Evolutionary Large-Scale Global Optimization
An Introduction: Part I

Mohammad Nabi Omidvar1 Xiaodong Li2 Daniel Molina3 Antonio LaTorre4

1School of Computer Science, University of Birmingham, UK
2School of Science, RMIT University, Australia,
3DASCI Andalusian Institute of Data Science, University of Granada, Spain,
4Universidad Politécnica de Madrid, Spain,
Outline

1. Introduction: Large Scale Global Optimization
2. Approaches to Large-Scale Optimization
3. Variable Interaction: Definitions and Importance
4. Interaction Learning: Exploiting Modularity
5. Conclusion
6. Questions
Optimization

\[
\begin{align*}
\min \ f(x), \ x &= (x_1, \ldots, x_n) \in \mathbb{R}^n \\
\text{s.t.:} \ g(x) &\leq 0 \\
h(x) &= 0
\end{align*}
\]

Can be converted to unconstrained optimization using:
- Penalty method;
- Lagrangian;
- Augmented Lagrangian.

Our focus is unconstrained optimization. We must learn how to walk before we can run.
Large Scale Global Optimization (LSGO)

How large is large?

- The notion of large-scale is not fixed.
- Changes over time.
- Differs from problem to problem.
- The dimension at which existing methods start to fail.

State-of-the-art (EC)

- Binary: \(\approx 1\) billion \([a]\).
- Integer (linear): \(\approx 1\) billion \([b],[c]\).
- Real: \(\approx 1000\)–\(5000\).

Large Scale Global Optimization: Applications

Why large-scale optimization is important?

- Growing applications in various fields.
 - Target shape design optimization [a].
 - Satellite layout design [b].
 - Parameter estimation in large scale biological systems [c].
 - Seismic waveform inversion [d].
 - Parameter calibration of water distribution systems [e].
 - Vehicle routing [f].

Large Scale Global Optimization: Research

![Scopus Graph]

Copyright © 2017 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.
Large Scale Global Optimization: Research

Scopus

Copyright © 2017 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.
The Challenge of Large Scale Optimization

Why is it difficult?

- Exponential growth in the size of search space (**curse of dimensionality**).

Research Goal

- Improving search quality (get to the optimal point).
- Improving search efficiency (get there fast).
Initialization
Sampling and Variation Operators
Approximation and Surrogate Modeling
Local Search and Memetic Algorithms
Decomposition and Divide-and-Conquer
Parallelization (GPU, CPU)
Hybridization
Initialization Methods

- Study the importance of initialization methods [1] in large-scale optimization.

Initialization Methods

- Inconclusive evidence for or against initialization methods:
 - Uniform design works worse than RNG, while good-lattice point and opposition-based methods perform better [1].
 - Another study showed that population size has a more significant effect than the initialization [2].
 - Achieving uniformity is difficult in high-dimensional spaces [3].
 - Yet another study suggest comparing average performances may not reveal the effect of initialization [4].

- Shortcomings:
 - It is difficult to isolate the effect of initialization.
 - Different effect on different algorithms (mostly tested on DE).
 - Numerous parameters to study.

Sampling and Variation Operators

- Opposition-based sampling [1]
- Center-based sampling [2].
- Quantum-behaved particle swarm [3].
- Competitive Swarm Optimizer [4].
- Social learning PSO [5].
- Mutation operators [6], [7].

Approximation Methods and Surrogate Modeling

- High-Dimensional Model Representation (HDMR) [1].
- Radial Basis Functions [2].
- Kriging and Gradient-Enhanced Kriging Metamodels [3].
- Piecewise Polynomial (Spline) [4].
- Turning large-scale problems into expensive optimization problems [5].

Local Search and Memetic Algorithms

- Multiple Trajectory Search (MTS) [1].
- Memetic algorithm with local search chaining [2].
 - MA-SW-Chains [3].
 - MA-SSW-Chains [4].
- Multiple offspring sampling (MOS) [5], [6].

Parallelization

- Algorithms capable of parallelization [1], [2].
- GPU [3], [4].
- CPU/OpenMP [5].

Hybridization (The best of both worlds)

- **Rationale:** benefiting from unique features of different optimizers.
 - EDA+DE: [1].
 - PSO+ABC: [2].
 - Different DE variants: JADE+SaNSDE [3].
 - PSO+ACO [4].
 - Minimum Population Search+CMA-ES [5].

Decomposition Methods

- Divide-and-conquer
Variable Interaction, Linkage, Epistasis

What is variable interaction?

- Genetics: two genes are said to interact with each other if they collectively represent a feature at the phenotype level.
- The extent to which the fitness of one gene can be suppressed by another gene.
- The extent to which the value taken by one gene activates or deactivates the effect of another gene.

Why variable interaction?

- The effectiveness of optimization algorithms is affected by how much they take variable interaction into account.
- Also applies to classic mathematical programming methods.
Variable Interaction, Linkage, Epistasis

Illustrative Example

- $f(x, y) = x^2 + \lambda_1 y^2$
- $g(x, y) = x^2 + \lambda_1 y^2 + \lambda_2 xy$
Definitions

Variable Interaction

A variable x_i is separable or does not interact with any other variable iff:

$$\arg \min_{x} f(x) = \left(\arg \min_{x_i} f(x), \arg \min_{\forall x_j, j \neq i} f(x) \right),$$

where $x = (x_1, \ldots, x_n)^\top$ is a decision vector of n dimensions.

Partial Separability

A function $f(x)$ is partially separable with m independent subcomponents iff:

$$\arg \min_{x} f(x) = \left(\arg \min_{x_1} f(x_1, \ldots), \ldots, \arg \min_{x_m} f(\ldots, x_m) \right),$$

x_1, \ldots, x_m are disjoint sub-vectors of x, and $2 \leq m \leq n$.

Note: a function is fully separable if sub-vectors x_1, \ldots, x_m are 1-dimensional (i.e., $m = n$).
Definitions

Full Nonseparability

A function $f(x)$ is fully non-separable if every pair of its decision variables interact with each other.

Additive Separability

A function is *partially additively separable* if it has the following general form:

$$f(x) = \sum_{i=1}^{m} f_i(x_i),$$

where x_i are mutually exclusive decision vectors of f_i, $x = (x_1, \ldots, x_n)^\top$ is a global decision vector of n dimensions, and m is the number of independent subcomponents.
Effect of Variable Interaction (1)

Sampling and Variation Operators:

- GAs: inversion operator to promote tight linkage [1].
 - Increasing the likelihood of placing linked genes close to each other to avoid disruption by crossover.
 - Rotation of the landscape has a detrimental effect on GA [2].

- The need for rotational invariance:
 - Model Building Methods:
 - Estimation of Distribution Algorithms and Evolutionary Strategies: Covariance Matrix Adaptation.
 - Bayesian Optimization: Bayesian Networks.
 - DE’s crossover is not rotationally invariant.
 - PSO is also affected by rotation [3].

Effect of Variable Interaction (2)

1. Approximation and Surrogate Modelling:
 - Should be able to capture variable interaction.
 - Second order terms of HDMR.

2. Local Search and Memetic Algorithms:
 - What subset of variables should be optimized in each iteration of local search?
 - Coordinate-wise search may not be effective. Memetics perform well on separable functions! A coincidence?!

3. Decomposition and Divide-and-Conquer:
 - Interacting variables should be placed in the same component.
Linkage Learning and Exploiting Modularity

- Implicit Methods:
 - In EC:
 - Estimation of Distribution Algorithms
 - Bayesian Optimization: BOA, hBOA, Linkage Trees
 - Adaptive Encoding, CMA-ES
 - Classic Optimization:
 - Adaptive Coordinate Descent

- Explicit Methods:
 - In EC:
 - Random Grouping
 - Statistical Correlation-Based Methods
 - Delta Grouping
 - Meta Modelling
 - Monotonicity Checking
 - Differential Grouping
 - Classic Optimization
 - Block Coordinate Descent
Implicit Methods

Scaling Up EDAs:

- Model Complexity Control [1].
- Random Matrix Projection [2].
- Use of mutual information [3].
- Cauchy-EDA [4].

Implicit Methods

- **Scaling up CMA-ES:**
 - CC-CMA-ES [1].
 - sep-CMA-ES [2]
 - Reducing space complexity:
 - L-CMA-ES [3].
 - LM-CMA [4].

Scalability issues of EDAs

- Accurate estimation requires a large sample size which grows exponentially with the dimensionality of the problem [1].
- A small sample results in poor estimation of the eigenvalues [2].
- The cost of sampling from a multi-dimensional Gaussian distribution increases cubically with the problem size [3].

Random Projection EDA [1]

Explicit Methods

- A large problem can be subdivided into smaller and simpler problems.
- Dates back to René Descartes (*Discourse on Method*).
- Has been widely used in many areas:
 - Computer Science: Sorting algorithms (quick sort, merge sort)
 - Optimization: Large-scale linear programs (Dantzig)
 - Politics: Divide and rule (In *Perpetual Peace* by Immanuel Kant: *Divide et impera* is the third political maxims.)

Acknowledgement: the above image is obtained from: http://draininbrain.blogspot.com.au/
Decomposition in EAs: Cooperative Co-evolution [1]

CC is a Framework

CC as a scalability agent:

- CC is not an optimizer.
- Requires a component optimizer.
- CC coordinates how the component optimizer is applied to components.
- A scalability agent.
Challenges of CC

Main Questions

1. How to decompose the problem?
2. How to allocate resources?
3. How to coordinate?
The Decomposition Challenge

How to decompose?
- There are many possibilities.
- Which decomposition is the best?

Optimal decomposition
- It is governed by the interaction structure of decision variables.
- An optimal decomposition is the one that minimizes the interaction between components.
Survey of Decomposition Methods

- Uninformed Decomposition [1]
 - \(n \) 1-dimensional components (the original CC)
 - \(k \) \(s \)-dimensional components.

- Random Grouping [2]

- Statistical Correlation-Based Methods

- Delta Grouping [3]

- Meta Modelling [4]

- Monotonicity Checking [5]

- Differential Grouping [6]

Illustrative Example (Canonical CC)

Figure: Variable interaction of a hypothetical function.

n 1-dimensional components:

- $C_1: \{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}$
- $C_2: \{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}$
- ...
- $C_c: \{x_1\}, \{x_2\}, \{x_3\}, \{x_4\}, \{x_5\}, \{x_6\}, \{x_7\}$
Illustrative Example (fixed k s-dimensional)

k s-dimensional ($k = 2$, $s = 4$):
- C_1: $\{x_1, x_2, x_3, x_4\}$, $\{x_5, x_6, x_7\}$
- C_2: $\{x_1, x_2, x_3, x_4\}$, $\{x_5, x_6, x_7\}$
- ...
- C_c: $\{x_1, x_2, x_3, x_4\}$, $\{x_5, x_6, x_7\}$

Figure: Variable interaction of a hypothetical function.
Illustrative Example (Random Grouping)

Random Grouping ($k = 2, s = 4$):
- C_1: $\{x_2, x_3, x_6, x_5\}, \{x_7, x_1, x_4\}$
- C_2: $\{x_3, x_4, x_1, x_2\}, \{x_6, x_7, x_5\}$
- ...
- C_c: $\{x_1, x_5, x_6, x_7\}, \{x_2, x_4, x_3\}$

Figure: Variable interaction of a hypothetical function.
Random Grouping

Theorem

Given N cycles, the probability of assigning v interacting variables x_1, x_2, \ldots, x_v into one subcomponent for at least k cycles is:

$$P(X \geq k) = \sum_{r=k}^{N} \binom{N}{r} \left(\frac{1}{m^{v-1}} \right)^r \left(1 - \frac{1}{m^{v-1}} \right)^{N-r}$$

where N is the number of cycles, v is the total number of interacting variables, m is the number of subcomponents, and the random variable X is the number of times that v interacting variables are grouped in one subcomponent.
Random Grouping

Example

Given $n = 1000$, $m = 10$, $N = 50$ and $v = 4$, we have:

$$P(X \geq 1) = 1 - P(X = 0) = 1 - \left(1 - \frac{1}{10^3}\right)^{50} = 0.0488$$

which means that over 50 cycles, the probability of assigning 4 interacting variables into one subcomponent for at least 1 cycle is only 0.0488. As we can see this probability is very small, and it will be even less if there are more interacting variables.
Figure: Increasing ν, the number of interacting variables will significantly decrease the probability of grouping them in one subcomponent, given $n = 1000$ and $m = 10$.
Figure: Increasing N, the number of cycle increases the probability of grouping v number of interacting variables in one subcomponent.
Illustrative Example (Informed with Fixed Groups)

Figure: Variable interaction of a hypothetical function.

• Delta Grouping \((k = 2, s = 4)\):
 - \(C_1\): \(
 \{x_1, x_5, x_2, x_4\}, \{x_3, x_6, x_7\}\)
 - \(C_2\): \(
 \{x_3, x_5, x_6, x_7\}, \{x_1, x_2, x_4\}\)
 - ...
 - \(C_c\): \(
 \{x_3, x_6, x_1, x_4\}, \{x_2, x_5, x_7\}\)
Delta Grouping
Informed Decompositions with Fixed Groups

- Adaptive Variable Partitioning [1].
- Delta Grouping [2].
- Min/Max-Variance Decomposition (MiVD/MaVD) [3].
 ▶ Sorts the dimensions based on the diagonal elements of the covariance matrix in CMA-ES.
- Fitness Difference Partitioning [4], [5], [6].

Informed Decompositions with Variable Groups

- Multilevel Grouping: MLCC [1], MLSoft [2].
- Adaptive Variable Partitioning 2 [3].
- 4CDE [4].
- Fuzzy Clustering [5].

Illustrative Example (Exact Methods)

Figure: Variable interaction of a hypothetical function.

Differential Grouping and Variable Interaction Learning:

- C_1: $\{x_1, x_2, x_4\}, \{x_3, x_5, x_6, x_7\}$
- C_2: $\{x_1, x_2, x_4\}, \{x_3, x_5, x_6, x_7\}$
- ...
- C_c: $\{x_1, x_2, x_4\}, \{x_3, x_5, x_6, x_7\}$
Monotonicity Check

\[\exists \mathbf{x}, x'_i, x'_j : f(x_1, \ldots, x_i, \ldots, x_j, \ldots, x_n) < f(x_1, \ldots, x'_i, \ldots, x_j, \ldots, x_n) \land \\
\quad f(x_1, \ldots, x_i, \ldots, x'_j, \ldots, x_n) > f(x_1, \ldots, x'_i, \ldots, x'_j, \ldots, x_n) \]
Monotonicity Check (Algorithms)

- Linkage Identification by Non-Monotonicity Detection [1]
- Adaptive Coevolutionary Learning [2]
- Variable Interaction Learning [3]
- Variable Interdependence Learning [4]
- Fast Variable Interdependence [5]

Differential Grouping [1]

Theorem

Let \(f(x) \) be an additively separable function. \(\forall \, a, b_1 \neq b_2, \delta \in \mathbb{R}, \delta \neq 0 \), if the following condition holds

\[
\Delta_{\delta, x_p}[f](x)|_{x_p=a, x_q=b_1} \neq \Delta_{\delta, x_p}[f](x)|_{x_p=a, x_q=b_2}, \tag{5}
\]

then \(x_p \) and \(x_q \) are non-separable, where

\[
\Delta_{\delta, x_p}[f](x) = f(\ldots, x_p + \delta, \ldots) - f(\ldots, x_p, \ldots), \tag{6}
\]

refers to the forward difference of \(f \) with respect to variable \(x_p \) with interval \(\delta \).

Figure: $f(x_1, x_2) = x_1^2 + x_2^2$
Figure: $f(x_1, x_2) = x_1^2 + x_2^2$
\[\Delta_1 = f(p_1) - f(p_2) \]

Figure: \[f(x_1, x_2) = x_1^2 + x_2^2 \]
\[\Delta_1 = f(p_1) - f(p_2) \]

\[p_1 = (x_1, x_2') \]

\[p_2 = (x_1', x_2) \]

\[f(x_1, x_2) = x_1^2 + x_2^2 \]

Figure: \(f(x_1, x_2) = x_1^2 + x_2^2 \)
\[\Delta_1 = f(p_1) - f(p_2) \]

Figure: \(f(x_1, x_2) = x_1^2 + x_2^2 \)
\[\Delta_2 = f(p_1) - f(p_2) \]

\[\Delta_1 = f(p_1) - f(p_2) \]

\[p_1 = (x_1, x'_2) \]

\[p_2 = (x'_1, x_2) \]

*Figure: \(f(x_1, x_2) = x_1^2 + x_2^2 \)
\[\Lambda_{k,12} = |\Delta_1 - \Delta_2| > 0 \]

\[\Delta_1 = f(p_1) - f(p_2) \]

\[\Delta_2 = f(p_1) - f(p_2) \]

\[\Rightarrow x_1 \text{ and } x_2 \text{ are nonseparable} \]

Figure: \(f(x_1, x_2) = x_1^2 + x_2^2 \)
Separability ⇒ \(\Delta_1 = \Delta_2 \)

Assuming:

\[
f(x) = \sum_{i=1}^{m} f_i(x_i)
\]

We prove that:

Separability ⇒ \(\Delta_1 = \Delta_2 \)

By contraposition (\(P \Rightarrow Q \equiv \neg Q \Rightarrow \neg P \)):

\(\Delta_1 \neq \Delta_2 \Rightarrow \) non-separability

or

\(|\Delta_1 - \Delta_2| > \epsilon \Rightarrow \) non-separability
The Differential Grouping Algorithm

Detecting Non-separable Variables

\[|\Delta_1 - \Delta_2| > \epsilon \Rightarrow \text{non-separability} \]

Detecting Separable Variables

\[|\Delta_1 - \Delta_2| \leq \epsilon \Rightarrow \text{Separability (more plausible)} \]
Example

Consider the non-separable objective function \(f(x_1, x_2) = x_1^2 + \lambda x_1 x_2 + x_2^2 \), \(\lambda \neq 0 \).

\[
\frac{\partial f(x_1, x_2)}{\partial x_1} = 2x_1 + \lambda x_2.
\]

This clearly shows that the change in the global objective function with respect to \(x_1 \) is a function of \(x_1 \) and \(x_2 \). By applying the Theorem:

\[
\Delta_{\delta, x_1}[f] = [(x_1 + \delta)^2 + \lambda(x_1 + \delta)x_2 + x_2^2] - [x_1^2 + \lambda x_1 x_2 + x_2^2]
= \delta^2 + 2\delta x_1 + \lambda x_2 \delta.
\]
Differential Grouping vs CCVIL

Figure: Detection of interacting variables using differential grouping and CCVIL on different regions of a 2D Schwefel Problem 1.2.
Differential Grouping Family of Algorithms

- Linkage Identification by Non-linearity Check (LINC, LINC-R) [1]
- Differential Grouping (DG) [2]
- Global Differential Grouping (GDG) [3]
- Improved Differential Grouping (IDG) [4]
- eXtended Differential Grouping (XDG) [5]
- Graph-based Differential Grouping (gDG) [6]
- Fast Interaction Identification [7]
- Recursive Differential Grouping (RDG1 and RDG2) [8]

Shortcomings of Differential Grouping

- Cannot detect the overlapping functions.
- Slow if all interactions are to be checked.
- Requires a threshold parameter (ϵ).
- Can be sensitive to the choice of the threshold parameter (ϵ).
Direct/Indirect Interactions

Indirect Interactions

In an objective function \(f(x) \), decision variables \(x_i \) and \(x_j \) interact directly (denoted by \(x_i \leftrightarrow x_j \)) if

\[
\exists a : \left. \frac{\partial f}{\partial x_i \partial x_j} \right|_{x=a} \neq 0,
\]

decision variables \(x_i \) and \(x_j \) interact indirectly if

\[
\frac{\partial f}{\partial x_i \partial x_j} = 0,
\]

and there exists a set of decision variables \(\{x_{k1}, ..., x_{ks}\} \) such that \(x_i \leftrightarrow x_{l1}, ..., x_{ks} \leftrightarrow x_j \).
Efficiency vs Accuracy

Saving budget at the expense of missing overlaps:
- eXtended Differential Grouping [1].
- Fast Interdependence Identification [2].

Figure: The interaction structures represented by the two graphs cannot be distinguished by XDG.

Differential Grouping 2: Improving Accuracy [1]

DG2 Estimates the computational round-off errors as the threshold value:

\[e_{\text{inf}} := \gamma_2 \max \{ f(x) + f(y'), f(y) + f(x') \} \]
\[e_{\text{sup}} = \gamma \sqrt{n} \max \{ f(x), f(x'), f(y), f(y') \} \]

- \(\lambda < e_{\text{inf}} \rightarrow \text{separable} \);
- \(\lambda > e_{\text{sup}} \rightarrow \text{non-separable} \).

Otherwise

\[\epsilon = \frac{\eta_0}{\eta_0 + \eta_1} e_{\text{inf}} + \frac{\eta_1}{\eta_0 + \eta_1} e_{\text{sup}}, \]

- \(\lambda < \epsilon \rightarrow \text{separable} \);
- \(\lambda \geq \epsilon \rightarrow \text{non-separable} \).

DG2 Error Analysis

\[\lambda = |\Delta_1 - \Delta_2| \]

Genuine zeros

\[e_{\inf} \]

\[\epsilon \]

\[\epsilon \]

\[\epsilon \]

\[e_{\sup} \]

Genuine non-zeros
Differential Grouping 2: Improving Efficiency

Figure: Geometric representation of point generation in DG2 for a 3D function.

\[x_1 \leftrightarrow x_2: \Delta^{(1)} = f(a', b, c) - f(a, b, c), \Delta^{(2)} = f(a', b', c) - f(a, b', c) \]

\[x_1 \leftrightarrow x_3: \Delta^{(1)} = f(a', b, c) - f(a, b, c), \Delta^{(2)} = f(a', b, c') - f(a, b, c') \]

\[x_2 \leftrightarrow x_3: \Delta^{(1)} = f(a, b', c) - f(a, b, c), \Delta^{(2)} = f(a, b', c') - f(a, b, c') \]

\[\lambda = |\Delta^{(1)} - \Delta^{(2)}| \]
Minimum Evaluations

The minimum number of unique function evaluations in order to detect the interactions between all pairs of variables is

\[h(n) \geq \frac{n(n + 1)}{2} + 1. \]

Improving efficiency beyond the given lower bound is impossible unless:

- Sacrifice on the accuracy (partial variable interaction matrix);
- and/or
- Extending the DG theorem.
Fast Interaction Identification (FII) [1]
- identifying separable variables by checking the interaction between a single variable with remaining variables.
- examining pairwise interaction for non-separable variables.

Recursive Differential Grouping (RDG) [2] (\(O(n \log(n))\))
- examining interaction between two variable subsets.
- using a recursive procedure to group variables.

Variants of RDG

1. RDG2 [1]: Combining the efficiency of RDG and accuracy of DG2.

2. RDG3 [2]: extending RDG2 for decomposing overlapping problems.

Benchmark Suites

- CEC’2005 Benchmark Suite (non-modular)
- CEC’2008 LSGO Benchmark Suite (non-modular)
- CEC’2010 LSGO Benchmark Suite
- CEC’2013 LSGO Benchmark Suite
Challenges of CC

Main Questions

1. How to decompose the problem?
2. How to allocate resources?
3. How to coordinate?
The Imbalance Problem

- Non-uniform contribution of components.

Imbalanced Functions

\[
f(x) = \sum_{i=1}^{m} w_i f_i(x_i),
\]

\[
w_i = 10^{s \mathcal{N}(0,1)},
\]
The Imbalance Problem (2)
Contribution-Based Cooperative Co-evolution (CBCC)

Types of CC
- CC: round-robin optimization of components.
- CBCC: favors components with a higher contribution.
 - Quantifies the contribution of components.
 - Optimizes the one with the highest contribution.

How to Quantify the Contribution
- For quantification of contributions a relatively accurate decomposition is needed.
- Changes in the objective value while other components are kept constant.
(c) Round-Robin CC

(d) Contribution-Based CC
Contribution-Aware Algorithms

- Contribution-Based Cooperative Co-evolution (CBCC) [1], [2].
- Bandit-based Cooperative Coevolution (BBCC) [3].
- Incremental Cooperative Coevolution [4]
- Multilevel Framework for LSGO [5]

Some Auxiliary Topics

- Variable Interaction and Constraint Handling [1], [2], [3]
- Large-Scale Multiobjective Optimization
- Available Benchmark Suites

Variable Interaction and Constraint Handling [1]

\[
\begin{align*}
\min f(x) & = x_1^2 x_2 + 4x_5 \\
s.t \ g_1(x) & = \frac{x_3}{x_2} + \sqrt{x_5} - x_6 \leq 0 \\
g_2(x) & = x_1 - x_2 e^{-x_6} \leq 0
\end{align*}
\]

\[
\Theta_0 = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}, \quad \Theta_1 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}, \quad \Theta_2 = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix},
\]

\[
\Theta_{\text{glob}} = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
\end{pmatrix}.
\]

Large-Scale Multiobjective Optimization

Large-scale multiobjective optimization is growing popularity:

- **Benchmark development and analysis:**
 - Development of a benchmark [1].
 - Analysis of the existing benchmarks [2].

- **Algorithm development:**
 - Exploiting modularity using CC [3], [4], [5], [6].
 - Problem transformation [7].

Analysis of ZDT

\[
\begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0
\end{pmatrix}
\]

\(x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6\)

Figure: Variable interaction structures of the \(f_2\) function of ZDT test suite [1].

Analysis of DTLZ1-DTLZ4

Figure: Variable interaction graphs of DTLZ1 to DTLZ4.

Proposition 1

For DTLZ1 to DTLZ4, \(\forall f_i, i \in \{1, \cdots, m\} \), we divide the corresponding decision variables into two non-overlapping sets: \(x_I = (x_1, \cdots, x_\ell)^T, \ell = m - 1 \) for \(i \in \{1, 2\} \) while \(\ell = m - i + 1 \) for \(i \in \{3, \cdots, m\} \); and \(x_{II} = (x_m, \cdots, x_n)^T \). All members of \(x_I \) not only interact with each other, but also interact with those of \(x_{II} \); all members of \(x_{II} \) are independent from each other.
Analysis of DTLZ5-DTLZ7

Figure: Variable interaction graphs of DTLZ5 and DTLZ6.

Proposition 2

For DTLZ5 and DTLZ6, \(\forall f_i, i \in \{1, \cdots, m\} \), we divide the corresponding decision variables into two non-overlapping sets: \(x_I = (x_1, \cdots, x_\ell)^T, \ell = m - 1 \) for \(i \in \{1, 2\} \) while \(\ell = m - i + 1 \) for \(i \in \{3, \cdots, m\} \); and \(x_{II} = (x_m, \cdots, x_n)^T \). For \(f_i \), where \(i \in \{1, \cdots, m - 1\} \), all members of \(x_I \) and \(x_{II} \) interact with each other; for \(f_m \), we have the same interaction structure as DTLZ1-DTLZ4.

Proposition 3

All objective functions of DTLZ7 are fully separable.
Decomposition Based Large-Scale EMO

Figure: Image taken from [1]

Weighted Optimization Framework (WOF) [1], [2]

Figure: Weighted Optimization Framework

Some Future Directions (I)

- What if the components have overlap?
- Differential group is time-consuming. Is there a more efficient method?
- Do we need to get 100% accurate grouping? What is the relationship between grouping accuracy and optimality achieved by a CC algorithm?
CC for combinatorial optimization, e.g.,

However, every combinatorial optimization problem has its own characteristics. We need to investigate CC for other combinatorial optimization problems.
Learning variable interdependencies is a strength of estimation of distribution algorithms (EDAs), e.g.,

Interestingly, few work exists on scaling up EDAs.
LSGO Resources

- There is an IEEE Computational Intelligence Society (CIS) Task Force on LSGO:
- LSGO Repository: http://www.cercia.ac.uk/projects/lsgo
Acknowledgement

Thanks to

- Dr. Yuan Sun from RMIT University, for assistance in revising the slides;
- Dr. Ata Kaban and Dr. Momodou L. Sanyang for allowing us to use some figures from their publications.
Questions

Thanks for your attention!

$q_0 \quad q_0 \quad q \quad q \quad ?$