Tackling High Dimensional Nonseparable Optimization Problems
By Cooperatively Coevolving Particle Swarms

Xiaodong Li, Senior Member, IEEE, Xin Yao, Fellow, IEEE

Abstract— This paper attempts to address the question of
scaling up Particle Swarm Optimization (PSO) algorithms
to high dimensional optimization problems. We present a
cooperative coevolving PSO (CCPSO) algorithm incorporating
random grouping and adaptive weighting, two techniques that
have been shown to be effective for handling high dimensional
nonseparable problems. The proposed CCPSO algorithms out-
performed a previously developed coevolving PSO algorithm
on nonseparable functions of 30 dimensions. Furthermore,
the scalability of the proposed algorithm to high dimensional
nonseparable problems (of up to 1000 dimensions) is examined
and compared with two existing coevolving Differential Evo-
lution (DE) algorithms, and new insights are obtained. Our
experimental results show the proposed CCPSO algorithms
can perform reasonably well with only a small number of
evaluations. The results also suggest that both the random
grouping and adaptive weighting schemes are viable approaches
that can be generalized to other evolutionary optimization
methods.

I. INTRODUCTION

Stochastic algorithms such as Evolutionary Algorithms
(EAs) and Particle Swarm Optimization (PSO) algorithms
have been shown to be effective optimisation techniques
[1]. However, their performance often deteriorates rapidly
as the dimensionality of the problem increases. A natural
approach to tackle high dimensional optimisation problems
is to adopt a divide-and-conquer strategy. An early work
by Potter and De Jong on a cooperative coevolutionary
algorithm (CCEA) [2] provides a promising approach for
decomposing a high dimensional problem and tackling its
subcomponents simultaneously. By cooperatively coevolv-
ing multiple EA subpopulations, each dealing with a sub-
problem of a lower dimensionality, we can obtain an overall
solution derived from combinations of sub-solutions evolved
from individual sub-populations. Clearly, the effectiveness
of such CCEAs depends heavily on the decomposition
strategies used. The classical CCEAs [2] performed poorly
on nonseparable problems, because the inter-independencies
among different variables could not be captured well enough
by the algorithms. Recent improvements [3] achieved only
limited success in dealing with variable inter-independencies
in cooperative coevolution on low dimensional problems.
Generally speaking, existing CCEAs or CCPSO algorithms
performed poorly on nonseparable problems with 100 or
more real-valued variables effectively.

Xiaodong Li is with the School of Computer Science and IT, RMIT
University, VIC 3001, Melbourne, Australia (phone: +61 3 99259585, fax:
+61 3 96621617; email: xiaodong.li@rmit.edu.au).

Xin Yao is with the School of Computer Science, The University of
Birmingham, Edgbaston, Birmingham B15 2TT, UK. (phone: +44 121
4143747, fax: +44 121 4142799; email: x.yao@cs.bham.ac.uk).

978-1-4244-2959-2/09/$25.00 (©) 2009 IEEE

PSO is an efficient optimization algorithm which has
gained increasing popularity in recent years [1]. Classical
PSO algorithms have been shown to perform well on low
dimensional problems, however often poorly on high di-
mensional problems [4], [5]. In [3], van den Bergh and
Engelbrecht made a first attempt to apply Potter’s CCGA
to PSO in order to address the issue of scaling up PSO to
higher dimensional problems. Two cooperative PSO models,
CPSO-Sk and CPSO-Hg, were developed. Unfortunately,
these two models were only tested on problems with up to 30
dimensions. The question remains on how well these CCPSO
models scale with problems of 100 or more dimensions.

More recently, a decomposition strategy based on random
grouping was presented by Yang et al. [6], [7]. Without
prior knowledge of the non-separability of a problem, it
was shown that random grouping increases the probability
of two interacting variables being allocated to the same
subcomponent, thereby making it possible to optimize these
interacting variables in the same subcomponent, rather than
across different subcomponents. This strategy was embedded
in a differential evolution (DE) model, and was evaluated on
problems up to 1000 dimensions. In addition, an adaptive
weighting scheme was developed to further fine-tune the
solutions produced by the coevolutionary DE model. The
DE using the cooperative coevolutionary framework that in-
tegrate these two schemes (so called DECC-G) outperformed
existing EAs especially on high dimensional nonseparable
problems [7]. However, it is unclear whether these two
schemes can be generalized to other optimization techniques
such as PSO in improving their performances. Along this
line of thinking, this paper attempts to address the following
questions:

e Can we develop more effective CCPSO algorithms
especially for solving high dimensional nonseparable
optimisation problems?

e In light of the recent works by Yang et al. [6], [7],
can we generalize the two proposed strategies, random
grouping and adaptive weighting, to the CCPSO algo-
rithms?

o Can we further improve the performance of the CCPSO
proposed by van den Bergh and Engelbrecht [3]?

This paper is organized as follows. Section II presents an
overview of existing CCEAs, especially those tested for han-
dling nonseparable or high dimensional problems. Section III
provides the rationale on why PSO is an appropriate choice
for building a CC model, as well as the previous work on
CCPSO algorithms, which our newly proposed CCPSO is

1546

built upon. Section IV describes two techniques that have
proven to be useful in improving the performance of an
cooperative coevolutionary DE model, and furthermore how
they can be incorporated into a CCPSO model. Section V
describes the experimental setup, followed by Section VI pre-
senting experimental results and analysis. Finally Section VII
gives the concluding remarks.

II. COOPERATIVE COEVOLUTION

The first CCEA for function optimization, called CCGA,
was proposed by Potter and De Jong [2], where six test
functions of up to 30 dimensions were used in the exper-
iments. However, no attempt was made in using the coop-
erative coevolution (CC) framework for higher dimensional
problems. More recently, the idea of using CC in optimiza-
tion has attracted much attention and was incorporated into
several algorithms, including evolutionary programming [8],
evolution strategies [9], PSO [3] and DE [10], [6], [7].

In their original CCGA, Potter and De Jong [2] decom-
posed a problem into several smaller components, each being
evolved by a separate GA subpopulation. When a subpopula-
tion is being evolved, all of the other subpopulations are held
fixed. The subpopulations are each evolved in a round-robin
fashion. For a function optimization problem of n variables,
Potter and De Jong [2] decomposed it into n subcomponents,
corresponding to n subpopulations, one for each variable.
The fitness of a subpopulation member is determined by the
n-dimensional vector formed by this member and selected
members from other subpopulations. In a way, the fitness of
a subpopulation member is assessed by how well it “cooper-
ates” with other subpopulations. Two models of cooperation
were examined. In the first model CCGA-1, the fitness of
a subpopulation member is computed by combining it with
the current best members of other subpopulations. It was
found that CCGA-1 performed significantly better than a
conventional GA on separable problems, but much worse on
non-separable problems. To improve CCGA’s performance
on non-separable problems, CCGA-2 was proposed where
members were randomly selected from other subpopulations
in the fitness evaluation. On a 2-dimensional Rosenbrock
function, CCGA-2 was shown to perform better than CCGA-
1. In summary, Potter and De Jong’s original study [2]
showed great potentials of the CC framework for function
optimization. However, the CCGA framework was tested
only on problems with up to 30 dimensions.

Liu et al. [8] applied the CC framework to their Fast
Evolutionary Programming (FEP) algorithms. The new algo-
rithm FEPCC (FEP with Cooperative Coevolution) was able
to tackle benchmark functions with 100 to 1000 real-valued
variables. However, for one of the non-separable functions,
FEPCC performed poorly and trapped in a local optimum,
confirming the deficiency of handling variable interactions in
Potter and De Jong’s decomposition strategy [2].

van den Bergh and Engelbrecht [3] first introduced the CC
framework to PSO. Two cooperative PSO algorithms, CPSO-
Sk and CPSO-Hg, were developed. CPSO-Sk adopts the
same framework as that of Potter’s CCGA, except that it

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

allows a vector to be split into K subcomponents, instead
of each single dimension being a separate subcomponent.
CPSO-Hg is a hybrid combining both a standard PSO with
the CPSO-Sk. These two CPSO algorithms were tested on
some benchmark problems with up to 30 dimensions. Some
rotated test functions with variable interactions were used.
Their results showed that correlation among variables in
such problems reduces the effectiveness of the two CPSO
algorithms. However, no new decomposition strategies were
proposed especially for handling high dimensional nonsepa-
rable problems.

New decomposition strategies were proposed and inves-
tigated for DE with CC [10], [6], [7]. A splitting-in-half
strategy was proposed by Shi et al. [10], which decomposed
the search space into two subcomponents, each was evolved
by a separate subpopulation. Clearly, this strategy does not
scale up very well and loses its effectiveness quickly when
the number of dimensions increases. Yang et al. [6], [7]
reported some promising results of using a decomposition
strategy based on random grouping with DE on high di-
mensional nonseparable problems (up to 1000 real-valued
variables). Although the proposed algorithm, DECC-G [7],
outperformed all other algorithms significantly, the solutions
found were still some distances away from the true global
optimal value. There is ample room for further improvement.
More analysis is needed to understand how well different
decomposition strategies capture interdependencies among
different variables.

III. PARTICLE SWARM OPTIMIZATION

PSO is modelled on an abstract framework of “collective
intelligence” in social animals [1], [4]. In PSO, individual
particles of a swarm represent potential solutions, which
“fly” through the problem search space seeking the optimal
solution. These particles broadcast their current positions
to neighbouring particles. Previously identified “good posi-
tions” are then used by the swarm as a starting point for
further search, where individual particles adjust their current
positions and velocities.

A defining characteristic of PSO is its fast convergent
behaviour and inherent adaptability, especially when com-
pared to conventional EAs. Theoretical analysis of PSO [4]
has shown that particles in a swarm can switch between an
exploratory (with large search step sizes) and an exploitative
(with smaller search step sizes) mode, responding adaptively
to the shape of the fitness landscape. This characteristic
makes PSO an ideal candidate for incorporating the CC
framework for problems of high complexity and dimension-
ality. For more information on PSO, please refer to [4].

A. CPSO-Sk and CPSO-Hg

In [3], van den Bergh and Engelbrecht developed two co-
operative PSO algorithms. In the first CPSO variant, CPSO-
Sk, they adopted the original decomposition strategy from
Potter and De Jong [2], but permitting a vector to be split
into K subcomponents, each corresponding to a swarm of
s-dimensions (where n = K's). Algorithm 1 illustrates the

1547

Create and initialize K swarms, each with s
dimensions (where n = K's); The j-th swarm is
denoted as P;, j € [1..K];
repeat
for each swarm j € [1..K] do
for each particle i € [1..s] do

if f(b(j, Pj.z:)) < f(b(j, Pj.y;)) then

Pj~yi = Pj.Ii;
if f(b(j, P;.4:) < f(b(j, P;.9)) then

end
Perform velocity and position updates for each
particle in P;;

end
until rermination criterion is met;

Algorithm 1: The pseudocode of the CPSO-S algorithm.
P;.x; denotes the current position of the ¢-th particle of the
Jj-th swarm, whereas P;.y; is the personal best of the i-th
particle of the j-th swarm. The j-th of the K swarms has
a global best particle P;.g. The function b(j, z) returns a

vector (Pl.g, Pg,..., Pj_l.g, Z, Pj+1.g, e PK@)
n dimensions
P! PZ PK
Pp3 I
Py

s dims

Fig. 1. The concatenation of P;.y, P».9, ..., Px.y constitutes 3.

working of CPSO-Sx [3]. In order to evaluate the fitness
of a particle in a swarm, a context vector § is constructed,
which is a concatenation of all global best particles from
all K swarms (as shown in Figure 1). The evaluation of
the ¢-th particle in the j-th swarm is done by calling the
function b(j, P;.z;) which returns an n-dimensional vector
consisting of §§ with its j-th component replaced by P;.x;.
The idea is to evaluate how well P;.z; “cooperate” with the
best individuals from all other swarms.

Note that if K equals n, CPSO-Sg operates the same way
as Potter’s CCGA-1, where n subpopulations of 1-D vectors
are coevolved.

In their second variant, CPSO-Hg, both CPSO-Sk and a
standard PSO are used in an alternating fashion, with CPSO-
Sk executed for one iteration, followed by the standard PSO
in the next iteration. Information exchange between CPSO-
Sk and the standard PSO was allowed so that the best

1548

solution found so far can be shared. More specifically, after
an iteration of CPSO-Sg, the context vector ¢ is used to
replace a randomly chosen particle in the standard PSO part,
and similarly, if the standard PSO finds a new global best
particle, this vector will replace the global best particle in
the CPSO-Sx part.

Both CPSO-Sk and CPSO-Hjg were tested on functions
of up to 30 dimensions only, however it is unclear how
well the performances of CPSO-Si and CPSO-Hy scale
with functions of even higher dimensions. In this paper,
we will extend the CPSO-Sx by incorporating the random
grouping and adaptive weighting schemes (as described in
the following sections) on problems up to 1000 dimensions.
The results of these new CCPSO variants will be also
compared with CPSO-Sx and CPSO-Hg.

IV. CCPSO WITH RANDOM GROUPING AND ADAPTIVE
WEIGHTING

This section describes how the random grouping based
decomposition method and the adaptive weighting scheme,
which were recently proposed by Yang, et al. [7], can be
incorporated into the CCPSO algorithm.

A. Random grouping

In CPSO-Sk [3], the n-dimensional search space is de-
composed into K subcomponents, each corresponding to a
swarm of s-dimensions (where n = Ks). However, the s
variables in any given swarm remain in the same swarm over
the course of optimization. Since it is not always known
in advance how these K subcomponents are related, it is
possible that such a static grouping method places some
interacting variables into different subcomponents. Because
CCEAs work better if interacting variables are placed within
the same subcomponent, instead of across different subcom-
ponents, this static grouping method in CPSO-S g (as well as
in other existing CCEAs) will encounter difficulty in dealing
with nonseparable problems.

One method to alleviate this problem is to dynamically
change the grouping structure as suggested in [7]. Here, if we
randomly decompose the n-dimensional object vector into K
subcomponents at each iteration, i.e., we construct each of
the K subcomponents by randomly selecting s-dimensions
from the n-dimensional object vector, the probability of
placing two interacting variables into the same subcomponent
becomes higher, over an increasing number of iterations. For
example, for a problem of 1000 dimensions, if K = 10
(hence we know s = n/K = 100), the probability of

placing two variables into the same subcomponent at one
10
1

iteration is p = - = 0.1. If we run the algorithm for
50 iterations, 50 executions of random groupings will occur.
The probability of optimizing the two variables in the same
subcomponent for at least one iteration follows a binomial
probability distribution [7], and can be computed as follows:

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Plz>1) = p(1)+p(2)+- - +p(50)
= 1-p(0)
50
= 1- (0)(0.1)0(1—0.1)50
= 0.9948

where = denotes the number of observed “successes” of
placing two variables in the same subcomponent over the
50 trials. This suggests the random grouping strategy should
help when there are some variable interactions present in a
problem.

B. Adaptive weighting

The purpose of employing adaptive weighting is to fur-
ther fine-tune the solutions evolved by CPSO-Sg (which
may or may not use random grouping). In this scheme,
each of the K subcomponents (as shown in Figure 1)
can be associated with a weight, hence a weight vector
(w1, wa,...,wg) can be constructed for all K
subcomponents. Specifically, each of the n variables is
weighted by its corresponding weight value of the vec-
tor (w1,..., w1, Wa,...,Wa,...,Wk,..., Wk), where each
‘underlined’ subvector denotes s identical weights for a
subcomponent of s variables. For a solution produced by
CPSO-S g, we can then evolve a population of weight vectors
associated with this solution, hoping to improve the solution
further. In this paper, we choose to optimize the weight
vectors associated with the context vector i, which is a
concatenation of all global best particles from all K swarms.
If § gets improved, it will be communicated back to CPSO-
Sk, so that the new ¢ can be used to guide the particles
in each swarm in the future executions of CPSO-Sg. Since
usually K < n, optimizing the weight vectors is a much less
costly computational task than optimizing the n-dimensions
of the original problem.

In order to keep a weighted ¢ always within the feasible
search space, we must set appropriate lower and upper
bounds for the range of possible weight values. This can
be achieved by first identifying the feasible weight interval
for each dimension of ¢, and then taking the intersection
of all such weight intervals. For example, if we have a
3-dimensional context vector § = (1,2,—3), with each
dimension in the range [-10,10]. The 3 weight intervals are
[-10/1, 10/1], [-10/2, 10/2], and [10/-3, -10/-3] respectively.
The intersection of them is [-10/3, 10/3]. For any weight
value in [-10/3, 10/3], the weighted ¢ should always stay in
the range [-10, 10].

Algorithm 2 shows the working of the newly proposed
CCPSO-Sx with random grouping and adaptive weighting
schemes, which we build upon the previous CPSO-Sgk.
For the adaptive weighting scheme, we may use a simple
optimization method such as PSO to optimize the weight
vectors.

W =

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

Create and initialize K swarms, each with s
dimensions (where n = K's); The j-th swarm is
denoted as Pj,j € [1..K];

repeat

/I CCPSO-S g module employing random grouping
Randomly permutate all n dimension indices;
Construct K swarms, each with s dimensions;

for each swarm j € [1..K] do

for each particle i € [1..s] do
if f(b(j, Pj.x:)) < f(b(j, P;.y:)) then
Pj-yi = Pj..’L‘i;
if f(b(j, Pj.y:)) < f(b(4, F;.9)) then
Pj.y = Pj-yi;
end
Perform velocity and position updates for each
particle in P;;

end

/I Additional module employing adaptive weighting
Create and initialize a population of weight
vectors, which are associated with g;

Use a PSO to evolve the weight vectors to
improve ¢ for a few iterations;

If improved, ¢ is updated for future iterations;

until termination criterion is met,

Algorithm 2: The pseudocode of the proposed CCPSO-
Sk employing random grouping and adaptive weighting.

V. EXPERIMENTAL SETUP

We chose to use the same set of test functions as those
used by van den Bergh and Engelbrecht [3] in order to make
the comparisons of our results with theirs easier (as shown in
Table I), except that for fy, a more commonly used general-
ized Rosenbrock function was used. These functions were
further rotated to introduce variable interactions, thereby
making them nonseparable !. Rotations are performed in
the decision space, on each plane using a random uniform
rotation matrix [11], [12]. A new random uniform rotation
matrix is generated for each individual run for the purpose
of an unbiased assessment.

Experiments were carried out in two stages. In the first
stage, experiments on the 5 test functions of 30 dimensions
were run for a maximum of 200,000 evaluations. We tried
to use the same experimental setup as those in [3]. All
experiments were run 50 times, and the average of the
best object vector fitness values (i.e.,) was recorded. The
number of dimensions for each swarm s was set to 5, hence
K was 6 (since K = n/s). Thus there are 6 swarms. The
population size for each swarm was set to 20. The Type 1”
constricted PSO was adopted [4] for both CCPSO-Sk and
optimizing weight vectors. ¢; and @9 were set to 2.05, while
x set to 0.7298. Whenever the adaptive weighing scheme

'Note that fo and fy are already nonseparable functions.

1549

TABLE I
TEST FUNCTIONS.

Test function Range Jmin
Generalized Rosenbrock: fo(x) = >0 [100(ziy1 — 22)% + (2; — 1)?] [—30, 30]" 0
Quadric: f1(x) = S, (X!, o) [~100,100]" | 0
AcKley: fa(x) = 72Oexp(70.2\/% S a?) —exp(E >0 cos(2mw;)) +20 + e | [—30,30]" 0
Generalized Rastrigin: f3(x) = >, (27 — 10cos(2mz;) + 10) [-5.12,5.12]" [0
Generalized Griewank: f4(X) = 755 > 11 22 — [1y cos(££) + 1 [—600, 600" | O

was invoked, the constricted PSO was allowed to run for 10
iterations for optimizing the weight vectors.
The following CCPSO-S i variants were used for compar-
isons:
o CCPSO-Sk: Identical to the CPSO-S i described in [3],
where K is the number of swarms used;
e CCPSO-Sk-rg: CCPSO-Si employing random group-
ing only;
e CCPSO-Sg-aw:
weighting only;
o CCPSO-S g -rg-aw: CCPSO-S i employing both random
grouping and adaptive weighting.

CCPSO-Si employing adaptive

The results of these CCPSO-Sg variants were compared
with those of CPSO-Hy (as reported in [3]), which was
considered to be the best CCPSO performing algorithm
especially when dealing with rotated functions.

In the second stage, experiments on the same functions
of 500 and 1000 dimensions were carried out. Experiments
were again run for a maximum of 200,000 evaluations. Since
these experiments were rather time consuming, only 25 runs
were executed, and the averaged results were recorded. s
was set to 100, hence K was 5 and 10 for 500 and 1000
dimensional functions respectively. The population size for
each swarm was set to 50.

VI. RESULTS

This section presents the experimental results and analysis.
We first compared the performances of the 4 CCPSO-Sg
variants and the results of CPSO-Hg [3] on the test functions
of 30 dimensions. The 4 CCPSO-Sg variants were then
tested on functions of 500 and 1000 dimensions, and their
results were compared with two existing DECC variants,
DECC-I [6] and DECC-G [7].

Unequal variance t-tests [13] were conducted to see
whether the performances of CCPSO-S -rg-aw and CCPSO-
Sk-aw are different. The value of the two tailed ¢-test is
significant at o = 0.05. This will allow us to see more clearly
the effect of using a combination of random grouping and
adaptive weighting or just adaptive weighting alone.

A. 30 dimensional functions

Table II shows the results on test functions of 30 di-
mensions. As to overall performances, CCPSO-Sg-aw and
CCPSO-Sg-rg-aw clearly outperformed the other CCPSO-Sg
variants, and the previously developed CPSO-Hg [3]. The

1550

only exception is f; Quadric function, where CPSO-Hg is
the winner. However, since f; is a separable function, it is
probably not surprising that even CPSO-Hg and CCPSO-
Sg-aw (where random grouping is not employed) performed
reasonably well on this function. It is noticeable that CCPSO-
Sg-rg (i.e., only using random grouping) performed poorly
on the 30 dimensional functions. However, CCPSO-Sg-aw
(i.e., only using adaptive weighting) is more effective, as
shown in Table II. It is evident that the adaptive weighting
scheme was able to effectively fine-tune the best solution,
and feeded it back to CCPSO-Sg, and subsequently further
improving the performance of the CCPSO-Sg algorithm. It
can be noted that when a function is rotated, an algorithm
tends to suffer from some degree of performance degradation.
Among these variants, the performances of CCPSO-Sg-rg-
aw suffers the least from the rotation effect. For f5 and f3,
and their rotated versions f5, and f3,., identical results were
obtained, while for the remaining functions, rotation only
degraded the performance of CCPSO-Sg-rg-aw slightly. In
contrast, the level of performance degradation tended to be
rather large for the other algorithms. In particular, for CPSO-
Hg, the performance degradation is substantial on fi, the
rotated Quadric function. Though random grouping alone
is ineffective, combining it with adaptive weighting (i.e.,
CCPSO-S4-rg-aw) was able to provide the best performances
on fs, f3, f4, and their rotated versions, except f4,.. However,
CCPSO-Sg-rg-aw did not perform as well as CCPSO-Sg-aw
on fo, f1 and their rotated versions.

Figures 2 and 3 show the convergence behaviours of the
4 CCPSO-Sg variants. Among all variants, CCPSO-Sg-rg-
aw is clearly least sensitive to the effect of function rotation
across all test functions. Although CCPSO-Sg-aw performed
reasonably well, its performance deteriorates rapidly when
encountering a rotated test function. CCPSO-S¢-rg-aw which
employs both random grouping and adaptive weighting was
able to alleviate this problem to some extent.

B. 500 and 1000 dimensional functions

‘When tested on functions of 500 and 1000 dimensions, the
effect of using only random grouping or a combination of
random grouping and adaptive weighting becomes more pro-
nounced than on 30 dimensions. Because rotation was per-
formed on each plane of the decision space of a rotated test
function, making each variable more or less interacting with
every other variable (see section V), for higher dimensional

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

TABLE II

BEST FUNCTION VALUES ON TEST FUNCTIONS OF 30 DIMENSIONS. THE LAST COLUMN GIVES THE p-VALUE FROM THE UNEQUAL VARIANCE ¢-TEST
BETWEEN CCPSO-Sg-AW AND CCPSO-Sg-RG-AW.

fnc CCPSO-Sg CCPSO-Sg-rg CCPSO-Sg-aw CCPSO-Sg-rg-aw CPSO-Hg p-value
fo 2.28E+07 (5.83E+07) | 7.58E+06 (3.77E+07) | 1.76E+01 (3.99E+00) | 2.41E+01 (1.06E+01) | N/A 0.00015
for | 7.48E+06 (3.73E+07) | 1.70E+07 (5.24E+07) | 1.84E+01 (1.31E+00) | 2.89E+01 (5.81E-02) N/A 1.46E-46
fi 2.70E-20 (7.03E-20) 9.95E+03 (2.58E+04) | 4.33E-17 (3.03E-16) 1.29E+00 (5.33E+00) | 1.40E-29 (1.15E-29) 0.09333
fir | 4.08E+03 (2.02E+04) | 2.29E+04 (2.05E+04) | 1.05E-02 (2.04E-02) 5.07E+01 (1.25E+02) 1.03E+03 (5.24E+02) | 0.00607
fo 4.00E-01 (2.83E+00) 7.05E-15 (6.26E-15) 2.13E-14 (4.95E-15) 4.44E-16 (3.49E-31) 2.73E-12 (2.03E-12) 4.53E-33
for | 1.87E+00 (2.72E+00) | 8.54E-15 (8.25E-15) 7.43E-01 (9.21E-01) 4.44E-16 (3.49E-31) 1.51E-12 (6.83E-13) 6.76E-07
f3 2.22E+01 (6.64E+00) | 8.16E+00 (5.74E+01) | 0.00E+00 (0.00E+00) | 0.00E+00 (0.00E+00) | 7.78E-O1 (1.87E-01) N/A
far | 1.28E+02 (2.83E+01) | 1.99E+02 (6.46E+01) | 1.13E+00 (4.29E+00) | 0.00E+00 (0.00E+00) | 5.41E+01 (4.63E+00) | 0.0674
fa 2.63E-02 (2.32E-02) 1.99E+01 (9.92E+01) | 1.39E-02 (2.62E-02) 2.59E-03 (1.83E-02) 5.24E-02 (1.19E-02) 0.01411
far | 1.80E+01 (8.98E+01) | 9.85E+00 (6.95E+01) | 1.12E-02 (1.26E-02) 4.99E-02 (2.00E-01) 4.06E-02 (1.03E-02) 0.17918
1e+010 : : : 1e+010 : : : 100 : : :
CCPSO-S_6 —— CCPSO-S_6 —— CCPSO-S 6 ——
1e+009 | CCPS0-S_6-rg - 3 CCPS0-S_6-rg -—-—-- 1 kX -S_6- -
CCPSO-S_6-aw ------- 100000 CCPSO-S_6-aw ------- b vE O CCPSO-S_6-aw -------

1e+008 CCPSO-S_6-rg-aw 9) CCPSO-S_6-rg-aw 0.01 B CCPSO-S_6-rg-aw 4

164007 p 1F] 00001 | | g
2 1e4006 g B R te006| -
£ £ 1e-005 | B £ \

2 100000 | 3 2 2 fe008 | 1
10000 E 1e-010 | B 16-010 g
1000 F 4 teor2| E
1e-015 | .

100 F o p - 16014 b e

[0 S—— L — : 1e:020 . . . 1e:016 . . .

0 50000 100000 150000 200000 0 50000 100000 150000 200000 0 50000 100000 150000 200000
Evaluations Evaluations Evaluations
@ fo () f1 ©) f2

1e+009 : : : 1e+007 : : : 100 : : :

CCPSO-S_6 —— CCPSO-S_6 —— N CCPSO-S 6 ——
1e+008 | CCPSO-S_6-rg ------ J 1e+006 F CCPSO-S_6-rg ------ E 1R CCPSO-S=6-1g =
CCPSO-S_6-aw --—----- CCPSO-S_6-aw ------- 4 CCPSO-S_6-aw ---

164007 6EPSO-5-S1g-aw 1 100000 CCPSO-S_6-1g-aw : 001 CCPSO-5_6-1g-aw 1
 tesos |] ~ 10000 E ~ 0.0001 g
X X 1000 ¢ E X 1e-006 - B
£ 100000 f E £ £
g g 100f 1 3 teoosf]

10000 3 1 0}] 16010 |- y

1000 £ 7 1E] te012 | g
100 F] 01k] 1e-014 [
10 s s 0.01 L L L = 16016 L L L
0 50000 100000 150000 200000 50000 100000 150000 200000 0 50000 100000 150000 200000
Evaluations Evaluations Evaluations
@) for © fir (®) for

Fig. 2. The fitness values of § for the 4 CCPSO-Sg variants on fo, f1, f2 of 30 dimensions,

and their rotated versions.

functions, this means there are more interacting variables
(with strong or weak interactions). For each subcomponent,
since we have s = 100 for the 500 and 1000 dimensional
functions, but only s = 6 for the 30 dimensional functions.
Hence there are far more interacting variables captured in
the same subcomponent for the experiments on the 500 and
1000 dimensions than the 30 dimensional case. As a result,
employing random grouping has a more significant impact on
the experiments for the 500 and 1000 dimensional functions
than 30 dimensions.

As shown in Table III, using random grouping (i.e.,

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

CCPSO-S5-rg) is much better than not (i.e., CCPSO-S5).
This contrasts with the results on 30 dimensions, where the
differences are not so clear. In fact, CCPSO-S5-rg performed
equally well or better than CCPSO-S;-rg-aw on 5 out of
10 functions on 500 dimensions. Both CCPSO-S;-rg and
CCPSO-S5-rg-aw are significantly better than DECC-I as
reported in [6]. Compared with the more recently developed
DECC-G [7], CCPSO-S;-rg-aw performed better on f and
equally well on f3, though worst on others. Even CCPSO-
Ss-rg still performed better than DECC-G on fj and f4. Bear
in mind that both DECC-I and DECC-G used a maximum

1551

10000 T

" CCPSO-S 6 ——

100 CCPSQ-S_6-rg === 1
1 CCPSO-S_6-aw - i
CCPSO-S_6-rg-aw
0.01 |
0.0001
R 1e006 . e
2 1e-008 -
1e-010
1e-012 |
1e-014 |
1e-016
1e-018 L L L :
0 50000 100000 150000 200000
Evaluations
(@) f3
10000 T r .
100 [
L]
0.01 |
~ 00001 |
X
£ 1e-006 -
3
= 1e-008 |-
1e-010 i
L CCPSO-S_ 6 —]
fe12 CCPSO-5_61g ————-
1e-014 CCPSO-S_6-aw -+ i
CCPSO-S_6-rg-aw
1e-016 1 1
0 50000 100000 150000 200000
Evaluations
©) far

Fig. 3.

of 2.5E+06 evaluations, which is 12.5 times that of CCPSO-
S5-rg and CCPSO-S5-rg-aw though.

The performance of CCPSO-S5-rg-aw is significantly bet-
ter than CCPSO-Ss-aw on for, f2, for, far, fa and fy.
For the remaining functions, its performances are not signif-
icantly different from that of CCPSO-S5-aw. It is remarkable
that CCPSO-S;-rg-aw found the perfect minimum for f3
and its rotated function f3,.. This contrasts to the poor
performance by the classic PSO on f3 of only 30 and 100
dimensions [5]. Comparing the results of CCPSO-S;5-rg-aw
and CCPSO-S;5-rg, it can be noted that adding adaptive
weighting is helpful, since CCPSO-S;-rg-aw is substantially
better than CCPSO-S5-rg on f1, fir, fo, f3, and f3,, and
equally well on fy,, but slightly worse on others.

For functions of 1000 dimensions, DECC-G is the overall
best performer (but it used more than 10 times of eval-
uations than CCPSO-Sip-rg and CCPSO-S;g-rg-aw). The
performance of CCPSO-S;(-rg-aw is significantly better than
CCPSO-Sqp-aw on f3, f4 and fy,., but no significant differ-
ences are observed for the other functions. It is also worth
noting that CCPSO-S;y-rg is better than CCPSO-S;y-rg-aw
on 4 functions.

Overall, the results on high dimensional nonseparable
functions provide strong empirical evidences that employing
random grouping is highly desirable. Furthermore, combin-

1552

1000 T T T
CCPSO-S_6 ——
CCPSO-S_6-rg --——---
100 CCPSO-S_6-aw ------- i
CCPSO-S_6-rg-aw

o

log(f(x))

01 F

200000

0.01 i | i
0 50000 100000 150000

Evaluations

(®) fa

1000 T T T
CCPSO-S_6 ——
CCPSO-S_6-rg --——--
CCPSO-S_6-aw -------

CCPSO-S_6-rg-aw 3

100

o

log(f(x))

o

R I o B
0 50000 100000 150000 200000
Evaluations

0.01

(d) f4r

The fitness values of ¢ for the 4 CCPSO-Sg variants on f3, f4 of 30 dimensions, and their rotated versions.

ing random grouping with adaptive weighting can provide
additional performance gain than employing adaptive weight-
ing alone.

VII. CONCLUSIONS

Traditional PSO algorithms have been known to perform
poorly especially on high dimensional and nonseparable
problems [5]. To combat this issue, this paper investigates the
potential of using a new decomposition method (i.e., random
grouping) and a solution fine-tuning method (i.e., adaptive
weighting) in a cooperative coevolutionary PSO (CCPSO)
algorithm. Among the CCPSO variants proposed, CCPSO-
S k-rg-aw, which employs a hybrid of random grouping and
adaptive weighting, has shown to be robust to functions
that have variable interactions. The proposed CCPSO-S g -rg-
aw outperformed a previously developed CCPSO algorithms
[3], on a number of nonseparable 30-dimensional functions.
More importantly, the performances of CCPSO-Sg-rg-aw
on functions of 500 and 1000 dimensions suggest that the
cooperative coevolutoinary approach has a great potential to
further improve the scalability of PSO algorithms in tackling
high dimensional nonseparable optimization problems. This
paper will be a starting point of hopefully many more
research works on this topic.

Compared with two existing algorithms in handling 500

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

BEST FUNCTION VALUES ON TEST FUNCTIONS OF 500 DIMENSIONS. THE LAST COLUMN GIVES THE p-VALUE FROM THE UNEQUAL VARIANCE ¢-TEST

TABLE III

BETWEEN CCPSO-S5-AW AND CCPSO-S5-RG-AW.

fnc | CCPSO-S5 CCPSO-S5-rg CCPSO-S5-aw CCPSO-S5-rg-aw DECC-I DECC-G | p-value
fo 1.73E+07 (7.19E+07) | 4.15E+02 (1.85E+02) | 1.97E+03 (4.02E+03) | 4.54E+02 (1.37E+02) | 9.65E+04 | 4.92E+02 | 0.07182
for | 1.72E+06 (6.93E+05) | 4.99E+02 (6.11E-02) | 6.76E+02 (2.82E+02) | 4.99E+02 (7.58E-02) | N/A N/A 0.00433
f1 3.51E+06 (7.71E+06) | 3.58E+05 (7.60E+05) | 1.57E+00 (5.32E+00) | 5.35E+00 (2.41E+01) | 1.75E+08 | 6.17E-25 | 0.45024
fir | 1.59E+06 (3.41E+06) | 4.11E+06 (4.44E+06) | 2.01E+02 (4.06E+02) | 7.66E+01 (1.57E+02) | N/A N/A 0.16143
fo 9.43E+00 (2.46E+00) | 1.34E-09 (6.70E-09) 8.01E-02 (1.10E-01) 4.04E-10 (1.15E-09) 2.58E+03 | 9.13E-14 | 0.00131
for | L.58E+01 (1.27E+00) | 8.69E-15 (3.51E-15) 2.27E-01 (2.16E-01) 1.67E-06 (8.35E-06) N/A N/A 2.2E-05
f3 2.78E+03 (1.52E+03) | 2.05E+02 (2.63E+02) | 1.79E+00 (3.93E+00) | 0.00E+00 (0.00E+00) | 2.22E+03 | 0.00E+00 | 0.03160
f3r | 3.40E+03 (3.04E+02) | 1.11E+03 (2.01E+03) | 7.28E+00 (9.40E+00) | 0.00E+00 (0.00E+00) | N/A N/A 0.00073
fa 6.93E+01 (3.61E+01) | 3.55E-17 (5.29E-17) 5.64E-01 (4.21E-01) 5.19E-04 (2.59E-03) N/A 4.40E-16 6.35E-07
far | 7.12E+01 (3.27E+01) | 4.44E-18 (2.22E-17) 4.63E-01 (4.93E-01) 1.11E-14 (4.13E-14) N/A N/A 9.12E-05

TABLE IV

BEST FUNCTION VALUES ON TEST FUNCTIONS OF 1000 DIMENSIONS. THE LAST COLUMN GIVES THE p-VALUE FROM THE UNEQUAL VARIANCE
t-TEST BETWEEN CCPSO-S109-AW AND CCPSO-S10-RG-AW.

fnc CCPSO-S19o CCPSO-S19-1g CCPSO-S1p-aw CCPSO-S1p-rg-aw DECC-1I DECC-G p-value
fo 2.30E+09 (5.10E+09) | 4.74E+08 (2.37E+09) | 1.20E+04 (2.68E+04) 1.16E+03 (8.52E+02) | 1.98E+05 | 9.87E+02 | 0.05502
for | 2.72E+09 (6.60E+09) | 9.98E+02 (6.14E-02) | 1.74E+03 (1.22E+03) 1.87E+03 (3.76E+03) | N/A N/A 0.87742
fi 1.38E+07 (2.66E+07) | 1.46E+07 (2.75E+07) | 3.49E+02 (1.56E+03) | 5.88E+02 (1.65E+03) | 3.85E+08 | 3.71E-23 0.60033
fir | 2.82E+07 (3.24E+07) | 1.48E+07 (9.38E+06) | 3.55E+03 (4.80E+03) | 6.90E+03 (2.20E+04) | N/A N/A 0.46358
fo 1.47E+01 (2.80E+00) | 8.00E-01 (4.00E+00) 1.91E-01 (2.60E-01) 7.36E-02 (2.18E-01) 6.85E+03 | 2.22E-13 0.08942
for | 1.97E+01 (2.95E-01) 1.49E-10 (5.46E-10) 5.46E-01 (7.19E-01) 2.43E-01 (5.35E-01) N/A N/A 0.09792
f3 8.05E+03 (4.96E+03) | 1.19E+03 (1.06E+03) | 8.89E+00 (1.34E+01) | 3.60E-03 (1.79E-02) 4.59E+03 | 3.55E-16 0.00295
f3r | 8.60E+03 (3.66E+02) | 8.44E+03 (4.46E+03) | 6.31E+01 (1.77E+02) | 5.69E-01 (2.65E+00) | N/A N/A 0.08971
fa 2.12E+03 (4.60E+03) | 2.80E-16 (4.79E-16) 1.28E+00 (1.07E+00) | 6.03E-02 (2.66E-01) N/A 1.01E-15 6.84E-06
far | 2.18E+03 (4.38E+03) | 7.97E-13 (3.64E-12) 1.43E+00 (8.62E-01) 1.26E-01 (4.46E-01) N/A N/A 7.25E-08

and 1000 dimensional functions, CCPSO-S -rg-aw is shown
to have relatively fast convergence, capable of providing
reasonably good performance with only a small number of
evaluations. Our results also suggest both random grouping
and adaptive weighting are viable techniques that can be gen-
eralized across to various evolutionary optimization methods.

In future, we will be interested in examining techniques
that allow us to detect variable interactions that exist in a
problem, and subsequently making use of this knowledge
in the decomposition procedure to more effectively identify
and group interacting variables while keeping independent
variables in separate groups. We will be also interested in
studying what characteristics of a non-separable problem are
challenging to CCPSO. Such insight will be very useful in
guiding the design of novel CCPSO algorithms in the future.

ACKNOWLEDGMENT

The authors would like to thank Zhenyu Yang for his
very helpful discussion on DECC-G. This research is par-
tially supported by an EPSRC grant (No. EP/G002339/1) on
“Cooperatively Coevolving Particle Swarms for Large Scale
Optimisation”. Part of the work was done while the first
author was visiting Birmingham.

REFERENCES

[1] J. Kennedy and R. Eberhart, Swarm Intelligence. Morgan Kaufmann,
2001.

[2] M. Potter and K. D. Jong, “A cooperative coevolutionary approach
to function optimization,” in Proceedings of the Third Conference on
Parallel Problem Solving from Nature, pp. 249-257, Springer-Verlag,
1994.

2009 IEEE Congress on Evolutionary Computation (CEC 2009)

(3]

[5]

(6]

(7]

[91

[10]

[11]

[12]

[13]

F. van den Bergh and A. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 3, pp. 225-239, 2004.

M. Clerc and J. Kennedy, “The particle swarm - explosion, stability,
and convergence in a multidimensional complex space,” IEEE Trans-
actions on Evolutionary Computation, vol. 6, pp. 58-73, 2002.

J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in Proceedings of the 2004 Congress
on Evolutionary Computation (CEC’04), vol. 2, pp. 1980-1987, IEEE,
2004.

Z. Yang, K. Tang, and X. Yao, “Differential evolution for high-
dimensional function optimization,” in Proceedings of the 2007
Congress on Evolutionary Computation, pp. 3523-3530, IEEE, 2007.
Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimiza-
tion using cooperative coevolution,” Information Sciences, vol. 178,
pp. 2986-2999, August 2008.

Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary
programming with cooperative coevolution,” in Proceedings of the
2001 Congress on Evolutionary Computation, pp. 1101-1108, 2001.

D. Sofge, K. D. Jong, and A. Schultz, “A blended population approach
to cooperative coevolution for decomposition of complex problems,”
in Proc. of the Congress on Evolutionary Computation, pp. 413-418,
2002.

Y. Shi, H. Teng, and Z. Li, “Cooperative co-evolutionary differential
evolution for function optimization,” in Proc. of the First International
Conference on Natural Computation, pp. 1080-1088, 2005.

R. Salomon, “Reevaluating genetic algorithm performance under coor-
dinate rotation of benchmark functions,” BioSystems, vol. 39, pp. 263—
278, 1996.

A. Iorio and X. Li, “Rotated test problems for assessing the perfor-
mance of multiobjective optimization algorithms,” in Proceeding of
Genetic and Evolutionary Computation Conference 2006 (GECCO’06)
(e. a. M. Keijzer, ed.), pp. 683-690, ACM Press, 2006.

B. Moser, G. Stevens, and C. Watts, “The two-sample t-test versus
satterwaite’s approximate f test,” Commun. Stat. Theory Methodol.,
vol. 18, pp. 3963-3975, 1989.

1553

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

