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Abstract—This paper presents a new cooperative coevolving
particle swarm optimization (CCPSO) algorithm in an attempt to
address the issue of scaling up particle swarm optimization (PSO)
algorithms in solving large-scale optimization problems (up to
2000 real-valued variables). The proposed CCPSO2 builds on the
success of an early CCPSO that employs an effective variable
grouping technique random grouping. CCPSO2 adopts a new
PSO position update rule that relies on Cauchy and Gaussian
distributions to sample new points in the search space, and a
scheme to dynamically determine the coevolving subcomponent
sizes of the variables. On high-dimensional problems (ranging
from 100 to 2000 variables), the performance of CCPSO2 com-
pared favorably against a state-of-the-art evolutionary algorithm
sep-CMA-ES, two existing PSO algorithms, and a cooperative co-
evolving differential evolution algorithm. In particular, CCPSO2
performed significantly better than sep-CMA-ES and two existing
PSO algorithms on more complex multimodal problems (which
more closely resemble real-world problems), though not as
well as the existing algorithms on unimodal functions. Our
experimental results and analysis suggest that CCPSO2 is a
highly competitive optimization algorithm for solving large-scale
and complex multimodal optimization problems.

Index Terms—Cooperative coevolution, evolutionary algo-
rithms, large-scale optimization, particle swarm optimization,
swarm intelligence.

I. Introduction

STOCHASTIC algorithms such as evolutionary algorithms
(EAs) and particle swarm optimization (PSO) algorithms

have been shown to be effective optimization techniques [1].
However, their performance often deteriorates rapidly as the
dimensionality of the problem increases. Nevertheless, many
real-world problems involve optimization of a large number of
variables. For example, in shape optimization a large number
of shape design variables is often used to represent complex
shapes, such as turbine blades [2], aircraft wings [3], and heat
exchangers [4]. Existing EAs are often ill-equipped in handling
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this class of problems. To meet such a demand, research into
designing EAs that are able to tackle large-scale optimization
problems has recently gained momentum [5], [6].

PSO is notorious for being prone to premature convergence.
For example, in a comparative study where several widely
used stochastic algorithms such as differential evolution (DE),
EA, and PSO were evaluated [7], PSO was shown to perform
very poorly, as the dimensionality of a problem increases.
This perception of PSO’s inability to handle high-dimensional
problems seems to be widely held [7], [8].

A natural approach to tackle high-dimensional optimization
problems is to adopt a divide-and-conquer strategy. An early
work on a cooperative coevolutionary algorithm (CCEA) by
Potter and Jong [9] provides a promising approach for decom-
posing a high-dimensional problem, and tackling its subcom-
ponents individually. By cooperatively coevolving multiple EA
subpopulations (each dealing with a subproblem of a lower di-
mensionality), we can obtain an overall solution derived from
combinations of subsolutions, which are evolved from individ-
ual subpopulations. Clearly, the effectiveness of such CCEAs
depends heavily on the decomposition strategies used. Classi-
cal CCEAs [9] performed poorly on nonseparable problems,
because the interdependencies among different variables could
not be captured well enough by the algorithms. Generally
speaking, existing CCEAs still performed poorly on nonsepa-
rable problems with 100 or more real-valued variables [10].

An early attempt to apply Potter’s CC model to PSO
was made by Van den Bergh and Engelbrecht [8], where
two cooperative PSO models, CPSO-SK and CPSO-HK, were
developed. However, these two models were only tested on
functions of up to 30 dimensions [8] and 190 dimensions [11].
The question remains on how well these CCPSO models scale
with problems of significantly larger dimensions.

Recent studies by Yang et al. [10], [12] suggest a new
decomposition strategy based on random grouping. Without
prior knowledge of the nonseparability of a problem, it was
shown that random grouping increases the probability of two
interacting variables being allocated to the same subcompo-
nent, thereby making it possible to optimize these interacting
variables in the same subcomponent, rather than across differ-
ent subcomponents. An adaptive weighting scheme was also
introduced to further fine-tune the solutions produced by the
CCEA [10]. Inspired by these recent works, a CCPSO inte-
grating the random grouping and adaptive weighting schemes
was developed, and demonstrated great promise in scaling up
PSO on high-dimensional nonseparable problems [13]. This
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CCPSO outperformed the previously proposed CPSO-HK [8]
on 30-D separable and nonseparable functions. CCPSO was
also shown to perform reasonably well on these functions
of up to 1000 dimensions. Nevertheless, our latest paper on
the CCEAs [14] revealed that it is actually more beneficial
to apply random grouping more frequently than using the
adaptive weighting scheme.

Building on our preliminary work on CCPSO [13] and our
new findings on random grouping [14], this paper aims to
demonstrate convincingly that a CC approach is an effective
divide-and-conquer strategy and can be utilized to help scaling
up PSO’s performance for solving problems with a large
number of variables. The proposed CCPSO2 described in this
paper enhances the previously proposed CCPSO substantially.
CCPSO2 differs from CCPSO in the following aspects.

1) A new PSO model using Cauchy and Gaussian distri-
butions for sampling around the personal best and the
neighborhood best (respectively), is proposed. This PSO
model using an lbest ring topology shows an improved
search capability compared with existing PSO models
(see Section VI-A).

2) In the context of a CC framework, an lbest ring topology
is used to define a local neighbourhood instead of the
standard gbest model, to improve performance, espe-
cially on multimodal optimization problems.

3) A new strategy for updating personal bests and the
global best in the context of a CC framework is de-
veloped (see Section IV-D).

4) The adaptive weighting scheme is removed, since our
recent work [14] shows that it is more cost effective to
apply random grouping more frequently instead.

5) A new adaptive scheme is used to dynamically de-
termine the subcomponent sizes for random grouping
during a run, hence removing the need to specify this
parameter.

6) A comprehensive study comparing CCPSO2 with an-
other state-of-the-art global optimization algorithm sep-
CMA-ES on high-dimensional functions is provided. In
addition, comparisons were made with two existing PSO
algorithms and a CC DE which were specially designed
for handling large-scale optimization problems.

7) Results on functions of up to 2000 dimensions.

Three major benefits of using CCPSO2 include: CCPSO2
employs the Cauchy and Gaussian-based update rules in
conjunction with an lbest topology hence its search capability
is enhanced; CCPSO2 is more reliable and robust to use—a
user does not have to specify the subcomponent size, since it
is adaptively chosen from a set. Furthermore, our results show
that CCPSO2 performs significantly better than the state-of-
the-art algorithm sep-CMA-ES and two existing PSO models
on complex multimodal functions of up to 2000 dimensions.

The rest of this paper is organized as follows. Section II
presents an overview of existing CCEAs, specifically, those
tested for handling nonseparable or high-dimensional prob-
lems. Random grouping as a novel decomposition method for
CCEAs is also described. Section III provides the rationale
on why PSO is an appropriate choice for constructing a

CC model, as well as a previous study on CCPSO models,
upon which our newly proposed CCPSO2 is built. Section IV
introduces our new CCPSO2 algorithm, including the Cauchy
and Gaussian PSO (CGPSO) adopted and a new scheme that
allows dynamically changing subcomponent sizes during a
run. Section V describes the experimental setup, followed
by Section VI presenting experimental results and analysis.
Finally, Section VII gives the concluding remarks.

II. Cooperative Coevolution

A. Early Work

The first CCEA for function optimization, called CCGA,
was proposed by Potter and Jong [9], where the algorithm
was empirically evaluated on six test functions of up to 30
dimensions. However, no attempt was made in using the co-
operative coevolution (CC) framework on higher dimensional
problems. More recently, the idea of using CC in optimiza-
tion has attracted much attention and was incorporated into
several algorithms, including evolutionary programming [15],
evolution strategies [16], PSO [8], and DE [10], [12], [17].

In their original CCGA, Potter and Jong [9] decomposed
a problem into several smaller subcomponents, each evolved
by a separate GA subpopulation. As each subpopulation is
evolved, the remaining subpopulations are held fixed. The sub-
populations are evolved in a round-robin fashion. For a func-
tion optimization problem of n variables, Potter and Jong [9]
decomposed the problem into n subcomponents, correspond-
ing to n subpopulations (one for each variable). The fitness of
a subpopulation member is determined by the n-dimensional
vector formed by this member and selected members from
other subpopulations. In a way, the fitness of a subpopulation
member is assessed by how well it “cooperates” with other
subpopulations. Two models of cooperation were examined. In
the first model CCGA-1, the fitness of a subpopulation mem-
ber is computed by combining it with the current best members
of other subpopulations. It was found that CCGA-1 performed
significantly better than a conventional GA on separable prob-
lems, but much worse on nonseparable problems. To improve
CCGA’s performance on nonseparable problems, CCGA-2
was proposed where members were randomly selected from
other subpopulations in the fitness evaluation. On a 2-D
Rosenbrock function, CCGA-2 was shown to perform better
than CCGA-1. In summary, Potter and Jong’s original study
[9] demonstrated the efficacy of the CC framework applied
to function optimization. However, the CCGA framework was
tested only on problems of up to 30 dimensions.

Liu et al. [15] applied the CC framework to their fast
evolutionary programming (FEP) algorithms. The new algo-
rithm FEP with CC (FEPCC) was able to optimize benchmark
functions with 100 to 1000 real-valued variables. However,
for one of the nonseparable functions, FEPCC performed
poorly and was trapped in a local optimum, confirming the
deficiency of handling variable interactions in Potter and
Jong’s decomposition strategy [9].

Van den Bergh and Engelbrecht [8] first introduced the CC
framework to PSO. Two cooperative PSO algorithms, CPSO-
SK and CPSO-HK, were developed. CPSO-SK adopts the same
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framework as that of Potter’s CCGA, except that it allows
a vector to be split into K subcomponents, instead of each
subcomponent consisting of a single dimension. CPSO-HK

is a hybrid approach combining both a standard PSO with
the CPSO-SK. These two CPSO algorithms were tested on
some benchmark problems of up to 30 dimensions (and 190
dimensions in [11]). Some rotated test functions with variable
interactions were also used. Their results demonstrated that
correlation among variables in such problems reduces the
effectiveness of the two CPSO algorithms. However, no new
decomposition strategies were proposed for handling high
dimensional nonseparable problems. A similar cooperative
approach was also adopted in [18] but was implemented for
bacterial foraging optimization.

New decomposition strategies were proposed and investi-
gated for DE with CC [10], [12], [17], [19]. A splitting-in-half
strategy was proposed by Shi et al. [17], which decomposed
the search space into two subcomponents, each evolved by a
separate subpopulation. Clearly, this strategy does not scale
up very well and loses its effectiveness quickly when the
number of dimensions becomes very large. Yang et al. [10],
[12] proposed a decomposition strategy based on random
grouping of variables, and applied it to a CC DE, on high-
dimensional nonseparable problems with up to 1000 real-
valued variables. The proposed algorithms, DECC-G [10]
and subsequently MLCC [19], outperformed several existing
algorithms significantly. This random grouping strategy rep-
resents an important step forward in handling nonseparable
high-dimensional problems, and will be incorporated into our
proposed CCPSO algorithm. We will describe this random
grouping technique in detail in the next section.

B. Random Grouping of Variables

In CPSO-SK [8], the n-dimensional search space is decom-
posed into K subcomponents, each corresponding to a swarm
of s-dimensions (where n = K∗s). However, the s variables in
any given swarm remain in the same swarm over the course
of optimization. Since it is not always known in advance how
these K subcomponents are related for any given problem,
it is likely that such a static grouping method places some
interacting variables into different subcomponents. Because
CCEAs work better if interacting variables are placed within
the same subcomponent, instead of across different subcom-
ponents, this static grouping method is likely to encounter
difficulty in dealing with nonseparable problems.

One method to alleviate this problem is to dynamically
change the grouping structure [10]. We call this method ran-
dom grouping, which is the simplest dynamic grouping method
and does not assume any prior knowledge of the problem to be
optimized. Here, if we randomly decompose the n-dimensional
object vector into K subcomponents at each iteration, i.e., we
construct each of the K subcomponents by randomly select-
ing s-dimensions from the n-dimensional object vector, the
probability of placing two interacting variables into the same
subcomponent becomes higher, over an increasing number of
iterations. For example, for a problem of 1000 dimensions,
if K = 10 (hence we know s = n/K = 100), the probability
of placing two variables into the same subcomponent in one

iteration is p =
10
1

10 = 0.1. If we run the algorithm for
50 iterations, 50 executions of random groupings will occur.
The probability of optimizing the two variables in the same
subcomponent for at least one iteration follows a binomial
probability distribution, and can be computed as follows:

P(x ≥ 1) = p(1) + p(2) + . . . + p(50)

= 1 − p(0)

= 1 −
(

50
0

)
(0.1)0(1 − 0.1)50

= 0.9948

where x denotes the number of observed “successes” of
placing two variables in the same subcomponent over the
50 trials; p(1) denotes the probability of having one such
“success” over 50 iterations, and similarly p(2) being the
probability of having two such “successes,” and so on. This
suggests the random grouping strategy should help when there
are some variable interactions present in a problem. Our recent
paper [14] further generalizes the above probability calculation
to cases where more than two interacting variables are present.

III. Particle Swarm Optimization

PSO is modeled on an abstract framework of “collective
intelligence” in social animals [1], [20]. In PSO, individual
particles of a swarm represent potential solutions, which
“fly” through the problem search space seeking the optimal
solution. These particles broadcast their current positions to
neighboring particles. Previously identified “good positions”
are then used by the swarm as a starting point for further
search, where individual particles adjust their current positions
and velocities.

A distinct characteristic of PSO is its fast convergent be-
havior and inherent adaptability, especially when compared to
conventional EAs. Theoretical analysis of PSO [20] has shown
that particles in a swarm can switch between an exploratory
(with large search step sizes) and an exploitative (with smaller
search step sizes) mode, responding adaptively to the shape
of the fitness landscape. This characteristic makes PSO an
ideal candidate to be incorporated into the CC framework for
handling problems of high complexity and dimensionality.

In a canonical PSO, the velocity of each particle is modified
iteratively by its personal best position (i.e., the position giving
the best fitness value so far) and the global best position (i.e.,
the position of the best-fit particle from the entire swarm). As
a result, each particle searches around a region defined by its
personal best position and global best position. Let vi denote
the velocity of the ith particle in the swarm, xi its position,
yi its personal best position, and ŷ the global best position
from the entire swarm. Each dth dimension of vi and xi of
the ith particle in the swarm are updated according to the two
equations [20] as follows:

vi,d(t + 1) = χ(vi,d(t) + c1r1i,d(t)(yi,d(t) − xi,d(t)) +

c2r2i,d(t)(ŷd(t) − xi,d(t))) (1)

xi,d(t + 1) = xi,d(t) + vi,d(t + 1) (2)
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Algorithm 1: The pseudocode of the CPSO-SK algorithm.
Pj.xi denotes the current position of the ith particle of the
jth swarm, whereas Pj.yi is the personal best of the ith
particle of the jth swarm. The jth of the K swarms has
a global best particle Pj.ŷ. The function b(j, z) returns a
vector (P1.ŷ, P2.ŷ, . . . , Pj−1.ŷ, z, Pj+1.ŷ, . . . , PK.ŷ).

Create and initialize K swarms, each with s dimensions
(where n = K ∗ s); The jth swarm is denoted as
Pj, j ∈ [1..K];
repeat

for each swarm j ∈ [1..K] do
for each particle i ∈ [1..swarmSize] do

if f (b(j, Pj.xi)) < f (b(j, Pj.yi)) then
Pj.yi ← Pj.xi;
if f (b(j, Pj.yi)) < f (b(j, Pj.ŷ)) then
Pj.ŷ ← Pj.yi;

end
Perform velocity and position updates using (1)
and (2) for each particle in Pj;

end
until termination criterion is met;

for all i ∈ {1, . . . , swarmSize} and d ∈ {1, . . . , n} (where
swarmSize is the population size of the swarm and n is the
number of dimensions). c1 and c2 are acceleration coefficients.
r1i,d and r2i,d are two random values independently and
uniformly generated from the range [0, 1]. A constriction
coefficient χ is used to prevent each particle from exploring
too far away in the search space, since χ applies a dampening
effect to the oscillation size of a particle over time. This “Type
1” constricted PSO suggested by Clerc and Kennedy is often
used with χ set to 0.7298, and c1 and c2 set to 2.05 [20].

A. CPSO-SK and CPSO-HK

Van den Bergh and Engelbrecht [8] developed two coop-
erative PSO algorithms. In the first CPSO variant, CPSO-
SK, they adopted the original decomposition strategy from
Potter and Jong [9], but allowing a vector to be split
into K subcomponents, each corresponding to a swarm of
s-dimensions (where n = K∗s). Algorithm 1 illustrates CPSO-
SK [8]. In order to evaluate the fitness of a particle in a swarm,
a context vector ŷ is constructed, which is a concatenation
of all global best particles from all K swarms (as shown in
Fig. 1). The evaluation of the ith particle in the jth swarm
is done by calling the function b(j, Pj.xi) which returns an
n-dimensional vector consisting of ŷ with its jth component
replaced by Pj.xi. The idea is to evaluate how well Pj.xi

“cooperates” with the best individuals from all other swarms.
Note that if K equals n, CPSO-SK operates the same way

as Potter’s CCGA-1, where n subpopulations of 1-D vectors
are coevolved.

In their second variant, CPSO-HK, both CPSO-SK and a
standard PSO are used in an alternating manner, with CPSO-
SK executed for one iteration, followed by the standard PSO
in the next iteration. Information exchange between CPSO-SK

and the standard PSO was allowed so that the best solution

Fig. 1. Concatenation of P1.ŷ, P2.ŷ, . . . , PK.ŷ constitutes ŷ.

found so far can be shared. To be specific, after an iteration of
CPSO-SK, the context vector ŷ is used to replace a randomly
chosen particle in the standard PSO. This is followed by one
iteration of standard PSO, which may yield a new global best
solution. This new best solution can be then used to update
the subvectors of a randomly chosen particle from CPSO-SK.

Both CPSO-SK and CPSO-HK were tested on functions of
up to 30 dimensions [8], however, it is unclear how well
the performances of CPSO-SK and CPSO-HK scale with
functions of higher dimensions. In our preliminary study of
cooperatively coevolving PSO [13], the previously proposed
CCPSO, which employed both random grouping and adaptive
weighting schemes, not only outperformed CPSO-SK on sev-
eral 30-D functions, but also showed promising performance
on these functions of up to 1000 dimensions.

IV. New CCPSO2 Algorithm

This paper proposes CCPSO2, which builds upon the pre-
viously proposed CCPSO [13]. CCPSO2 incorporates several
new schemes to improve the performance and reliability of
CCPSO. First, we adopt a PSO that does not use the velocity
term, but instead, employ Cauchy and Gaussian distributions
to generate the next particle positions. Second, we use an
lbest ring topology to define the local neighborhood for each
particle in order to slow down convergence and maintain better
population diversity. Third, instead of using a fixed group (or
subcomponent) size throughout a run for the random grouping
mechanism, a different group size can be randomly chosen
from a set at each iteration. There is clear evidence that
the application of random grouping together with adaptively
choosing subcomponent sizes contributed to the marked im-
provements of CCEAs [14], [19].

In the following sections, we will first review several studies
which we have drawn upon to propose the new lbest PSO
model using Cauchy and Gaussian distributions for sampling,
then describe a simple scheme for dynamically changing the
group size when random grouping is applied, and finally how
these are put together to form the new CCPSO2 algorithm.

A. Related Studies

1) Gaussian-Based PSO: Two most commonly used PSO
variants are probably the inertia weight PSO and constricted
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PSO. An early study [20] suggested that these two are equiv-
alent to each other. Other studies suggested that a Gaussian
distribution could be used in the PSO position update rule.
For example Kennedy proposed a Bare-bones PSO [21], where
each dimension of the new position of a particle is randomly
selected from a Gaussian distribution with the mean being the
average of yi,d(t) and ŷd(t) and the standard deviation σ being
the distance between yi,d(t) and ŷd(t) as follows:

xi,d(t + 1) = N (
yi,d(t) + ŷd(t)

2
|yi,d(t) − ŷd(t)|). (3)

Note that there is no velocity term used in (3). The new par-
ticle position is simply generated via the Gaussian distribution.
A comparative study on PSO variants employing Gaussian
distribution was provided in [22], including a Lévy distribution
which is a more generalized form of distribution than the
Gaussian and Cauchy distributions.1 Algorithms employing
Lévy or Cauchy distributions, which both have a long fat tail,
are more capable of escaping from local optima than the Gaus-
sian counterpart, as suggested in several studies [22]–[24].

Without the velocity term, the Gaussian-based PSO (GPSO),
as shown in (3), becomes similar to evolutionary programming
(EP), where a Gaussian distribution is typically used for
generating the next trial points in the search space [23]. One
important difference though, is that in the Gaussian based
PSO, the standard deviation σ is determined by the distance
between yi,d and ŷd , whereas in a typical EP, σ needs to be
supplied by the user, or be made self-adaptive [23], [24].

In another GPSO proposed by Secrest and Lamont [25],
instead of sampling around the midpoint between yi and
ŷ, a Gaussian distribution is used to sample around ŷ with
some prespecified probability p, otherwise around yi. This
proves to be beneficial, as particles can explore better in
a much wider area, rather than just around the midpoint
between yi and ŷ. However, since GPSO uses only a Gaussian
distribution, its ability to explore the search space is rather
limited, especially when the standard deviation σ becomes
very small. In Section VI-A our experiments will demonstrate
that using a combination of Cauchy and Gaussian distributions
is superior to using only a Gaussian distribution for sampling,
as also explained in the next section.

2) lbest PSO: One of the earliest PSO algorithms proposed
was in fact an lbest PSO based on the ring topology [26].
A later study on PSO using a variety of neighbourhood
topologies [27] showed that the lbest PSO based on the ring
topology provided a slower convergence speed than the more
widely used gbest PSO model. It is this slow convergence
property that allows the lbest PSO to outperform the gbest

model on a wide range of multimodal functions, though on
unimodal functions, the gbest model is still likely to be the
winner [28].

B. Cauchy and Gaussian-Based PSO

To solve large-scale optimization problems, an optimization
algorithm needs to maintain its ability to explore effectively

1The shape of the Lévy distribution can be controlled by a parameter α.
For α = 2 it is equivalent to the Gaussian distribution, whereas for α = 1 it is
equivalent to the Cauchy distribution [22].

as well as to converge. Drawn from the findings of the
aforementioned PSO variants, we propose a PSO model that
employs both Cauchy and Gaussian distributions for sampling,
as well as an lbest ring topology. The update rule for each
particle position is rewritten as follows:

xi,d(t +1) =

{
yi,d(t) + C(1)|yi,d(t) − ŷ′

i,d(t)|, if rand ≤ p

ŷ′
i,d(t) + N (0, 1)|yi,d(t) − ŷ′

i,d(t)|, otherwise
(4)

where C(1) denotes a number that is generated following a
Cauchy distribution, and in this case we also need to set an
“effective standard deviation” [22] for the Cauchy distribution,
which is the same standard deviation value we would set for
the equivalent Gaussian distribution, |yi,d(t) − ŷ′

i,d(t)|; rand is
a random number generated uniformly from [0, 1]; p is a user-
specified probability value for Cauchy sampling to occur. Here,
ŷi

′ denotes a local neighborhood best for the ith particle. Since
an lbest ring topology is used for defining local neighborhood,
ŷi

′ (i.e., the best-fit particle) is chosen among all three particles
including the current ith particle and its immediate left and
right neighbors (imagine that all particles are stored on a list
that is indexed and wrapped-around). Since each particle may
have a different ŷi

′, the population is likely to remain diverse
for a longer period. The chance of prematurely converging to
a single global best ŷ, as in a GPSO (3), should be reduced.
Note that p can be simply set to 0.5 so that half of the time
Cauchy is used to sample around the ith particle’s personal
best yi (more exploratory), while for the other half of the time
Gaussian is used to sample around its neighborhood best ŷi

′

(less exploratory).
For the rest of the paper, this CGPSO is used as the

subcomponent optimizer for each swarm in the context of a
CC framework.

C. Dynamically Changing Group Size

When applying random grouping to CCEA, a group size
s (i.e., the number of variables in each subcomponent) has
to be chosen. Obviously, the choice of value for s will
have a significant impact on the performance of CCPSO2.
Furthermore, it might be desirable to vary s during a run.
For example, it is possible to start with a smaller s value
and then gradually increase this value over the course of
the algorithm, in order to encourage convergence to a fi-
nal global solution and to consider more potential variable
interactions.

This issue was studied in a recently developed multilevel
cooperative coevolution (MLCC) [19], where a scheme was
proposed to probabilistically choose a group size from a set of
potential group sizes. At the end of each coevolutionary cycle,
a performance record list is used to update the probability val-
ues so that the group sizes associated with higher performances
are rewarded with higher probability values accordingly. As a
result, these more “successful” group sizes are more likely to
be used again in future cycles.

This paper adopts an even simpler approach. At each itera-
tion, we record the fitness value of the global best ŷ before and
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Algorithm 2: Pseudocode of CCPSO2

Create and initialize K swarms, each with s dimensions
(where s is randomly chosen from a set S, and n = K ∗ s

always being true); the jth swarm is denoted as
Pj, j ∈ [1..K];
repeat

if f (ŷ) has not improved then randomly choose s

from S and let K = n/s;
Randomly permutate all n dimension indices;
Construct K swarms, each with s dimensions;
for each swarm j ∈ [1..K] do

for each particle i ∈ [1..swarmSize] do
if f (b(j, Pj.xi)) < f (b(j, Pj.yi)) then
Pj.yi ← Pj.xi;
if f (b(j, Pj.yi)) < f (b(j, Pj.ŷ)) then
Pj.ŷ ← Pj.yi;

end
for each particle i ∈ [1..swarmSize] do

Pj.ŷ′
i ← localBest(Pj.yi−1, Pj.yi, Pj.yi+1);

end
if f (b(j, Pj.ŷ)) < f (ŷ) then jth part of ŷ is
replaced by Pj.ŷ;

end
for each swarm j ∈ [1..K] do

for each particle i ∈ [1..swarmSize] do
Perform position update for the ith particle in
swarm Pj using (4);

end
end

until termination criterion is met;

after a coevolutionary cycle,2 and if there is no improvement of
the fitness value, a new s is chosen uniformly at random from
a set S, otherwise, the value of s remains unchanged. Here S
contains several possible s values ranging from small to large,
e.g., S = {2, 5, 50, 100, 200}. The idea is to continue to use the
same s value as long as it works well, but if it does not, then a
different value for s should be chosen. This simple scheme is
demonstrated to work well experimentally (see Section VI-B).
Although the set S still needs to be supplied, specification
for the parameter s is no longer required. s values in S is
applicable to any function of dimensions up to the largest value
in S.

One important difference between CCPSO2 and MLCC
[19] is that the frequency of applying the random grouping
method in CCPSO2 is likely to be much greater than that of
MLCC. In CCPSO2 only one evolutionary step is executed
over each subpopulation in a cycle, whereas in MLCC, it
is common that several evolutionary steps are applied to
each subpopulation. Given a fixed number of evaluations,
random grouping is likely to be applied more frequently in
CCPSO2 than MLCC. A higher frequency of applying random
grouping should provide more benefit on nonseparable high
dimensional problems, since it is more likely that interact-

2In CCPSO2 a coevolutionary cycle is one round-robin pass of coevolution
of all subpopulations. Hence a cycle is equivalent to an iteration here.

ing variables be captured in the same subcomponent of a
CCEA [14].

D. CCPSO2

1) Basic Algorithm: Algorithm 2 summarizes the pro-
posed CCPSO2 employing random grouping with dynamically
changing group size s, as well as the Cauchy and Gaussian
update rule (as given in (4) for a ring topology-based lbest

PSO. Two nested loops are used to iterate through each swarm
and each particle in that swarm. In the first nested loop, for
the ith particle in the jth swarm, its personal best Pj.xi is first
checked for update, and similarly for the jth swarm best Pj.ŷ.
The function localBest(.) returns Pj.ŷi

′, which is the best-fit
particle in the local neighborhood of the ith particle, of the jth
swarm. The jth swarm best Pj.ŷ is used to update the context
vector ŷ if it is better. In the second nested loop, each particle’s
personal best, neighborhood best, and its corresponding swarm
best are used to calculate the particle’s next position using (4).

2) Updating Personal Bests: In order to update personal
bests effectively in a coherent fashion over iterations, a new
scheme is proposed here. Two matrices X and Y are used
to store all information of particles’ current positions and
personal bests in all K swarms. For example, the ith row
of X is a n-dimensional vector concatenating all current
position vectors xi from all K swarms (note that sw denotes
swarmSize) as follows:

X =

⎡
⎢⎢⎢⎣

x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
...

. . .
...

xsw,1 xsw,2 . . . xsw,n

⎤
⎥⎥⎥⎦ (5)

and

Y =

⎡
⎢⎢⎢⎣

y1,1 y1,2 . . . y1,n

y2,1 y2,2 . . . y2,n

...
...

. . .
...

ysw,1 ysw,2 . . . ysw,n

⎤
⎥⎥⎥⎦ . (6)

When random grouping is applied, the indices of all
columns are randomly permutated. These permutated indices
are then used to construct K swarms over n dimensions,
from X and Y. This is achieved by simply taking out every
s columns (or dimensions) of X and Y to form a new
swarm. In other words, in each swarm a particle’s position
and personal best vectors are constructed according to the
new permutated dimension indices. As a result of random
grouping, the personal best of each newly formed particle
in a swarm needs to be re-evaluated in order to obtain its
correct “coevolving” fitness. This is a key difference from the
conventional personal best update. All the experiments in later
sections take these evaluations into account.

Similarly, ŷ should also be reconstructed according to the
permutated dimension indices. This way, when forming new
swarms based on the new permutated indices, the better
position values found so far in certain dimensions can be used
meaningfully to guide the search in future iterations.

Note that the original dimension indices are recorded so that
when evaluating the ith particle of the jth swarm via function
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b(j, Pj.xi) (which returns an n-dimensional vector consisting
of ŷ with its jth component replaced by Pj.xi), the order of the
original dimension indices of this n-dimensional vector can be
always restored before invoking an evaluation function.

After evaluations of all particles in the jth swarm, if the
swarm best Pj.ŷ is found to be better than the context vector
ŷ, then the corresponding part of ŷ gets replaced by Pj.ŷ. This
will ensure good information is recorded in ŷ, and utilized in
future iterations.

At the end of an iteration, after applying (4), the new current
and personal best vectors are saved back to X and Y. This will
ensure that the next iteration can use the updated X and Y to
start the process of applying random grouping again.

V. Experimental Studies

This section first describes test functions and performance
measurements that are adopted, and then describes sep-CMA-
ES, a state-of-the-art evolutionary strategy algorithm used in
our comparative studies.

A. Experimental Setup

We adopt the seven benchmark test functions proposed for
the CEC’08 special session on large-scale global optimization
(LSGO) [5]. For each of these functions the global optimum
is shifted with a different value in each dimension. While f1

(ShiftedSphere), f4 (ShiftedRastrigin), and f6 (ShiftedAckley)
are separable functions, f2 (SchwefelProblem), f3 (Shifte-
dRosenbrock), f5 (ShiftedGriewank), and f7 (FastFractal)
are nonseparable, presenting a greater challenge to any al-
gorithm that is prone to variable interactions. Note that f5

(ShiftedGriewank) becomes easier to optimize as the number
of dimensions increases, because the product component of
f5 becomes increasingly insignificant [29], making it more
like a separable function (as variable interactions are almost
negligible). In addition to the above seven CEC’08 functions,
we also include four more functions, f3r, f4r, f5r, and f6r,
which are rotated versions of f3 f4, f5, and f6, respectively.
The effect of rotation introduces further variable interactions,
making them nonseparable.3 Rotations are performed in the
decision space, on each plane using a random uniform rotation
matrix [30], [31]. A new random uniform rotation matrix
is generated for each individual run for the purpose of an
unbiased assessment. By using these benchmark test functions,
and the proposed set of evaluation criteria, we were able to
compare CCPSO2 with other existing EAs.

Experiments were conducted on the above 11 test functions
of 100, 500, and 1000 dimensions. The same performance
measurements used for CEC’08 special session on LSGO were
adopted [5]. For each test function, the averaged results of
25 independent runs were recorded. For each run, Max FES
(i.e., the maximum number of fitness evaluations) was set to
5000*n (where n is the number of dimensions). A two-tailed
t-test was conducted with a null hypothesis stating that there
is no difference between two algorithms in comparison. The
null hypothesis was rejected if the p-value was smaller than
the significance level α = 0.05.

3Note that f3 and f5 are already nonseparable.

The population size for each swarm that participates in
coevolution was set to 30. For random grouping of the vari-
ables, we used S = {2, 5, 10, 50, 100} for 100-D functions, and
S = {2, 5, 10, 50, 100, 250} for 500-D and 1000-D functions,
where S includes a range of possible group size values that
can be dynamically chosen. A few further experiments on f1,
f3, and f7 of 2000 dimensions were also carried out, using
the same setup as mentioned above.

The CGPSO described in Section IV-B was used in all
experiments of CCPSO2, with p in (4) simply set to 0.5.

B. sep-CMA-ES

The CMA-ES algorithm, which makes use of adaptive mu-
tation parameters through computing a covariance matrix and
hence correlated step sizes in all dimensions, has been shown
to be an efficient optimization method [32], [33]. However,
most of the published results of CMA-ES were on functions
of up to 100 dimensions [33], [34]. One major drawback of
CMA-ES is its cost in calculating the covariance matrix, which
has a complexity of O(n2). As dimensionality increases, this
cost rapidly rises. Furthermore, sampling using a multivariate
normal distribution and factorization of the covariance matrix
also become increasingly expensive. In a recent effort to
alleviate this problem [35], a simple modification to CMA-
ES was introduced where only the calculation of the diagonal
elements of the covariance matrix C is required. Thus, the
complexity of updating C becomes linear with n. Since only
C diagonal is utilized, the sampling becomes independent in
each dimension, making this CMA-ES variant (so called sep-
CMA-ES) no longer rotationally invariant. The tradeoff here is
the much reduced cost as opposed to the deficiency in handling
nonseparable problems. It was shown in [35] that sep-CMA-
ES performs not only faster, but also surprisingly well on
several separable and nonseparable functions of up to 1000
dimensions, outperforming the original CMA-ES.

In this paper, sep-CMA-ES [35], [36] was chosen to com-
pare against the proposed CCPSO2. In our experiments, for
sep-CMA-ES, each individual in the initial population is
generated uniformly within the variable bounds [A, B]n. The
initial step-size σ is set to (B − A)/2. The population size
was determined by n such that λ = 4 + �3ln(n)	, μ = � λ

2 	,
where n is the dimensions of the problem, λ is the number
of offspring, and μ is the number of parents, as suggested in
[35]. A number of stopping criteria were used. For example,
sep-CMA-ES stops if the range of the best objective function
values of the last 10 + 
30n/λ� iterations is zero or below a
small value specified, or if the standard deviation of the normal
distribution is smaller than a specified threshold value in all
coordinates, or if the maximal allowed number of evaluations
is reached.

VI. Results and Analysis

This section consists of five parts. In the first part, we
compare several PSO variants using different update rules, and
demonstrate why CGPSO is the best subcomponent optimizer
for CCPSO2. In the second part, we examine the effects of
CCPSO2 using random grouping with changing group sizes.
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Fig. 2. Averaged best fitness values of four PSO variants (using a ring
topology) on f1 of 2, 5, 10, 20, 50, and 100 dimensions.

The results of CCPSO2 on 500-D functions are compared with
those using a prespecified fixed group size. In the third part,
we compare the results of both CCPSO2 and sep-CMA-ES on
functions of 100, 500, and 1000 dimensions. We then compare
CCPSO2 with two existing PSO algorithms and a cooperative
coevolving DE on functions of 1000 dimensions, for which
the results were obtained from the CEC 2008 competition on
LSGO [37]. In the final part we present results on functions
of 2000 dimensions in order to further challenge CCPSO2’s
ability to scale to even higher dimensions.

A. Why Cauchy and Gaussian PSO?

In Section IV-B, we provided the rationale of choosing the
CGPSO as the subcomponent optimizer for optimizing each
swarm under the framework of CC. In this section, we present
the empirical evidence to support this choice. For a function
of 1000 dimensions, s may range from several dimensions up
to several hundreds. In this paper, we used four PSO variants
using the ring topology, including constricted PSO (CPSO)
[i.e., using (1) and (2)], Bare-bones PSO (3), GPSO [25],
and CGPSO (4). We chose f1 to f7 of 2, 5, 10, 20, 50,
and 100 dimensions. Using a small population of 30, each
algorithm was run 50 times (with each run allowing 300 000
FES), and the mean and standard error of the best fitness were
recorded. As shown in Figs. 2 and 3, for f1 to f7 up to 50
dimensions, CGPSO is the overall best performer. However,
when the dimension was increased to 100, CGPSO’s lead is
no longer obvious. CGPSO outperformed CPSO on f1, f4,
and f5, but lost to CPSO on f2, f3, and f6. Both CGPSO
and CPSO performed similarly on f7. Note that the global
optimum of f7 is usually unknown (unlike other functions)
and may change depending on the dimensionality. Results
of the other two variants, Bare-bones PSO and GPSO were
not competitive. In particular, GPSO tended to prematurely
converge very quickly on several functions. Comparing GPSO
and CGPSO, it is noticeable that using a combination of
Cauchy and Gaussian distributions is far more effective than
using only a Gaussian distribution for sampling. Overall,
CGPSO appears to be the most consistent and better performer
over other variants. Typically for a function of 500 dimensions,
a subcomponent size (i.e., group size s) ranging from 2 to 100
dimensions is most likely to be adaptively chosen (see next
section) during the CC process. Hence, we selected CGPSO
as the subcomponent optimizer for each swarm of CCPSO2.

B. Effects of Dynamically Changing Group Size

Table I compares the results of CCPSO2 using dynamically
changing group size s and those using a prespecified fixed
group size. When different fixed group sizes are used, it
is noticeable that performance fluctuates a lot, depending
heavily on the given s value. On the contrary, CCPSO2,
using a dynamically changing s value, consistently gave a
better performance than the other variants. The closest rival
to CCPSO2 is the s = 50 variant, which only outperformed
CCPSO2 on f2. However, in most real-world problems, we do
not have any prior knowledge about the optimal s value.

Among the CCPSO2 variants using a fixed s value, it is
interesting to note that it is not necessarily always better
to use a small fixed s even for separable functions such as
f1. The s = 100 variant in fact is much better than the
s = 5 variant. The better performance of CCPSO2 using a
dynamically changing s may be attributed to the diverse range
of s values that CCPSO2 can utilize during a run. CCPSO2
can use smaller s values to evolve small subcomponent-based
intermediate solutions first and then uses larger s values to
evolve the combined intermediate solutions to achieve even
fitter overall solutions.

Fig. 4 shows typical CCPSO2 runs with a dynamically
changing group size on the CEC’08 test functions. It is notice-
able that for separable functions f1, f4, f6, and f5 (which is
considered as a more separable function for 500-D), CCPSO2
tended to choose a mixture of small and large group sizes at
different stages of a run. For nonseparable functions such as
f2, f3, and f7, CCPSO2 tended to favor a small group size
throughout the run. Since the group size remains unchanged
when there is further performance improvement, this suggests
CCPSO2 was still able to improve the performance though
very slowly.

C. Comparing CCPSO2 with sep-CMA-ES

Table II shows the results of the 11 test functions of 100-D,
500-D, and 1000-D. The result of sep-CMA-ES scaled very
well from 100-D to 1000-D on f1, f3, and f4r, outperforming
CCPSO2 on all these cases. On f5 and f5r, the performance of
sep-CMA-ES is better on 100-D, but not statistically different
on 500-D and 1000-D. Figs. 5–8 show the convergence plots
where it can be noted the sep-CMA-ES achieved very fast
convergence on f1, f3, f5, and f5r.

In comparison, CCPSO2 clearly outperformed sep-CMA-
ES on f2, f4, f6, and f7. On f6r, CCPSO2 performed better
on 100-D and 500-D, but its performance is not statistically
different from sep-CMA-ES on 1000-D. There is also no
statistical difference on f3r. It can be also noted that rotation
of f4 into f4r degraded the performance of CCPSO2, but had
little effect on sep-CMA-ES.

On f2, f4, f6, and f6r, sep-CMA-ES prematurely converged
as soon as a run started.4 sep-CMA-ES also had a poor per-
formance compared with CCPSO2 on f7 FastFractal function,
which has a more complex and irregular fitness landscape,
and highly multimodal. The standard CMA-ES (which uses

4The run may be terminated if no further improvement after several
iterations as described in Section V-B.
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Fig. 3. Averaged best fitness values (with one standard error) of four PSO variants using a ring topology on f2 to f7 of 2, 5, 10, 20, 50, and 100 dimensions.
(a) f2 SchwefelProblem. (b) f3 ShiftedRosenbrock. (c) f4 ShiftedRastrigin. (d) f5 ShiftedGriewank. (e) f6 ShiftedAckley. (f) f7 FastFractal.

TABLE I

Results on 500-D Functions of CCPSO2 Using Random Grouping with a Changing Group Size and Those CCPSO2 Variants Using a

Prespecified Fixed Group Size

500-D s ∈ S s = 5 s = 10 s = 50 s = 100 p-value
f1 3.07E-13 (7.34E-14) 4.54E+05 (1.06E+06) 7.57E-13 (1.03E-13) 3.52E-13 (4.02E-14) 3.87E-13 (2.84E-14) 0.011
f2 6.37E+01 (2.89E+01) 9.47E+01 (6.21E+01) 8.27E+01 (7.64E+01) 1.50E+01 (3.44E+01) 4.83E+01 (3.30E+00) 0.000
f3 7.51E+02 (1.61E+02) 3.78E+11 (1.04E+12) 1.18E+11 (5.88E+11) 8.84E+02 (9.34E+01) 6.81E+02 (1.43E+02) 0.001
f4 1.59E-01 (3.72E-01) 9.55E+02 (3.30E+03) 1.43E+03 (3.95E+03) 2.77E+02 (5.24E+01) 5.87E+02 (5.72E+01) 0.000
f5 9.85E-04 (3.41E-03) 3.83E+03 (8.97E+03) 1.94E+03 (6.72E+03) 2.96E-04 (1.48E-03) 9.85E-04 (3.69E-03) 0.361
f6 5.50E-13 (8.79E-14) 2.57E+00 (7.10E+00) 1.72E+00 (5.94E+00) 6.71E-13 (2.46E-14) 2.35E-09 5.08E-09) 0.000
f7 -7.22E+03 (5.37E+01) -5.04E+03 (1.94E+03) -7.07E+03 (7.79E+02) -6.35E+03 (1.05E+02) -5.68E+03 (3.03E+02) 0.000

Note that S = {2, 5, 10, 50, 100, 250}. A two-tailed t-test was conducted between CCPSO2 using a changing group size from S and one using s = 50.
If two results are statistically different, the better one is highlighted in bold.

the full covariance matrix) was also tested on f2, f4, and f6,
but CMA-ES suffered from the same problem of premature
convergence.

The offspring population size λ of a sep-CMA-ES run was
determined by λ = 4 + �3ln(n)	. For n equals to 100, 500,
and 1000, λ is 17, 22, and 24, respectively. Further tests
revealed that these population sizes were too small for sep-
CMA-ES (or CMA-ES) to perform well on f2, f4, f6, and f7,
though smaller population sizes did not pose any trouble on
f1, f3, and f5. For sep-CMA-ES to perform well, it requires
a much larger population size in order to sample effectively
around the mean of the selected fit individuals. This suggests
that the formula proposed for determining the population size
λ = 4 + �3ln(n)	 is not suitable for multimodal functions
of higher dimensions (n > 100). This observation is also
supported in [38], where a study was carried out specifically
on CMA-ES over multimodal functions. It shows that on the
Rastrigin function of only 80 dimensions and Schwefel of
20 dimensions, CMA-ES requires a λ greater than 1000 in

order to maintain a success rate of 95% (Figs. 2 and 3 of
[38]). In [35], a different formula for determining population
size was also studied: λ = 2n. Nevertheless this means that
the population will be unrealistically large for functions of
1000 dimensions for instance. Fig. 9(a) shows the results
of sep-CMA-ES on f4 (ShiftedRastrigin) of 500 dimensions,
over population sizes ranging from 100 to 1500. It can be
seen that as the population size increases, the performance
also improves, however, even with a population size of 1500,
the best fitness achieved was 14.725, which is still worse
than CCPSO2. Fig. 9(b) shows that on the more complex f7

(FastFractal), the best result achieved was −7057.21 (when a
population size of 400 was used), which is still worse than the
best result obtained by CCPSO2 (i.e., −7.23E+03 as shown
in Table II). Clearly, sep-CMA-ES’s performance is sensitive
to the population size parameter. And even if the optimal
population size is chosen, CCPSO2 still outperforms sep-
CMA-ES on these multimodal functions. More importantly,
the performance of CCPSO2 does not depend on a large
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Fig. 4. Changing group size during a CCPSO2 run on f1 to f7 of 500 dimensions. (The result of f3 ShiftedRosenbrock is not shown as it has a unchanged
group size of 5 over the run.) (a) f1 ShiftedSphere. (b) f2 SchwefelProblem. (c) f4 ShiftedRastrigin. (d) f5 ShiftedGriewank. (e) f6 ShiftedAckley. (f) f7
FastFractal.

TABLE II

Results of CCPSO2 and sep-CMA-ES on Test Functions of 100-D, 500-D, and 1000-D

Test function Dimensions CCPSO2 sep-CMA-ES p-value
100-D 7.73E-14 (3.23E-14) 9.02E-15 (5.53E-15) 0.000

f1 500-D 3.00E-13 (7.96E-14) 2.25E-14 (6.10E-15) 0.000
1000-D 5.18E-13 (9.61E-14) 7.81E-15 (1.52E-15) 0.000
100-D 6.08E+00 (7.83E+00) 2.31E+01 (1.39E+01) 0.000

f2 500-D 5.79E+01 (4.21E+01) 2.12E+02 (1.74E+01) 0.000
1000-D 7.82E+01 (4.25E+01) 3.65E+02 (9.02E+00) 0.000
100-D 4.23E+02 (8.65E+02) 4.31E+00 (1.26E+01) 0.023

f3 500-D 7.24E+02 (1.54E+02) 2.93E+02 (3.59E+01) 0.000
1000-D 1.33E+03 (2.63E+02) 9.10E+02 (4.54E+01) 0.000
100-D 3.98E-02 (1.99E-01) 2.78E+02 (3.43E+01) 0.000

f4 500-D 3.98E-02 (1.99E-01) 2.18E+03 (1.51E+02) 0.000
1000-D 1.99E-01 (4.06E-01) 5.31E+03 (2.48E+02) 0.000
100-D 3.45E-03 (4.88E-03) 2.96E-04 (1.48E-03) 0.004

f5 500-D 1.18E-03 (4.61E-03) 7.88E-04 (2.82E-03) 0.719
1000-D 1.18E-03 (3.27E-03) 3.94E-04 (1.97E-03) 0.310
100-D 1.44E-13 (3.06E-14) 2.12E+01 (4.02E-01) 0.000

f6 500-D 5.34E-13 (8.61E-14) 2.15E+01 (3.10E-01) 0.000
1000-D 1.02E-12 (1.68E-13) 2.15E+01 (3.19E-01) 0.000
100-D -1.50E+03 (1.04E+01) -1.39E+03 (2.64E+01) 0.000

f7 500-D -7.23E+03 (4.16E+01) -6.37E+03 (7.59E+01) 0.000
1000-D -1.43E+04 (8.27E+01) -1.25E+04 (9.36E+01) 0.000
100-D 7.56E+02 (1.67E+03) 4.11E+02 (1.20E+03) 0.406

f3r 500-D 6.49E+02 (6.05E+02) 4.96E+02 (1.82E+02) 0.236
1000-D 2.64E+03 (3.30E+03) 3.94E+03 (1.34E+04) 0.642
100-D 8.29E+02 (2.22E+02) 2.71E+02 (3.85E+01) 0.000

f4r 500-D 4.97E+03 (8.01E+02) 2.18E+03 (1.22E+02) 0.000
1000-D 9.84E+03 (1.15E+03) 5.54E+03 (2.31E+02) 0.000
100-D 2.66E-03 (4.60E-03) 4.93E-04 (2.46E-03) 0.045

f5r 500-D 2.96E-04 (1.48E-03) 2.96E-04 (1.48E-03) 1.000
1000-D 6.90E-04 (2.41E-03) 1.29E-12 (3.09E-13) 0.165
100-D 8.94E+00 (8.92E+00) 2.14E+01 (2.42E-02) 0.000

f6r 500-D 1.97E+01 (3.94E-01) 2.15E+01 (3.03E-01) 0.000
1000-D 1.97E+01 (1.12E-01) 2.07E+01 (4.32E+00) 0.259

A two-tailed t-test was conducted between CCPSO2 and sep-CMA-ES. If two results are
statistically different, the better one is highlighted in bold.
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Fig. 5. Averaged best fitness values for sep-CMA-ES and CCPSO2 on functions of 500 dimensions. (a) f1 ShiftedSphere. (b) f2 SchwefelProblem. (c) f3
ShiftedRosenbrock. (d) f4 ShiftedRastrigin. (e) f5 ShiftedGriewank. (f) f6 ShiftedAckley. (g) f7 ShiftedRastrigin. (h) f3r ShiftedRotatedRosenbrock. (i) f4r

ShiftedRotatedRastrigin.

population size. For all experiments, a small swarm of 30
particles for a coevolving subcomponent was shown to be
sufficient in producing reasonable performances.

Table II shows that overall, for the 11 test functions,
CCPSO2 performed significantly better than sep-CMA-ES on
five functions, while losing to sep-CMA-ES on three functions.
For the remaining three test functions, there is no statistical
difference between the two. Most importantly, CCPSO2 per-
formed better than sep-CMA-ES on high-dimensional multi-
modal functions with a complex fitness landscape such as f7,
which arguably more closely resemble real-world problems.
The CC framework allowing decomposing a high dimensional
problem into small subcomponents is a key contributing
factor that CCPSO2 scales well to very high-dimensional
problems.

CCPSO2 tended to converge slower than sep-CMA-ES,
but had more potential to further improve its performance
in the later stage of a run. This may be attributed to the
use of the Cauchy distribution in CCPSO2 to encourage
more exploration. On the contrary, sep-CMA-ES converged
extremely fast, however, it either converged very well or
tended to become stagnant very quickly, especially on complex
high dimensional multimodal functions.

D. Comparing CCPSO2 with Other Algorithms

Table III shows the results of CCPSO2 on the seven CEC’08
benchmark test functions of 1000 dimensions, in comparison
with two recently proposed PSO variants, EPUS-PSO [39],
DMS-PSO [40], and a CC DE algorithm MLCC [19]. The
results of these algorithms were obtained under the same
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Fig. 6. Averaged best fitness values for sep-CMA-ES and CCPSO2 on functions of 1000 dimensions. (a) f1 ShiftedSphere. (b)f2 SchwefelProblem. (c)
f3 ShiftedRosenbrock. (d) f4 ShiftedRastrigin. (e) f5 ShiftedGriewank. (f) f4 ShiftedRastrigin. (g) f7 ShiftedRastrigin. (h) f3r ShiftedRotatedRosenbrock.
(i) f4r ShiftedRotatedRastrigin.

Fig. 7. Averaged best fitness values for sep-CMA-ES and CCPSO2 on f5r and f6r of 500 dimensions. (a) f5r . (b) f6r .
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Fig. 8. Averaged best fitness values for sep-CMA-ES and CCPSO2 on f5r and f6r of 1000 dimensions. (a) f5r . (b) f6r .

Fig. 9. Averaged best fitness values of sep-CMA-ES on f4 and f7 of 500 dimensions, over a range of population sizes. (a) f4 ShiftedRastrigin. (b) f7
FastFractal.

TABLE III

Comparison Between CCPSO2, EPUS-PSO, DMS-PSO, and MLCC and on 1000-D Functions

1000-D CCPSO2 EPUS-PSO DMS-PSO MLCC p-value
f1 5.18E-13 (9.61E-14) 5.53E+02 (2.86E+01) 0.00E+00 (0.00E+00) 8.46E-13 (5.01E-14) 0.000
f2 7.82E+01 (4.25E+01) 4.66E+01 (4.00E-01) 9.15E+01 (7.14E-01) 1.09E+02 (4.75E+00) 0.001
f3 1.33E+03 (2.63E+02) 8.37E+05 (1.52E+05) 8.98E+09 (4.39E+08) 1.80E+03 (1.58E+02) 0.000
f4 1.99E-01 (4.06E-01) 7.58E+03 (1.51E+02) 3.84E+03 (1.71E+02) 1.37E-10 (3.37E-10) 0.022
f5 1.18E-03 (3.27E-03) 5.89E+00 (3.91E-01) 0.00E+00 (0.00E+00) 4.18E-13 (2.78E-14) 0.084
f6 1.02E-12 (1.68E-13) 1.89E+01 (2.49E+00) 7.76E+00 (8.92E-02) 1.06E-12 (7.68E-14) 0.287
f7 -1.43E+04 (8.27E+01) -6.62E+03 (3.18E+01) -7.51E+03 (1.64E+01) -1.47E+04 (1.52E+01) 0.000

Results for EPUS-PSO, DMS-PSO, and MLCC quoted from [19], [39], and [40]. A two-tailed t-test was conducted between
CCPSO2 and MLCC. If two results are statistically different, the better one is highlighted in bold.

criteria, as set out by the CEC’08 special session on LSGO
[5]. A two-tailed t-test was only conducted between CCPSO2
and MLCC, since CCPSO2 clearly outperformed EPUS-PSO
and DMS-PSO.

EPUS-PSO used an adaptive population sizing strategy to
adjust the population size according to the search results
[39]. DMS-PSO adopted a random regrouping strategy to
introduce a dynamically changing neighborhood structure to
each particle. Every now and then the population is regrouped
into multiple small subpopulations according to the new neigh-
borhood structures [40]. MLCC also adopts a CC approach
(like CCPSO2) applying both random grouping and adaptive
weighting [19]. Given a fixed number of evaluations, the
applications of adaptive weighting is at the expense of random
grouping, which proves to be less effective [14]. In addition,

MLCC employs a self-adaptive mechanism to favor certain
group size over others when invoking the random grouping
scheme. All these three algorithms participated in the CEC
2008 competition on LSGO [37].

CCPSO2 outperformed EPUS-PSO on six out of the seven
CEC’08 test functions, except f2. CCPSO2 also outperformed
DMS-PSO on five functions, except f1 and f5. DMS-PSO
found the global optimum for f1 and f5, but its performance
is exceptionally poor in comparison with CCPSO2 on the
other five functions. CCPSO2 adopts a CC framework to
decompose a high-dimensional problem, whereas DMS-PSO
relies on the use of a large number of small sub-swarms (each
has only three particles) to maintain its population diversity.
DMS-PSO does not employ any dimensionality decomposition
strategy. As a result, DMS-PSO uses much larger population
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TABLE IV

Results of CCPSO2 and sep-CMA-ES on f1 , f3 , and f7 of 2000

Dimensions

2000-D CCPSO2 sep-CMA-ES p-value
f1 1.03E-12 (2.56E-13) 6.03E-15 (6.14E-16) 0.000
f3 2.91E+03 (6.43E+02) 1.73E+03 (7.77E+01) 0.000
f7 -2.86E+04 (1.90E+02) -2.46E+04 (1.57E+02) 0.000

A two-tailed t-test was conducted between CCPSO2 and MLCC.

sizes to handle high-dimensional problems. For example, for
100, 500, and 1000-D functions, the population sizes were 90,
450, and 900, respectively. In contrast, CCPSO2 uses just a
small population size of 30 for all dimensions. This suggests
that DMS-PSO may only work well in some unimodal fitness
landscapes, but has a very poor ability in handling complex
multimodal fitness landscapes.

Comparing with MLCC, CCPSO2 is better on f1, f2, and
f3, but statistically not different on f5 and f6. MLCC is better
on f4 and f7. MLCC uses a self-adaptive neighborhood search
DE (SaNSDE) [12] as its core algorithm to coevolve its CC
subcomponents. SaNSDE is able to maintain a better diversity
of search step sizes and the population, thereby contributing
to its better performance on the multimodal problems.

E. Comparisons on Functions of 2000 Dimensions

From the previous Section VI-C (Table II, Figs. 5 and
6), we noticed that on f2, f4, and f6 of 100, 500, and
1000 dimensions, sep-CMA-ES always prematurely converged
not long after the run started. sep-CMA-ES was actually
outperformed substantially by CCPSO2 on these functions. It
is reasonable to expect that sep-CMA-ES be outperformed by
CCPSO2 on these functions of even higher dimensions such
as 2000-D.

Table IV shows the results of CCPSO2 and sep-CMA-
ES on the three other CEC’08 test functions: f1, f3, and
f7 of 2000 dimensions. These results were averaged over
25 runs, with each run consuming 1.0E+07 FES. To our
knowledge, this paper is the first reporting results on these
functions of 2000 dimensions. Overall, we can see that both
CCPSO2 and sep-CMA-ES continued to scale well on f1 and
f3 of 2000 dimensions. sep-CMA-ES performed better than
CCPSO2 on f1 (which is a separable function) and f3, but was
outperformed by CCPSO2 on the more complex multimodal
f7. Considering the tendency of sep-CMA-ES converging
prematurely on multimodal functions f2, f4, and f6, once
again CCPSO2 shows its better search capability in handling
complex high-dimensional multimodal functions.

VII. Conclusion

In this paper, we presented a new CC PSO, CCPSO2, for
tackling large scale optimization problems. We demonstrated
that the CC framework adopted is a powerful approach to
improving PSO’s ability in scaling up to high-dimensional
optimization problems (of up to 2000 real-valued variables).
Several new techniques have been incorporated into CCPSO2
to enhance its ability to handle high-dimensional problems:
a novel PSO model (CGPSO) was developed to sample
a particle’s next point following a combination of Cauchy

and Gaussian distributions; this CGPSO adopts an lbest ring
topology for defining its local neighborhood. The algorithm
employed the random grouping scheme with a dynamically
changing group size. CGPSO showed improved search ca-
pability compared with existing PSO models. The effects of
using a dynamically changing group size has shown that on
most high-dimensional functions, a combination of small and
reasonably large group sizes are advantageous.

Furthermore, CCPSO2 was compared with a state-of-the-art
evolutionary algorithm sep-CMA-ES. Our results showed that
with only a small population size, CCPSO2 was very compet-
itive on high-dimensional functions having a more complex
multimodal fitness landscape such as f7 (FastFractal), though
sep-CMA-ES performed slightly better on unimodal functions.
Our findings also reveal that the performance of sep-CMA-ES
could degrade rapidly on a multimodal fitness landscape, even
if a very large population size was chosen. Further comparative
studies on 1000-D functions suggest that CCPSO2’s perfor-
mance is comparable to a CC DE algorithm [19], and much
better than two other PSO algorithms which were specifically
designed for large scale optimization.

We also challenged CCPSO2 with functions of 2000 di-
mensions, and the results show that CCPSO2 continued to
outperform sep-CMA-ES on the more complex multimodal
function f7 (FastFractal), while performing reasonably well
on the unimodal functions.

In future, we are planning to examine more “intelligent”
grouping strategies to better capture the interdependency
among variables [41], rather than just random grouping. We
are also interested in applying CCPSO2 to real-world problems
such as shape optimization [42] to ascertain its true potential as
a valuable optimization technique for large-scale optimization.
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