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An integral component of transport aircraft design is the high-lift configuration, which can provide sig-
nificant benefits in aircraft payload-carrying capacity. However, aerodynamic optimization of a high-lift
configuration is a computationally challenging undertaking, due to the complex flow-field. The use of
a designer-interactive multiobjective optimization framework is proposed, which identifies and exploits
preferred regions of the Pareto frontier. Visual data mining tools are introduced to statistically extract
information from the design space and confirm the relative influence of both variables and objectives to the
preferred interests of the designer. The framework is assisted by the construction of time-adaptive Kriging
models, which are cooperatively used with a high-fidelity Reynolds-averaged Navier–Stokes solver. The
successful integration of these design tools is facilitated through the specification of a reference point,
which can ideally be based on an existing design configuration. The framework is demonstrated to perform
efficiently for the present case-study within the imposed computational budget.

Keywords: high-lift aerodynamics; multiobjective optimization; data mining; preferences; Kriging

1. Introduction

To achieve sufficient low-speed performance without compromising cruise performance requires
a fairly sophisticated high-lift configuration (van Dam 2002). The primary goal of an aerody-
namic high-lift system is to increase payload capacity and reduce take-off and landing distances
by maximizing the lift coefficient for a given angle of incidence, without the onset of massive flow
separation (Smith 1975). Studies confirm that relatively small changes in the aerodynamic per-
formance of a high-lift system potentially translate to major benefits in aircraft payload-carrying
capacity and performance (Garner et al. 1991). For this reason, high-lift aerodynamic and system
design remain at the forefront of aerospace research.

For a typical high-lift configuration design, involving a forward (slat) element and an aft (flap)
element, the flow field is physically complex due to the element interactions (Smith 1975; van Dam
2002). Combined with the intricacy of system support and actuation, this has traditionally led to an
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1210 R. Carrese et al.

experiment intensive development process. However, due to the recent development of numerical
modelling and computing facilities, computational fluid dynamics (CFD) are superseding physical
experimentation design methods (Rumsey and Ying 2002). In particular, the significant progress
achieved in synthesizing automated optimization tools and high-fidelity CFD has significantly
reformed the aerodynamic design philosophy (Kim et al. 2004; Keane and Nair 2005). Innovative
design methods have since been proposed, e.g. by drawing on evolutionary theory (Quagliarella
and Vicini 2001; Kanazaki et al. 2006), the collective intelligence of a swarm (Khurana and
Winarto 2010), or the ability of a neural network to detect patterns in complex input–output data
relationships (Greenman and Roth 1999), etc. These evolutionary techniques are formulated to
find the most optimal system configuration to suit the preferences of the designer, in the shortest
time possible.

High-lift configuration design is a multiobjective optimization problem, where trade-offs are
sought between several different goals or design conditions. Such problems present an interesting
challenge to evolutionary methodologies and follow the generic form:

min
x∈S

f (x) = {f1(x), . . . , fm(x)} fi : S → R, (1)

where x represents a decision vector of n inputs x = {x1, . . . , xn} subject to the design space
S ∈ R

n bounded by the lower and upper limits xmin and xmax, respectively. The vector f represents
m objectives, that generally conflict if the problem is well formed. The aim of multiobjective
optimization is to identify trade-off (or Pareto optimal) solutions which are in the preferred
interests of the designer. Methods for solving multiobjective problems are therefore characterized
by how the designer preferences are articulated (Marler and Arora 2004). Despite the merits of the
increasingly popular evolutionary multiobjective methods (Deb 2001), their direct application to
high-fidelity design is not very practical and computationally demanding (Keane and Nair 2005).
Fonseca and Fleming (1995) however argue that their most attractive aspect is the intermediate
information generated which can be exploited by the designer to refine preferences and improve
convergence. There has thus been an increasing interest in coupling classical interactive methods
to evolutionary multiobjective algorithms as an intuitive way of specifying designer preferences
and identifying solutions of interest to the designer (Fonseca and Fleming 1998; Deb and Sundar
2006; Rachmawati and Srinivasan 2006; Wickramasinghe and Li 2008).

In an earlier study (Carrese et al. 2011a), it was demonstrated that, through the use of designer
preferences, the computational burden of exploring the entire Pareto frontier is alleviated. The
design algorithm was aided by a reference point which is projected onto the Pareto landscape
by the designer to identify solutions of interest. Unlike conventional interactive methods which
make explicit reference to a target design (e.g. goal programming, see Marler and Arora 2004), the
reference point expresses the designer’s preferred level of compromise, which can ideally be based
on an existing design or reflect the ideal trade-off. The algorithm is guided by this information
to confine its search to the preferred region of the Pareto front. The concept of preference-based
optimization was developed further to incorporate the use of surrogates by Carrese et al. (2011b). It
was demonstrated that by replacing each objective function with a time-adaptive Kriging model, a
significant reduction in the computational evaluations was achieved, notwithstanding the apparent
discontinuities in the objective landscapes. The reference point criterion introduced to locally
update the Kriging models was shown to be adept at filtering out solutions which disrupt or
deviate from the optimal search path dictated by the reference point.

In conjunction with intricate optimization heuristics, the use of design space visualization and
data mining techniques has also progressively increased (Obayashi and Sasaki 2003; Jeong et al.
2005; Khurana and Winarto 2010). Such methodologies are applied to extract useful information
on the relationship between the design space and the objective space. However when confronted
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Engineering Optimization 1211

with a multi-dimensional design space and conflicting goals, identifying and isolating the case-
specific information that suits the intended application can be challenging. In this article, a series of
visual data mining techniques used for pre-optimization variable screening and post-optimization
trade-off visualization is presented. It is demonstrated that extracting case-specific information
from the visualization analyses, based on the preferred interests of the designer, is facilitated
through the reference point. Variable influence and interaction, as well as important factors which
drive the design are easily identified. Such methods simplify a seemingly complex problem,
allowing informed decisions to be made which may facilitate the optimization process.

These design tools are consolidated to develop an efficient framework for a two-dimensional
high-lift configuration design scenario. Integration of the framework is entirely achieved through
the use of a reference point distance metric which provides a scalar measure of the preferred
interests of the designer. The implementation of designer preferences similarly allows the scale
of the design space to be reduced, confining it to the interests reflected by the designer. The
cooperative use of time-adaptive Kriging models allows for the use of a high-fidelity Reynolds
averaged Navier–Stokes (RANS) solver, which accurately portrays the flow field due to interac-
tions between the airfoil elements. The complex geometrical configurations are meshed through
a multi-block structured gridding technique, which ensures quality structured grids for efficient
convergence rates. Data mining techniques are used to visualize preferred trade-offs and quantify
the driving influence of variables on the objective landscapes.

2. Problem formulation

High-lift configuration design is a highly multi-disciplinary process. For the present study, the
problem is simplified to a two-dimensional aerodynamic optimization of a high-lift configura-
tion. This simplification allows for a higher-fidelity solver, providing an interesting challenge
to the proposed algorithm. The baseline three-element configuration for this optimization study
is selected as the McDonnell-Douglas 30P/30N, shown in Figure 1. The 30P/30N configura-
tion has already been highly optimized for maximum lift. Wind-tunnel measurements have been
extensively performed for this configuration (Ying et al. 1999), and the results of many CFD
computations for this geometry have been reported using a variety of numerical schemes (Rogers
et al. 1994; Rumsey et al. 1998).

The variables used in the optimization study are the relative positions of the slat and flap
components. These variables measure the gap, overlap and deflection angle relative to the main
component. For the present study, relative positions of the slat and flap are specified indirectly,
through ±x/c and ±y/c directional translations, and rotation ±θ . In these measurements, c
refers to the clean airfoil chord with retracted flap and slat. In this way, the design variables are
geometrically independent and their relative influence on the design space is easily identifiable.
The design variables are initialized relative to the position of the original configuration. Figure 2
illustrates the translational and rotational displacement of the slat and flap components.

The proficiency of the proposed framework is demonstrated by maximizing the lift generated
on the 30P/30N configuration at various design conditions, motivated by the work of Ying et al.

Figure 1. The MDC 30P/30N configuration with deployed slat (forward) and flap (aft) components.
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1212 R. Carrese et al.

Figure 2. Parameterization variables for high-lift configuration.

Table 1. Design variable ranges for the optimization study.

Parameter Description Lower bound Upper bound

�xS Slat translation, �x/c −0.04 0.01
�yS Slat translation, �x/c −0.03 0.04
�θS Slat rotation, �θ −10◦ 10◦
�xF Flap translation, �x/c −0.02 0.04
�yF Flap translation, �x/c −0.07 0.005
�θF Flap rotation, �θ −10◦ 10◦

(1999). All simulations are performed at a Reynolds number Rec = 9 × 106 and Mach number
M = 0.2. Three objectives are formulated for the problem, which are f1 = min(1/Cl) and f2 =
min(Cd/Cl) at α = 8◦, and f3 = min(1/Cl) at α = 19◦, where Cl and Cd are the configuration lift
and drag coefficient, respectively. The objectives f1 and f2 are optimized at an angle of incidence
α = 8◦, typical of an approach configuration. The objective f3 is optimized at an angle α = 19◦,
nearing the angle where maximum lift is generated. Neither objective is discontinuous, but the
third objective is highly nonlinear, as some configurations will lead to premature separation and
stall. The boundaries of the design space are selected such that there is a smooth transition of
the grid and do not result in any infeasible configurations (e.g. component intersection, etc.). The
design variable ranges are shown in Table 1.

2.1. Multi-block grid

Due to the complexity of the geometry, most methods for high-lift configurations are typically
based on unstructured grids or overset grids (Vatsa et al. 1994). These strategies are optimal for
complex geometries, yet the computational efficiency and accuracy is poor relative to an orthog-
onally structured mesh. In this study, the block-structured grid generator GridPro™ is utilized.
The grid topology is divided into a number of many-to-one elementary blocks, which allows for
accurate meshing of geometry, without the need to propagate dense grids to the computational
far-field. Figure 3 illustrates a partial view of the grid topology generated for this problem.

The O-grid topology consists of 234 blocks, resulting in a total mesh size of approximately
80,000 elements. The far-field boundary extends 20c radially from the origin. The grid is alge-
braically clustered at the surface where the first grid point has a y-plus magnitude of O(1), which
is critical for adequate resolution of the boundary layer. It is shown in Figure 3 that there is a
rather dense topology in regions of interest and the topology around the trailing edges of each
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Engineering Optimization 1213

Figure 3. Multi-block grid topology generated for the 30P/30N configuration.

(a) (b)

Figure 4. Partial close-up views of the multi-block grid.

component are mapped to an interior circular surface, in order to preserve orthogonality. Shown
in Figure 4 is a close-up view of the slat and flap grids. During the optimization process, rather
than regenerating a new topology, the surface and surrounding topological grid is translated and
rotated according to the design variable notation.

2.2. Flow solver

Significant progress in formulating a theoretical basis for high-lift aerodynamics was pioneered by
the work of Smith (1975). The circulation of a forward element or the slat effect reduces the leading
edge suction peak, thus delaying separation. The trailing element however induces a circulation
effect on the forward element which tends to increase the loading or lift generated. These flow
phenomena are predominantly inviscid, yet viscous effects also arise due to the individual wakes
from each element. While wakes reduce the pressure peak of trailing elements, they often tend to
merge with the boundary layer of the trailing element resulting in a thicker shear layer, termed a
confluent boundary layer, increasing the likelihood of separation.

To portray each of these flow phenomena, a high-fidelity flow solver is essential. In this study, the
general purpose finite volume code ansys fluent™ is used. The compressible steady-state RANS
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1214 R. Carrese et al.

Figure 5. Comparison of surface Cp plots for the 30P/30N configuration at Re = 9 × 106, α = 19◦.

equations are solved with the implicit pressure-based scheme using second-order upwind spatial
discretization and SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) pressure–
velocity coupling. In the interest of robust and efficient convergence rates, a full multi-grid (FMG)
initialization scheme is employed, with coarsening of the grid to 100 cells. In the FMG initial-
ization process, the Euler equations are solved using a first-order discretization scheme to obtain
a flowfield approximation before submitting to the full iterative calculation. The one-equation
Spalart–Allmaras turbulence closure model is selected to compute the eddy viscosity (Spalart and
Allmaras 1992). The advantage of this model over two-equation turbulence models is that the
turbulence equation is solved locally and its robust convergence rate makes it suitable for aerody-
namic flows over complex geometries. Presented in Figure 5 is the accuracy of the computational
flow solver compared to experimental data acquired from the NASA Langley Research Center
(Ying et al. 1999). Fairly good agreement is observed across the entire geometry albeit the suction
peaks predicted by the computational solver are marginally higher.

3. Optimization algorithm

The principal argument of this research is that, for most design applications, to explore the entire
Pareto front is often unnecessary and the computational burden can be alleviated by considering
the immediate interests of the designer. Drawing on this concept, a preference-based swarm
algorithm is proposed, where a designer-driven distance metric is used to scalar quantify the
success of a solution. The swarm is guided by this information to confine its search and focus
exclusively on the preferred region of the Pareto front as dictated by a reference point or the
preferred compromise. The reader is encouraged to follow the user-preference multiobjective
particle swarm optimization (UP-MOPSO) algorithm description in previous articles (Carrese
et al. 2011a,b), including a discussion on the swarm dynamics and topology. For the present
article, the discussion is limited to the important components of the algorithm.

3.1. Population update

Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart (2001) and is derived
from the social-psychological tendency of individuals to learn from previous experience and
emulate the success of others. Particles are represented by n-dimensional vectors xi and vi, which
are the ith particle position and velocity, respectively. From the performance rating provided
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Engineering Optimization 1215

by the objective solver, particles identify and exploit promising areas of the design space via
coordinated movement. PSO is praised for its efficient convergence rate (Trelea 2003), and its
success for single-objective optimization problems has since been reflected in the multiobjective
community (Sierra and Coello 2006).

Following the work of Clerk and Kennedy (2002), the ith particle of the swarm is accelerated
towards its personal best position, pi, and the global (or neighbourhood) best position, pg. The
particle velocity magnitude is initialized randomly in the interval [0, xmax − xmin]. Half of the
population’s direction is reversed by setting the velocity to negative according to a coin toss. The
updated position and velocity vectors at time t + 1 are given by the following two equations:

vi,(t+1) = χ
[
vi,(t) + R1[0, ϕ1] ⊗ (

pi,(t) − xi,(t)
) + R2[0, ϕ2] ⊗ (

pg,(t) − xi,(t)
)]

(2)

xi,(t+1) = xi,(t) + vi,(t+1), (3)

where R1[0, ϕ1] and R2[0, ϕ2] are two functions returning a vector of uniform random numbers in
the range [0, ϕ1] and [0, ϕ 2], respectively. The constants ϕ1 and ϕ 2 are set to ϕ/2 where ϕ = 4.1.
The constriction factor χ applies a dampening effect as to how far the particle explores within the
search space, given as χ = 2/|2 − ϕ − √

ϕ2 − 4ϕ|.

3.2. Reference point integration

A multiobjective particle swarm optimization variant is developed which utilizes a reference point
to provide additional guidance to the swarm to identify preferred solutions. At each time-step, the
best representative non-dominated front found by the particles is stored within an elitist archive
(Deb 2001). Additional guidance in selecting candidates is provided by a reference point distance
metric, following the work of Wickramasinghe and Li (2008). The reference point z is used to
construct a distance metric to be minimized for x ∈ S, such that

dz(x) = max
i=1:m

{(fi (x) − zi)} , (4)

where zi is the ith component of the reference point. A solution x∗ is therefore preferred to a
solution x if the condition dz(x∗) < dz(x) is satisfied. The distinguishing feature of the reference
point distance metric over the mathematical Euclidean distance is that solutions do not converge
to the reference point, but rather on the preferred region of the Pareto front as dictated by the
optimal search path. Since the designer generally has no prior knowledge of the topology and
location of the Pareto front, a reference point may be ideally placed in any feasible or infeasible
region. Figure 6 illustrates the multiobjective swarm algorithm guided by the reference point for
the ZTD (Zitzler et al. 2000) and DTLZ (Deb et al. 2005) test function suite.

The reference point draws on the experience of the designer to express a feasible compromise,
rather than specific target values or goals. Similarly, the distance metric ranks the success of
a particle using one single scalar, instead of an array of objective values. At each population
update, archived solutions are first sorted based on the metric dz, of which the highest ranking
solutions are selected as candidates for leadership. Each swarm particle is then randomly assigned
to a candidate, which is the respective global leader. This concept promotes search diversity and
provides the necessary selection pressure for particles to converge towards the preferred region
dictated by the reference point compromise, rather than a single point. To maintain high selection
pressure on archive members, a limited number of solutions are permitted for entry. If the limit
is breached, lowest ranked solutions are removed. The solution spread along the Pareto front is
controlled by δ which is the maximum variance of the solutions’ distance metric σ(dz) ≤ δ, as
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Figure 6. Illustration of the algorithm for multiobjective test functions.

illustrated in Figure 6. The extent of the solution spread is proportional to δ and evidently, as the
value of δ increases, the influence of the location of z diminishes.

Identifying the most preferred solutions (for example from Figure 6) is highly dependent on
the choice of the reference point. While the concept of the reference point may initially seem
misleading, it in fact provides a very simple and intuitive method of articulating the preferred
interests of the designer. Consider the three-objective DTLZ2 problem of Figure 6, where the
boundaries of the Pareto front are in the unit hypercube f ∈ [0, 1]3. If one desires an absolutely
equal weighting between all objectives then a reference point consisting of equal values should be
considered, as illustrated in Figure 6. There are two possibilities to provide additional bias to any
particular objective(s). The simplest approach to applying additional weighting to the objective
f3 would be to reduce the reference value for f3, as illustrated in Figure 7(a). Alternatively it is
possible to obtain a similar level of bias to a specific objective by relaxing the reference values
of the other objective functions. This is illustrated in Figure 7(b), where the values of f2 and f3
are relaxed, naturally placing more emphasis on the objective f1. Figure 7 demonstrates that by
adding additional bias to any particular objective, the isolated preferred region shifts to the area
which provides further improvement in the specific objective without affecting the compromise
between other objectives.

In the context of an engineering design problem, if the original reference point (providing equal
weighting) were representative of an existing design configuration, then a new reference point
which emphasizes a specific design condition represents a target compromise where the designer
is strictly interested in obtaining further improvement in that specific design objective. To illustrate
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Figure 7. Manipulating the target compromise through adjustment of the reference point.

this concept, a computational experiment has been formulated to demonstrate the viability of the
proposed method for the intended high-fidelity design application. The design space is analogous
to that presented in Section 2, with the exception that the high-fidelity flow solver is replaced with
a computationally inexpensive pressure-based Euler scheme. The multi-block grid is reconfigured
to provide an approximate cell count of 10,000 elements based on the same O-grid topology. The
Euler solver is still able to capture the important inviscid flow phenomena which are dependent
on the relative position and interaction of the high-lift configuration elements. This experiment
attempts to highlight the reference point guidance mechanism in converging to different preferred
regions of the Pareto front.

The optimization problem introduced in Section 2 is reduced to a biobjective minimization
problem for the functions f1 and f3. Within this flow regime drag is predominately a viscous
effect, hence the objective function f2 (which is a measure of the lift-to-drag ratio) has been
omitted. For this experiment, two reference points are selected which focus on two different design
philosophies. The first reference point z1 is based on the existing MDC 30P/30N configuration.
The existing configuration is thus assumed to offer the preferred trade-off, and the algorithm will
attempt to identify and exploit designs which offer improvement over the design objectives whilst
maintaining a similar level of compromise. The second reference point z2 is modified to place
higher priority on the approach condition f1, both by emphasizing the f1 reference value and by
relaxing the f3 reference value. It is immediately observed that designs guided by z1 favour the f3
condition, whereas designs guided by z1 provide a more equal balance between the two design
conditions.

4. Integrating the Kriging method

High-fidelity engineering design problems require the construction of an inexpensive surrogate
model f̂ that emulates the response of a function f . However, to construct a globally accurate
surrogate of the original objective landscape is improbable due to the weakly correlated design
space. It is more common to construct a global surrogate approximation based on a limited number
of observations and then locally update the prediction accuracy of the surrogate as the search
progresses towards promising areas of the design space (Forrester et al. 2008). For this reason, the
Kriging method has received much interest in the optimization community, because it inherently
considers confidence intervals of the predicted outputs. This method was first developed for the
geostatistical field, but has recently received much interest by many researchers in engineering
design (Jones 2001, Forrester et al. 2008).
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Figure 8. Identifying preferred designs on the Pareto front via different design philosophies.

4.1. Kriging prediction

The spatial arrangement of the initial observations is governed by the sampling array X of size
(N , n) and the corresponding response Y of size (N , 1):

X = {x1, x2, . . . , xN } ; Y = {y1, y2, . . . , yN } . (5)

The ordinary Kriging method predicts the response at an unobserved location x as

ŷ(x) = β̂ + rTR−1(Y − 1β̂), (6)

where β̂ is an approximation of the global mean value, R is the correlation matrix, r is the
correlation vector, and 1 is a column vector of N elements of 1. The prediction accuracy of the
Kriging model is updated by maximizing the concentrated natural log likelihood of the dataset
Y, which is an n-variable single objective optimization problem, solved using a quasi-Newton
method (Gano et al. 2006). The measure of uncertainty ŷ in the prediction is estimated as

ŝ2(x) = σ̂ 2

[
1 − rTR−1r + (1 − 1TR−1r)2

1TR−11

]
. (7)

The accuracy of the prediction ŷ at the unobserved location x depends on the correlation distance
with sample points X. The closer the location of x to the sample points, the more confidence in the
prediction ŷ(x). It is observed from Equation (7) that if x ⊂ X, then the measure of uncertainty
ŝ(x) = 0.

4.2. Model management and particle screening

The aim of a surrogate-assisted optimization framework is to use the precise objective functions
and the inexpensive surrogate models cooperatively, in an effort to reduce the number of precise
evaluations required for convergence. A procedure to manage and update the Kriging models is
therefore required, in order to locally improve prediction accuracy in the preferred region of the
design space.

After each population update, the non-dominated subset of Y is stored within the archive, which
ensures that candidates for global leadership have been precisely evaluated (or with negligible
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Engineering Optimization 1219

prediction error) and, therefore, offer no false guidance to other particles. Adopting the concept
of individual-based control (Jin 2005), Kriging predictions are then used to screen each candi-
date particle and subsequently flag them for precise evaluation or rejection. The Kriging model
estimates a lower-confidence bound for the objective array as

{f̂1(x), . . . , f̂m(x)}lb = [{
ŷ1(x) − ωŝ1(x)

}
, . . . ,

{
ŷm(x) − ωŝm(x)

}]
, (8)

where ω = 2 provides a 97% probability for f̂lb(x) to be the lower bound value of f̂ (x). An
approximation to the reference point distance, d̂z(x), can thus be obtained using Equation (4).
This value, whilst providing a means of ranking each solution as a single scalar, also gives an
estimate to the improvement that is expected from the solution. At time t, the archive member
with the highest ranking according to Equation (4) is recorded as dmin. The candidate x may then
be accepted for precise evaluation, and subsequent admission into the archive if d̂z(x) < dmin.
This criterion provides diversity exploring the design space, whilst balancing exploitation of the
identified preferred region.

5. Numerical results

The algorithm described in the previous section is now combined with the high-fidelity RANS
solver for an efficient design framework. The framework is applied to the re-design of the MDC
30P/30N configuration for robust aerodynamic performance, as described in Section 2. The
authors, as the designers, select the reference point as the existing 30P/30N configuration in an
attempt to improve on the performance characteristics whilst still maintaining a similar level of
compromise between the design objectives. The solution spread is controlled by δ = 5 × 10−3.
The values of the reference point objective functions (as obtained by the flow solver) are z =
[0.3338, 0.0182, 0.2361].

5.1. Pre-optimization and variable screening

Global Kriging models are constructed for the aerodynamic coefficients from a stratified sample of
N = 100 design points based on a Latin hypercube sample (Mackay et al. 1979). This sampling
plan size is considered sufficient in order to obtain sufficient confidence in the results of the
subsequent design variable screening analysis. Whilst a larger sampling plan is essential to obtain
an accurate global correlation, it is only of interest to quantify the elementary effect of each
variable to the objective landscapes. The global Kriging models are initially trained via cross-
validation. Illustrated in Figure 9 are the cross-validation curves for the Kriging models. The
subscripts to the aerodynamic coefficients refer to the respective angles of incidence.

It is observed in Figures 9(a) and 9(b) that the constructed Kriging models for the aerodynamic
coefficients at α = 8◦ are able to reproduce the training samples with sufficient confidence, record-
ing error margin values of 3.21% and 3.83%, respectively. It is therefore apparent that the Kriging
method is very adept at modelling complex landscapes represented by a limited number of precise
observations. It is observed from Figure 9(c) that the largest error margin occurs in predicting
the maximum lift (i.e. Cl19 ), since at larger angles of incidence the nonlinear effects of flow sep-
aration and stall begin to dominate. In order to model a more correlated landscape, the sample
from Figure 9(c) is conditioned, by eliminating all configurations which exhibit premature stall
characteristics, such as unsteady flow. By conditioning the training sample, the design points are
reduced to N = 91 and the error margin is reduced from 9.64 to 7.07%, which is highlighted in
Figure 9(d).
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Figure 9. Cross-validation curves for the constructed Kriging models.

To investigate the elementary effect of each design variable on the metamodelled objective
landscapes, a quantitative design space visualization technique is introduced. A popular method
for designing preliminary experiments for design space visualization is the screening method
developed by Morris (Morris 1991, Forrester et al. 2008). This algorithm calculates the elementary
effect of a variable xi and establishes its correlation with the objective space f as: (a) ‘Negligible’;
(b) ‘Linear and additive’; (c) ‘Nonlinear’; or (d) ‘Nonlinear and/or involved in interactions with
xj, . . .’. In plain terminology, the Morris algorithm measures the sensitivity of the ith variable
to the objective landscape f . The design space S is restricted to an n-dimensional, p-level full
factorial grid, where the normalized variable is

xi ∈ {0, 1/(p − 1), 2/(p − 1), . . . , 1} , for i = 1, . . . , n. (9)

For a given baseline solution x, let di(x) denote the elementary effect of xi, where

di(x) = y(x1, x2, . . . , xi−1, xi + �, xi+1, . . . , xn) − y(x)

�
, (10)

where � = ξ/(p − 1), ξ ∈ IN∗ is the elementary effect step length factor, and x ∈ S such that
xi ≤ 1 − �. Morris’s screening method estimates the distribution of elementary effects of xi over
the design space S. If the variable xi has a large central tendency μi, then this suggests an important
influence on f . A large measure of spread σi suggests that either xi is involved in interactions with
other variables or is nonlinear with f . Campolongo et al. (2004) introduced a ranking measure
μ∗, which is calculated from the mean of the distribution of the absolute values of the elementary
effects, such that μ∗ = |di(x)|. The proposed methodology addresses the misrepresentation of the
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Engineering Optimization 1221

magnitude of sensitivity, as a result of opposite signs of the elementary effects for a non-monotonic
model (Khurana and Winarto 2010). To rank variables in order of influence or importance, the
variable μ∗ is used.

Figure 10 features the results obtained from the design variable screening study. It is imme-
diately observed that in the approach condition (i.e. α = 8◦) the lift generated is almost entirely
dependent on the position and orientation of the flap. This is expected, since the flap component is
primarily responsible for increasing the loading of the high-lift configuration. The position of the
slat has a more significant effect on the drag (and most importantly �xS) since this may effect the
development of the confluent boundary layer and thus the shear stress distribution. The slat effects
become much more significant at the maximum lift condition (i.e. α = 19◦). This is due to the fact
that the slat component is primarily responsible for reducing the leading edge suction peak of the
trailing elements, thus delaying flow separation. The slat influence is almost completely dictated
by �xS and �θS suggesting that �yS has no elementary effect on the maximum lift generated.
Similar deductions can be made by examining the variable influence on dz shown in Figure 10(d).
The variable influence on dz is case-specific and entirely dependent on the reference point chosen
for the proposed optimization study. Since the value of dz is a means of ranking the success of
a multiobjective solution as one single scalar, variables may be ranked by influence, which is
otherwise not possible when considering a multiobjective array. Preliminary conclusions to the
priority weighting of the objectives to the reference point compromise can also be made. It is
important to observe that slat effects are significant in the computation of dz, which suggests that
the maximum lift condition drives the design.

Table 2 consolidates the results of the design variable screening study, by ranking variable
importance according to its influence on dz. It is observed that the flap variables are the most
significant variables, contributing to approximately 85% of the total influence. Once again, slat
effects are almost entirely dependent on �xS and �θS, with �yS contributing to less than 1% of
the total influence. In an industry setting, this result could be used to reduce the dimensionality of
the problem by omitting the least influential variable �yS, which could potentially facilitate the

Lift Cl8
. Drag Cd8

. Lift Cl19
. dz.

(a) (b) (c) (d)

DxS DyS DqS DxF DyF DqF

Figure 10. Variable influence on aerodynamic coefficients (subscripts refer to angles of incidence).

Table 2. Results of the design variable screening study and variable ranking.

Parameter μ∗(Cl8 ) [%] μ∗(Cd8 ) [%] μ∗(Cl19 ) [%] μ∗(dz) [%] Relative rank

�xS <0.01 5.98 11.27 5.60 5
�yS 0.78 3.34 <0.01 0.34 6
�θS 2.32 0.69 19.00 9.58 4
�xF 30.76 25.20 27.42 31.84 1
�yF 33.03 19.71 13.45 23.34 3
�θF 33.12 45.08 28.84 29.28 2
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1222 R. Carrese et al.

optimization process. In this setting the variable �yS is not omitted since its negligible effect is
a counter-intuitive result, and may be due to insufficient sampling. None the less, the true effect
of �yS will be reconfirmed during the subsequent optimization and post-optimization processes.

5.2. Optimization results

A swarm population of 100 particles is initialized and flown to solve the optimization problem.
The objective space is scaled such that there is no bias in the computation of the reference point
distance metric. A computational budget of 250 evaluations is imposed. Based on the initial
stratified sample of N = 100 design points, a further 150 precise evaluations are performed over
t ≈ 70 time-steps until the computational budget is breached.As shown in Figure 11(a), the largest
number of update points are recorded during the initial explorative phase. As the preferred region
is identified and the prediction error is reduced, the algorithm begins exploitation and the number
of update points steadily reduces.

Figure 11(b) features the progress of the solution with minimum reference point distance
dmin (referred to as the most preferred solution) as the number of precise evaluations escalates.
The reference point criterion is shown to be proficient in filtering out poorer solutions during
exploration and identifying the preferred region as only 50 evaluations are required to reach
within 65% of the most preferred solution and an additional 50 evaluations to reach within 15%.
Consistent improvement is then recorded due to exploitation of the preferred region until the
search begins to converge after approximately 240 evaluations. The adept searching technique of
the algorithm is further demonstrated in Figure 12(a) which features the 150 most recent solutions
scheduled for precise evaluation. Attraction towards the preferred region dictated by the reference
point is observed, which progressively becomes more focused and localized. Furthermore, few
solutions appear to disturb the search direction of the algorithm, i.e. the trajectory of the search
remains consistent. Hence, the reference point criterion proves to be very capable at filtering out
solutions that do not reside within the preferred region. Featured in Figure 12(b) is the final set of
30 non-dominated solutions. The optimization framework was successful in obtaining solutions
which exhibit improvement over all objectives compared with the reference point (i.e. the reference
point is dominated).
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Figure 11. (a) History of precise update evaluations. (b) Progress of dmin. Algorithm performance for the optimization
case-study.
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Figure 12. (a) History of precise update evaluations. (b) Final set of non-dominated solutions. Evaluations performed
during the optimization study.

5.3. Post-optimization and trade-off visualization

The reference point distance also provides a feasible means of selecting the most appropriate
solutions. For example, solutions may be ranked according to how well they represent the reference
point compromise. To illustrate this concept, self-organizing maps (SOMs) are introduced to
visualize the interaction of the objectives with the reference point compromise. Clustering SOM
techniques are based on an unsupervised artificial neural network technique (Kohonen 1995) that
can classify, organize and visualize large sets of data from a high-to-low dimensional space (Jeong
et al. 2005; Khurana and Winarto 2010). A neuron used in this SOM analysis is associated with
the weighted vector of objective inputs. Each neuron is connected to its adjacent neurons by a
neighbourhood relation and forms a two-dimensional hexagonal topology. The SOM learning
algorithm will attempt to increase the correlation between neighbouring neurons to provide a
global representation of all solutions and their corresponding resemblance to the reference point
compromise (Jeong et al. 2005).

The SOM analyses have been conducted using the software Viscovery SOMine 5.2. The two-
dimensionality of the charts is simply a means of clustering solutions to facilitate a qualitative
visual analysis. Figure 13 features the post-optimization SOM trade-off study of the set of non-
dominated solutions featured in Figure 12(b). The shading of the chart corresponds to the range
of values for the specific quantity. The charts are clustered using four SOM-ward clusters, with
priority to dz. Each of the node values represent one possible non-dominated solution that the
designer may select. The SOM chart coloured by dz is a measure of how far a solution deviates
from the preferred compromise. By following the other charts, the designer can visualize and

0.29 0.30 0.30 0.30 0.31 0.31 0.31

(a) f1. (b) f2. (c) f3.

0.015 0.016 0.016 0.017 0.018 0.22 0.22 0.23 0.23 0.23 0.23 0.23 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05

(d) dz.

Figure 13. SOM charts to visualize optimal trade-offs between the design objectives.
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Figure 14. Box-plot of final non-dominated design variables.

relative priority of each objective function (and hence the design condition). It is immediately
observed that the dz chart most closely resembles the f3 chart, indicating that this objective (i.e.
maximum lift) has the highest priority. This complements the conclusion made from the design
space screening analysis, discussed in Section 5.1. In subsequent optimization studies, to identify
solutions which are more inclined to the other objectives, then the reference value for f3 should be
less stringent. Objectives f1 and f2 have a similar weighting and are within the middle bound of the
identified objective ranges. Following these charts allows the designer to gain an understanding
of the correlation between objectives f1 and f2 and the deviation from the preferred compromise.

To illustrate where the final solutions are located in the design space, a box-plot (see Figure 14)
is generated of the non-dominated solutions from Figure 13. The design space is normalized
to [0, 1]n for best visualization. It is observed from Figure 14 that the preferred region of the
non-dominated front as dictated by the reference point compromise is well defined. A reduced
flap rotation angle (increased flap deflection) increases the loading by effectively increasing the
camber of the airfoil configuration. The reduced slat rotation angle may effectively reduce the
magnitude of flow acceleration over the slat upper surface, injecting energy into the trailing
element boundary layer whilst reducing the tendency of the flow to separate from the slat. The
vertical translation of the flap �yF is at the upper bound, which could cause concern for system
actuation. Both the horizontal translation of the slat and flap components are compacted such that
they effectively reduce the chord, which is no doubt reflected in the increase of the lift-to-drag
ratio over the reference point. The vertical translation of the slat �yS is the only variable shown
which does not shift largely from the reference value (i.e. does not differ from the reference point
30P/30N configuration). This suggests that the variable already lies within the optimum region
and thus does not have a significant impact on the dynamics of the swarm. This result coincides
with the conclusion derived from the design variable screening analysis, discussed in Section 5.1.
The optimization process could confidently be re-performed with �yS constant at the reference
value, thereby alleviating some of the computational burden.

5.4. Final designs

Through visualization of the SOM charts, the trade-off relationships between solutions are quite
clear despite the multi-dimensionality of the problem. Utilizing these charts, the designer may
select the solution which best fits the target application. From the perspective of the present
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Engineering Optimization 1225

Figure 15. Comparison of the MDC 30P/30N configuration (- -) and the preferred solution (—).

Table 3. Performance of each configuration representing the most optimal
values for each design condition.

Configuration Cl8 (Cl/Cd) Cl19

MDC 30P/30N 2.995 55.05 4.236
Preferred 3.286 58.92 4.423
min f1 3.371 62.94 4.374
min f2 3.194 64.84 4.335
min f3 3.278 57.08 4.427

authors, the configuration that most resembles the compromise dictated by the reference point
is considered the preferred solution. This corresponds to the solution which has the minimum
distance metric dmin. The variation in the component configuration is shown in Figure 15.

To facilitate the performance comparison between configurations, the objective functions are
referred to by their aerodynamic coefficient equivalents. The values of the preferred configuration
are listed in Table 3. Also tabulated are configurations which exhibit the most optimal value
for the respective design conditions. The additional solutions provide an understanding to the
extent of the preferred region. The preferred solution provides an approximate 9.7, 7.1 and 4.4%
improvement over the reference 30P/30N configuration for the first, second and third design
conditions, respectively. The preferred solution is clearly inclined towards the Cl19 condition
which is evident from the similarity to the min f3 solution. This conclusion was also arrived at
during the SOM post-optimization analysis discussed in Section 5.3.

6. Conclusion

In this article, an optimization framework has been introduced and applied to the aerodynamic
design of a typical two-dimensional high-lift configuration. Qualitative and quantitative data
mining tools are applied to visualize the design space and simplify a seemingly complex design
problem. A surrogate-driven multiobjective particle swarm optimization algorithm is applied to
navigate the design space to identify and exploit preferred regions of the Pareto frontier. The
integration of all components of the optimization framework is entirely achieved through the use
of a reference point distance metric which provides a scalar measure of the preferred interests of
the designer. This effectively allows for the scale of the design space to be reduced, confining it
to the interests reflected by the designer.

The developmental effort that is reported on here is to reduce the often prohibitive computa-
tional cost of multiobjective optimization to the level of practical affordability in computational
aerodynamic design. The multiobjective re-design of a typical high-lift configuration has been
considered by controlling the degree of motion of the forward and aft components in conjunction
with a Reynolds-averaged Navier–Stokes flow solver. Kriging models were constructed based on
a stratified sample of the design space. A pre-optimization visualization tool was then applied to
screen variable elementary influence and quantify its relative influence to the preferred interests
of the designer. Initial design-drivers were easily identified and an insight into the nonlinearity of
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1226 R. Carrese et al.

the optimization landscape obtained. Optimization was achieved by driving a surrogate-assisted
particle swarm towards a sector of special interest on the Pareto front which is shown to be an
effective and efficient mechanism. It was observed that there is a distinct attraction towards the
preferred region dictated by the reference point, which implies the reference point criterion is
adept at filtering out solutions which will disrupt or deviate from the optimal search path.

Non-dominated solutions which provide significant improvement over the reference geometry
were identified within the imposed computational budget, and are clearly reflective of the pre-
ferred interest. A post-optimization data-mining tool was finally applied to facilitate a qualitative
trade-off visualization study. This analysis provides an insight into the relative priority of each
objective and their influence on the preferred compromise. Conclusions complement the findings
of the pre-optimization screening study. Further studies could also evaluate the influence of visu-
alization tools to facilitate the optimization process by omitting variables which have a negligible
influence and assist in making informed decisions which can potentially minimize the scale of
the optimization problem.
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