QOBL-CC(0∼0.6) means
the hybrid of QOBL and CC with monotonically increasing
jumping rate from 0 to 0.6. See [34] for more details regarding
generation jumping rate schemes.

In all experiments, CEC’2013 LSGO benchmark func-
tions [4] are used as the testbed. Each algorithm and function
is evaluated for 51 independent runs. Following the framework
used in [35] and [33] , the ith runs of all algorithms are
initialized by the same seed while ith and jth (i 6= j) runs
of any single algorithm have different initial seeds.

To be consistent with the CEC’2013 competition guide-
lines, the maximum number of function evaluations is limited
to 3e + 6 for each run. Note that OBL-CC and QOBL-CC
call the fitness function in the selection part (Algorithm 2,
line 15) as well as in the optimization part (Algorithm 2,
line 11). For both parts the evaluations are counted and the
maximum number of total function evaluations is limited to
3e+6. Consequently, the proposed framework has no overhead
complexity in terms of the number of function evaluation.

B. Benchmark Suite

The CEC’2013 LSGO benchmark suite is currently the
latest proposed benchmark in the field of large-scale optimiza-
tion [4]. The suite consists of 15 1000-dimensional uncon-
strained continuous functions. The functions are grouped into
five distinct categories according to their degree of separability:

• G1: fully separable functions (f1-f3);

• G2: partially separable functions with a separable
subcomponent (f4-f7);

• G3: partially separable functions with no separable
subcomponents (f8-f11);

• G4: overlapping functions (f12-f14);

• G5: fully non-separable function (f15).

To improve previously proposed benchmark suites (e.g.,
CEC’2010 [3]), new functions with non-uniform subcompo-
nent sizes and overlapping subcomponents have been intro-
duced to the new suite. Furthermore, new transformations such
as ill-conditioning, symmetry breaking and irregularities have
been added to the CEC’2013 LSGO benchmark functions.
More information regarding this suite can be found in [4].

C. Analysis and Discussions

The results obtained from 51 independent runs of DECC
are compared with the performance of OBL-CC and QOBL-
CC using four generation jumping schemes which are pre-
sented in Table I. The statistics presented in the table shows
that both OBL and QOBL successfully improved the CC
framework (DECC in this case).

Table II compares eight hybrid OBL/QOBL methods with
DECC as the control method on five groups of benchmark
functions (see Section IV-B). Following [31], each cell of the
win-draw-loss table (see Table II) consists of three numbers
in α-β-γ style. In each triplet, α denotes the number of
functions on the corresponding group which the competitor
(i.e. hybrid method) significantly improves the control method
(i.e. DECC). The next number, β, shows how many times
DECC and its hybrid competitor perform statistically similar.
And, γ denotes the number of functions that hybridization has
adverse effects on the performance of DECC. Note that in this
table two algorithms are considered to be significantly different
if the p-value of Wilcoxon rank-sum test is less than 0.05, and
statistically similar otherwise.

As the last row of Table II confirms, except for OBL-
CC(0.6) and OBL-CC(0.6∼0), the hybridization generally im-
proves the performance of DECC (i.e., α > γ). More-
over, QOBL-CC(0.6∼0) with the greatest α value shows the
best performance (according to win-draw-loss measure) while
OBL-CC(0.3) with the smallest γ value is the most reliable
hybridization (i.e., has the least risk of failure) among all the
others.

Table II also indicates that the family of QOBL-CC is more
effective in dealing with problems with some degrees of non-
separability (G2-G5), while is less recommended to be used
in dealing with fully separable problems (G1).

Table III provides the results of nWins procedure. nWins
is a N×N comparison method which compares each single
method with all the others. Following [36], when an algorithm
significantly outperforms one of its competitors, its nWins
score is increased by +1 and the looser is penalized by −1.
If both algorithms perform statistically similar, their nWins
scores remain unchanged.

The provided nWins scores in Table III confirm our find-
ings from the win-draw-loss table (see Table II). All hybrid
methods obtain better nWins scores than DECC which shows
the success of hybridization of OBL/QOBL with CC frame-
work. Table III also confirms that QOBL-CC methods show
weak performance in dealing with fully separable functions
(G1). However, for the functions with some degrees of non-
separability QOBL-CC variants show very good performance.
Indeed, for G2-G5, the best performer is always from QOBL-
CC family.
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TABLE I. MAIN STATISTICS OF 51 INDEPENDENT RUNS OF TWO HYBRID ALGORITHMS (OBL-CC AND QOBL-CC) USING FOUR JUMPING RATE
SCHEMES (INDICATED IN PARENTHESIS AS 0.3, 0.6, 0∼0.6 AND 0.6∼0) WITH THE BASELINE METHOD (DECC).

Functions Stats DECC OBLCC(0.3) OBLCC(0.6) OBLCC(0∼0.6) OBL(0.6∼0) QOBLCC(0.3) QOBLCC(0.6) QOBLCC(0∼0.6) QOBLCC(0.6∼0)

f1

min 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.02e-09 9.87e+03 8.94e-11 1.61e-10
median 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 2.81e-05 1.12e+06 5.75e-07 3.19e-08

max 0.00e+00 4.75e-23 4.25e-21 1.04e-22 1.43e-22 1.39e+04 9.68e+07 2.71e+06 5.81e-03
mean 0.00e+00 9.32e-25 1.26e-22 2.05e-24 2.84e-24 6.66e+02 6.72e+06 1.16e+05 1.83e-04
std 0.00e+00 6.65e-24 5.93e-22 1.46e-23 2.00e-23 2.52e+03 1.74e+07 4.71e+05 9.39e-04

f2

min 2.37e+02 2.59e+01 1.69e+01 1.39e+01 9.95e+01 4.00e+03 5.74e+03 5.54e+03 1.60e+02
median 2.75e+02 3.88e+01 2.39e+01 2.59e+01 1.14e+02 4.68e+03 6.41e+03 6.46e+03 2.09e+02

max 3.50e+02 6.07e+01 3.68e+01 4.78e+01 1.50e+02 5.72e+03 7.28e+03 7.19e+03 2.92e+02
mean 2.78e+02 3.96e+01 2.50e+01 2.64e+01 1.18e+02 4.72e+03 6.42e+03 6.48e+03 2.13e+02
std 2.84e+01 7.65e+00 4.77e+00 5.94e+00 1.10e+01 3.83e+02 3.75e+02 4.07e+02 3.05e+01

f3

min 1.28e-13 1.03e-13 8.53e-14 9.95e-14 8.53e-14 1.15e+01 2.00e+00 3.04e+00 4.29e-05
median 1.39e-13 1.10e-13 9.95e-14 1.10e-13 1.10e-13 1.23e+01 1.08e+01 1.09e+01 1.26e+00

max 1.39e-13 1.10e-13 8.43e-02 1.14e-13 1.10e-13 1.31e+01 1.19e+01 1.22e+01 1.41e+00
mean 1.36e-13 1.09e-13 1.65e-03 1.09e-13 1.07e-13 1.22e+01 9.86e+00 1.01e+01 1.16e+00
std 4.19e-15 2.13e-15 1.18e-02 2.49e-15 5.61e-15 3.65e-01 2.43e+00 2.54e+00 3.49e-01

f4

min 3.74e+09 7.06e+09 1.33e+10 7.55e+09 9.35e+09 1.51e+09 1.49e+09 2.10e+09 2.66e+09
median 1.68e+10 1.86e+10 3.31e+10 1.89e+10 2.44e+10 5.38e+09 5.88e+09 5.84e+09 6.29e+09

max 3.85e+10 5.57e+10 8.77e+10 5.38e+10 6.24e+10 1.12e+10 1.91e+10 1.26e+10 1.49e+10
mean 1.73e+10 2.11e+10 3.59e+10 2.15e+10 2.52e+10 5.36e+09 6.89e+09 6.06e+09 6.47e+09
std 7.43e+09 9.86e+09 1.49e+10 9.93e+09 1.04e+10 2.02e+09 3.56e+09 2.64e+09 2.73e+09

f5

min 3.47e+06 3.48e+06 2.92e+06 3.51e+06 3.62e+06 3.72e+06 3.06e+06 3.06e+06 3.30e+06
median 5.65e+06 5.17e+06 5.41e+06 5.39e+06 5.45e+06 5.67e+06 5.89e+06 5.77e+06 5.50e+06

max 9.44e+06 8.38e+06 8.69e+06 7.96e+06 1.14e+07 1.05e+07 8.66e+06 8.86e+06 1.20e+07
mean 5.82e+06 5.42e+06 5.51e+06 5.54e+06 5.60e+06 5.98e+06 5.91e+06 5.90e+06 5.74e+06
std 1.32e+06 1.29e+06 1.19e+06 1.10e+06 1.37e+06 1.26e+06 1.27e+06 1.23e+06 1.64e+06

f6

min 1.14e-03 3.52e-10 1.57e+00 4.41e-04 3.00e-04 3.95e+02 8.29e+04 1.00e+05 1.84e+00
median 5.46e+04 5.50e+02 7.96e+02 6.21e+02 7.16e+02 8.64e+04 1.36e+05 1.40e+05 6.58e+02

max 1.23e+05 1.05e+05 1.01e+05 9.34e+04 1.13e+05 1.05e+06 1.94e+05 1.86e+05 1.27e+05
mean 3.96e+04 1.66e+04 3.06e+04 2.08e+04 3.00e+04 9.53e+04 1.37e+05 1.40e+05 3.61e+04
std 3.97e+04 3.07e+04 3.67e+04 3.05e+04 3.57e+04 1.40e+05 2.39e+04 1.95e+04 4.14e+04

f7

min 6.95e+07 3.72e+07 1.70e+07 2.71e+07 4.27e+07 8.21e+05 4.06e+06 1.28e+06 1.09e+06
median 3.16e+08 1.57e+08 5.86e+07 1.77e+08 2.98e+08 2.10e+06 8.85e+06 3.51e+06 9.26e+06

max 1.00e+09 1.86e+09 5.41e+08 2.52e+09 4.31e+09 7.22e+06 4.44e+07 1.05e+07 3.10e+07
mean 3.71e+08 3.57e+08 1.05e+08 3.07e+08 4.61e+08 2.55e+06 1.08e+07 3.83e+06 1.09e+07
std 2.43e+08 4.49e+08 1.18e+08 4.02e+08 6.79e+08 1.47e+06 6.51e+06 1.69e+06 7.44e+06

f8

min 9.83e+13 1.05e+14 1.26e+14 1.21e+14 1.25e+14 4.66e+13 5.61e+13 5.47e+13 5.70e+13
median 3.01e+14 3.02e+14 3.53e+14 3.39e+14 3.29e+14 1.61e+14 1.92e+14 1.98e+14 1.84e+14

max 7.41e+14 6.78e+14 6.46e+14 6.46e+14 6.57e+14 4.92e+14 3.54e+14 3.57e+14 5.21e+14
mean 2.97e+14 3.17e+14 3.56e+14 3.41e+14 3.30e+14 1.74e+14 1.89e+14 1.96e+14 1.99e+14
std 1.16e+14 1.20e+14 1.18e+14 1.16e+14 1.26e+14 7.80e+13 7.16e+13 7.23e+13 9.71e+13

f9

min 2.73e+08 2.43e+08 2.15e+08 2.25e+08 2.84e+08 2.64e+08 2.18e+08 2.16e+08 2.16e+08
median 4.13e+08 4.10e+08 3.71e+08 4.11e+08 4.32e+08 4.00e+08 4.10e+08 4.05e+08 3.81e+08

max 9.86e+08 7.75e+08 6.56e+08 5.71e+08 7.73e+08 7.51e+08 5.73e+08 6.85e+08 6.79e+08
mean 4.44e+08 4.29e+08 3.85e+08 4.03e+08 4.42e+08 4.13e+08 4.13e+08 4.15e+08 3.88e+08
std 1.30e+08 1.20e+08 1.00e+08 9.08e+07 9.79e+07 9.81e+07 7.40e+07 7.99e+07 8.43e+07

f10

min 6.57e+06 1.47e+05 6.72e+06 6.70e+06 6.71e+06 7.54e+06 1.62e+05 1.62e+05 4.72e+06
median 1.45e+07 1.31e+07 1.52e+07 1.52e+07 1.38e+07 1.55e+07 1.27e+07 1.27e+07 1.39e+07

max 8.93e+07 8.94e+07 8.94e+07 8.94e+07 8.94e+07 8.95e+07 9.03e+07 8.95e+07 8.93e+07
mean 3.37e+07 3.73e+07 3.80e+07 3.79e+07 3.24e+07 3.49e+07 2.97e+07 2.98e+07 3.37e+07
std 3.45e+07 3.70e+07 3.65e+07 3.65e+07 3.35e+07 3.38e+07 3.35e+07 3.33e+07 3.45e+07

f11

min 4.59e+10 5.58e+10 9.17e+10 5.32e+10 5.63e+10 1.17e+08 1.67e+08 1.26e+08 1.23e+08
median 1.87e+11 2.01e+11 2.20e+11 1.82e+11 2.33e+11 1.78e+08 2.82e+08 2.47e+08 2.78e+08

max 8.82e+11 1.31e+12 8.09e+11 6.03e+11 7.74e+11 2.97e+08 7.72e+08 4.38e+08 5.60e+08
mean 2.29e+11 2.53e+11 2.47e+11 2.26e+11 2.68e+11 1.79e+08 2.99e+08 2.45e+08 2.94e+08
std 1.80e+11 2.15e+11 1.48e+11 1.31e+11 1.45e+11 3.54e+07 1.03e+08 7.00e+07 9.18e+07

f12

min 1.22e+03 1.10e+03 1.31e+03 1.11e+03 1.09e+03 1.84e+03 8.83e+04 1.61e+03 1.90e+03
median 1.40e+03 1.28e+03 1.48e+03 1.34e+03 1.22e+03 2.49e+03 3.49e+07 3.11e+03 2.15e+03

max 1.63e+03 1.51e+03 2.04e+03 1.54e+03 1.43e+03 9.37e+05 2.39e+09 1.45e+09 2.65e+03
mean 1.40e+03 1.27e+03 1.50e+03 1.33e+03 1.23e+03 3.23e+04 2.35e+08 6.65e+07 2.18e+03
std 8.65e+01 8.75e+01 1.25e+02 8.91e+01 7.66e+01 1.50e+05 4.53e+08 2.69e+08 1.51e+02

f13

min 1.41e+10 1.53e+10 1.65e+10 2.01e+10 1.83e+10 1.79e+08 2.96e+08 3.11e+08 9.69e+08
median 3.03e+10 3.15e+10 3.22e+10 3.15e+10 3.71e+10 4.63e+08 7.71e+08 6.74e+08 2.36e+09

max 4.47e+10 6.23e+10 5.76e+10 6.77e+10 7.94e+10 8.64e+08 1.41e+09 1.21e+09 6.43e+09
mean 3.14e+10 3.19e+10 3.38e+10 3.24e+10 3.67e+10 4.75e+08 7.86e+08 6.97e+08 2.45e+09
std 7.66e+09 7.93e+09 9.70e+09 8.58e+09 1.17e+10 1.45e+08 2.52e+08 2.07e+08 9.77e+08

f14

min 1.66e+11 2.10e+11 1.81e+11 2.02e+11 2.26e+11 9.26e+07 2.63e+08 2.81e+08 1.67e+09
median 4.46e+11 6.21e+11 5.54e+11 5.50e+11 6.39e+11 6.42e+08 2.50e+09 3.01e+09 1.36e+10

max 8.92e+11 1.13e+12 1.30e+12 1.10e+12 1.68e+12 4.46e+09 1.54e+10 1.45e+10 1.08e+11
mean 4.69e+11 6.21e+11 6.26e+11 5.85e+11 6.61e+11 1.09e+09 3.31e+09 3.66e+09 1.66e+10
std 1.84e+11 2.14e+11 2.78e+11 2.23e+11 2.69e+11 1.10e+09 2.92e+09 3.01e+09 1.65e+10

f15

min 4.64e+07 4.31e+07 4.15e+07 4.42e+07 4.59e+07 2.38e+07 1.88e+07 2.28e+07 2.50e+07
median 5.81e+07 5.55e+07 5.01e+07 5.26e+07 5.78e+07 3.04e+07 2.81e+07 2.85e+07 3.18e+07

max 6.99e+07 6.22e+07 7.20e+07 7.16e+07 7.04e+07 4.45e+07 3.89e+07 3.95e+07 3.96e+07
mean 5.79e+07 5.45e+07 5.12e+07 5.39e+07 5.80e+07 3.10e+07 2.82e+07 2.93e+07 3.22e+07
std 5.35e+06 4.90e+06 5.49e+06 5.94e+06 5.40e+06 4.03e+06 4.07e+06 4.00e+06 3.30e+06
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TABLE II. THE WIN-DRAW-LOSS STATISTICS OF TWO HYBRID ALGORITHMS (OBL-CC AND QOBL-CC) USING FOUR JUMPING RATE SCHEMES
(INDICATED IN PARENTHESIS AS 0.3, 0.6, 0∼0.6 AND 0.6∼0) WHILE DECC IS SET AS THE CONTROL METHOD.

Groups OBLCC(0.3) OBLCC(0.6) OBLCC(0∼0.6) OBLCC(0.6∼0) QOBLCC(0.3) QOBLCC(0.6) QOBLCC(0∼0.6) QOBLCC(0.6∼0)

G1 2-1-0 1-0-2 2-1-0 2-1-0 0-0-3 0-0-3 0-0-3 1-0-2
G2 2-2-0 1-2-1 2-1-1 0-3-1 2-1-1 2-1-1 2-1-1 2-2-0
G3 0-4-0 1-2-1 0-4-0 0-3-1 2-2-0 2-2-0 2-2-0 3-1-0
G4 1-1-1 0-1-2 1-1-1 1-0-2 2-0-1 2-0-1 2-0-1 2-0-1
G5 1-0-0 1-0-0 1-0-0 0-1-0 1-0-0 1-0-0 1-0-0 1-0-0

Total 6-8-1 4-5-6 6-7-2 3-8-4 7-3-5 7-3-5 7-3-5 9-3-3

TABLE III. THE RESULTS OF NWINS PROCEDURE ON TWO HYBRID ALGORITHMS (OBL-CC AND QOBL-CC) USING FOUR JUMPING RATE SCHEMES
(INDICATED IN PARENTHESIS AS 0.3, 0.6, 0∼0.6 AND 0.6∼0) AND DECC AS THE BASELINE METHOD.

Functions DECC OBLCC(0.3) OBLCC(0.6) OBLCC(0∼0.6) OBLCC(0.6∼0) QOBLCC(0.3) QOBLCC(0.6) QOBLCC(0∼0.6) QOBLCC(0.6∼0)

f1 5 5 0 5 5 -5 -8 -5 -2
f2 -2 4 7 7 2 -4 -7 -7 0
f3 2 5 0 5 8 -8 -5 -5 -2

G1: 5 14 7 17 15 -17 -20 -17 -4

f4 -1 -2 -8 -3 -6 7 4 5 4
f5 0 3 0 0 0 -1 -1 -1 0
f6 1 7 2 4 2 -4 -7 -7 2
f7 -7 -4 0 -4 -5 8 3 6 3

G2: -7 4 -6 -3 -9 10 -1 3 9

f8 -3 -4 -5 -4 -4 5 5 5 5
f9 -2 0 2 0 -2 0 0 0 2
f10 0 0 0 0 0 -2 1 1 0
f11 -3 -4 -4 -4 -5 8 3 6 3

G3: -8 -8 -7 -8 -11 11 9 12 10

f12 2 6 0 4 8 -5 -8 -5 -2
f13 -3 -3 -4 -3 -7 8 5 5 2
f14 0 -5 -5 -5 -5 8 5 5 2

G4: -1 -2 -9 -4 -4 11 2 5 2

f15 -7 -3 0 -3 -7 4 7 7 2

G5 -7 -3 0 -3 -7 4 7 7 2

Total -18 5 -15 -1 -16 19 -3 10 19

Furthermore, Table III denotes that DECC is never the
single best method among the others. In fact, except for f1
which DECC shares the first position with three variants of
OBL-CC, it is one of the worst performers on all functions.
The last row of Table III confirms that DECC is the weakest
algorithm amongst the others. Consequently, we can conclude
that OBL and QOBL hybridization (even with suboptimal Jr
values) significantly improve DECC.

To avoid family-wise error rate (FWER) and have a
stronger conclusion, Friedman test is employed in this
study [37]. This procedure is one of the state-of-the-art al-
gorithms for 1×N and N×N comparisons [38]. In this experi-
ment, Friedman procedure is repeated for each single function,
group and entire benchmark functions. In all applications, the
number of runs are carefully chosen to be consistent with the
suggestions provided in [39].

The best and the worst performers according to Friedman’s
ranking is provided in Table IV. The results obtained from
Friedman’s ranking are fully compatible with the findings from
win-draw-loss and nWins procedures (Tables II and III). As
shown in Table IV, except for f1 which DECC performs better
than some of the other methods, on all the other functions the
proposed hybridizations improve the performance of DECC.
This means that the proposed method is effective in solving

large-scale problems.

Friedman’s ranking (see Table IV) also confirms that
QOBL-CC is not as effective as the other hybrid methods
in dealing with fully separable problems. However, on par-
tially separable and fully non-separable functions, QOBL-CC
variants are always the best performers among the examined
methods. The last row of Table IV denotes that DECC is
in general the worst algorithm while QOBL-CC(0∼0.6) is
the top performer. This clearly confirms that the proposed
hybridization successfully improves the performance of DECC
on a wide range of large-scale benchmark functions.

Note that several post-hoc procedures (including Li’s ad-
justed p-value [40]) are applied to validate Friedman’s ranking.
These procedures are recommended to be used to compare all
methods against the control method. Here, DECC is selected
as the control method in order to determine in which cases the
top performer (according to Friedman’s ranking) significantly
improves DECC and in which cases the superior algorithm
and DECC perform statistically similar. The results of this
experiment are provided in Table IV.

The results of Li’s post-hoc procedure are summarized in
the last column of Table IV. In that column, ‘yes’ means the
best method performs significantly better than DECC. On the
other hand, ‘no’ in that column indicates the improvements
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TABLE IV. THE BEST AND THE WORST METHODS ARE REPORTED
BASED ON FRIEDMAN’S RANKING. THE LAST COLUMN SHOWS WHETHER

ONE OF THE HYBRIDIZED ALGORITHMS SIGNIFICANTLY IMPROVES THE
BASELINE (DECC) OR NOT. STATISTICAL SIGNIFICANCE IS CALCULATED

BASED ON THE LI’S ADJUSTED p-VALUES [40].

Best Method Worst Method Improvement

f1 DECC QOBL(0.6) No
f2 OBL(0.6) QOBL(0.6∼0) Yes
f3 OBL(0.6) QOBL(0.3) Yes

G1: OBL(0.6) QOBL(0.6) Yes

f4 QOBL(0.3) OBL(0.6) Yes
f5 - - No
f6 OBL(0.3) QOBL(0.6∼0) Yes
f7 QOBL(0.3) DECC Yes

G2: QOBL(0.3) OBL(0∼0.6) Yes

f8 QOBL(0.3) OBL(0.6) Yes
f9 OBL(0.6) OBL(0∼0.6) Yes
f10 - - No
f11 QOBL(0.3) OBL(0∼0.6) Yes

G3: QOBL(0.3) OBL(0∼0.6) Yes

f12 OBL(0∼0.6) QOBL(0.6) Yes
f13 QOBL(0.3) OBL(0∼0.6) Yes
f14 QOBL(0.3) OBL(0∼0.6) Yes

G4: QOBL(0.3) OBL(0.6) Yes

f15 QOBL(0.6) OBL(0∼0.6) Yes

G5: QOBL(0.6) OBL(0∼0.6) Yes

sum QOBL(0∼0.6) DECC Yes

from hybridization is not statistically significant. The last
column of Table IV indicates that on 12 out of 15 functions (i.e.
all except for f1, f5 and f10) the hybridization significantly
improves DECC performance. These results once again show
the effectiveness of the proposed framework.

V. FUTURE WORKS

Considering the generality of the proposed hybridization
of OBL and CC, every opposition strategy and decomposition
technique can be hybridized. Furthermore, the proposed frame-
work allows us to employ different evolutionary algorithms as
the core optimizer. Therefore, we are interested in comparing
different opposition strategies, decomposition techniques and
core optimizers to investigate their effects on the performance
of the resulting hybridization. Additionally, as discussed in
Section IV-C, the key control parameters, such as Jr, affect the
performance of the hybrid algorithm. Consequently, sensitivity
analysis of the Jr parameter is also the subject of our future
investigations. Finally, comparing the performance of this
framework (using more advanced opposition strategies and
decomposition techniques) with the state-of-the-art methods
for tackling large-scale optimization problems is of interest.

VI. CONCLUSION

In this study, a novel framework for hybridizing
oppositional-based learning (OBL) and cooperative co-
evolution (CC) for dealing with large-scale optimization prob-
lems is proposed. While CC’s decomposition strategy breaks
the search space into several smaller subspaces, the OBL
operators increases the chance of finding the global optimum.
The proposed framework has been successfully applied to the

most recent large-scale benchmark functions and the results are
compared with a baseline method called DECC. The obtained
results clearly show that the hybridization significantly im-
proves its parents’ performance. Several statistical analysis are
also presented in this study all of which confirm the statistical
significance of the results.

According to the generality of the proposed framework,
two different opposition strategies are studied in this paper. The
obtained results indicate that some components (e.g., OBL) are
effective in dealing with fully separable functions while the
others (e.g. QOBL) are more promising for solving functions
with some degrees of non-separability. Further studies may
shed light on the usability of each component and help users
in choosing the most effective OBL and CC strategies that suit
their needs.

The provided results show that the main control parameters
can affect the power of the proposed framework. Hence, a deep
and comprehensive parameter sensitivity analysis is required to
investigate the potential effects of each parameter and provide
some rules of thumb for practitioners to easily chose effective
parameter values.
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