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Optimization

min f(x), x = (x1,...,%,) € R" (1)
s.t.: g(x) <0 (2)
h(x) =0 (3)

Can be converted to unconstrained optimization using:
@ Penalty method,;
@ Lagrangian;
@ Augmented Lagrangian.

Our focus is unconstrained optimization. We must learn how to walk
before we can run.
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Large Scale Global Optimization (LSGO)

How large is large?
@ The notion of large-scale is not fixed.
@ Changes over time.
o Differs from problem to problem.

@ The dimension at which existing methods start to fail.

4
State-of-the-art (EC)
@ Binary: ~ 1 billion [a].
o Integer (linear): ~ 1 billion [b], [¢].
@ Real: ~ 1000-5000.
[a] Kumara Sastry, David E Goldberg, and Xavier Llora. “Towards billion-bit optimization via a parallel estimation
of distribution algorithm”. In: Genetic and Evolutionary Computation Conference. ACM. 2007, pp. 577-584.
[b] Kalyanmoy Deb and Christie Myburgh. “Breaking the Billion-Variable Barrier in Real-World Optimization
Using a Customized Evolutionary Algorithm”. In: Genetic and Evolutionary Computation Conference. ACM. 2016,
pp. 653-660.
[c] Kalyanmoy Deb and Christie Myburgh. “A population-based fast algorithm for a billion-dimensional resource
allocation problem with integer variables”. In: European Journal of Operational Research 261.2 (2017),
pp. 460-474.
4
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Large Scale Global Optimization: Applications

Why large-scale optimization is important?
@ Growing applications in various fields.
Target shape design optimization [a].
Satellite layout design [b].
Parameter estimation in large scale biological systems [c].
Seismic waveform inversion [d].

Parameter calibration of water distribution systems [€].
Vehicle routing [f].

[a] Zhenyu Yang et al. “Target shape design optimization by evolving B-splines with cooperative coevolution”. In:
Applied Soft Computing 48 (Nov. 2016), pp. 672-682.

[b] Hong-Fei Teng et al. “A dual-system variable-grain cooperative coevolutionary algorithm: satellite-module
layout design”. In: IEEE transactions on evolutionary computation 14.3 (Dec. 2010), pp. 438-455.

[c] Shuhei Kimura et al. “Inference of S-system models of genetic networks using a cooperative coevolutionary
algorithm”. In: Bioinformatics 21.7 (Apr. 2005), pp. 1154-1163.

[d] Chao Wang and Jinghuai Gao. “High-dimensional waveform inversion with cooperative coevolutionary
differential evolution algorithm”. In: IEEE Geoscience and Remote Sensing Letters 9.2 (Mar. 2012), pp. 297-301.

[e] Yu Wang et al. “Two-stage based ensemble optimization framework for large-scale global optimization”. In:
European Journal of Operational Research 228.2 (2013), pp. 308-320.

[f] Yi Mei, Xiaodong Li, and Xin Yao. “Cooperative coevolution with route distance grouping for large-scale
capacitated arc routing problems”. In: |[EEE Transactions on Evolutionary Computation 18.3 (2014), pp. 435-449.
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Large Scale Global Optimization: Research
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Large Scale Global Optimization: Research
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The Challenge of Large Scale Optimization

Why is it difficult?

@ Exponential growth in the size of search space (curse of
dimensionality).

Research Goal
@ Improving search quality (get to the optimal point).

@ Improving search efficiency (get there fast).

Mohammad Nabi Omidvar, Xiaodong Li, Dan Decomposition and CC for LSGO 8/91



Large Scale Global Optimization: Evolutionary Approaches

O Initialization

© Sampling and Variation Operators

© Approximation and Surrogate Modeling
© Local Search and Memetic Algorithms

© Decomposition and Divide-and-Conquer
O Parallelization (GPU, CPU)
@ Hybridization
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Initialization Methods

@ Study the importance of initialization methods [1] in large-scale
optimization.

; it : . : Application
[ Stochastic ] [Determlnlstlc] [Non-Composlte] [ Composite ] [ Generic ] [ Specific ]
Random
Low .
Number : Hybrid
Generator ] Diserepancy ] -
] Multi-step

Uniform
Chaotic Experimental
Design

[1] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “A review of population initialization techniques for evolutionary
algorithms”. In: Evolutionary Computation (CEC), 2014 IEEE Congress on. |EEE. 2014, pp. 2585-2592.
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Initialization Methods

@ Inconclusive evidence for or against initialization methods:

» Uniform design works worse than RNG, while good-lattice point and
opposition-based methods perform better [1].

» Another study showed that population size has a more significant effect
than the initialization [2].
Achieving uniformity is difficult in high-dimensional spaces [3].

» Yet another study suggest comparing average performances may not
reveal the effect of initialization [4].

@ Shortcomings:
» It is difficult to isolate the effect of initialization.
» Different effect on different algorithms (mostly tested on DE).
» Numerous parameters to study.

[1] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “Initialization methods for large scale global optimization”. In: |EEE
Congress on Evolutionary Computation. |EEE. 2013, pp. 2750-2757.
[2] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “Effects of population initialization on differential evolution for large
scale optimization”. In: |[EEE Congress on Evolutionary Computation. |EEE. 2014, pp. 2404-2411.
[3] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “Why advanced population initialization techniques perform poorly in
high dimension?" In: SEAL. 2014, pp. 479-490.
[4] Eduardo Segredo et al. “On the comparison of initialisation strategies in differential evolution for large scale optimisation”.
In: Optimization Letters (2017), pp. 1-14.
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Sampling and Variation Operators

Opposition-based sampling [1]
Center-based sampling [2].

Competitive Swarm Optimizer [4].
Social learning PSO [5].

°
°
@ Quantum-behaved particle swarm [3].
°
°
@ Mutation operators [6], [7].

[1] Hui Wang, Zhijian Wu, and Shahryar Rahnamayan. “Enhanced opposition-based differential evolution for solving
high-dimensional continuous optimization problems”. In: Soft Computing 15.11 (2011), pp. 2127-2140.

[2] Sedigheh Mahdavi, Shahryar Rahnamayan, and Kalyanmoy Deb. “Center-based initialization of cooperative co-evolutionary
algorithm for large-scale optimization”. In: |EEE Congress on Evolutionary Computation. |EEE. 2016, pp. 3557-3565.

[3] Deyu Tang et al. “A quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous
non-linear large scale problems”. In: Information Sciences 289 (2014), pp. 162-189.

[4] Ran Cheng and Yaochu Jin. “A competitive swarm optimizer for large scale optimization”. In: |EEE Transactions on
Cybernetics 45.2 (2015), pp. 191-204.

[5] Ran Cheng and Yaochu Jin. “A social learning particle swarm optimization algorithm for scalable optimization”. In:
Information Sciences 291 (2015), pp. 43-60.

[6] Hongwei Ge et al. “Cooperative differential evolution with fast variable interdependence learning and cross-cluster
mutation”. In: Applied Soft Computing 36 (2015), pp. 300-314.

[7] Ali Wagdy Mohamed and Abdulaziz S Almazyad. “Differential Evolution with Novel Mutation and Adaptive Crossover
Strategies for Solving Large Scale Global Optimization Problems”. In: Applied Computational Intelligence and Soft Computing
2017 (2017).
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Approximation Methods and Surrogate Modeling

@ High-Dimensional Model Representation (HDMR) [1].

@ Radial Basis Functions [2].

@ Kriging and Gradient-Enhanced Kriging Metamodels [3].
@ Piecewise Polynomial (Spline) [4].

°

Turning large-scale problems into expensive optimization problems [5].

[1] Enying Li, Hu Wang, and Fan Ye. “Two-level Multi-surrogate Assisted Optimization method for high dimensional nonlinear
problems”. In: Applied Soft Computing 46 (2016), pp. 26-36.

[2] Rommel G Regis. “Evolutionary programming for high-dimensional constrained expensive black-box optimization using
radial basis functions”. In: |[EEE Transactions on Evolutionary Computation 18.3 (2014), pp. 326-347.

[3] Selvakumar Ulaganathan et al. “A hybrid sequential sampling based metamodelling approach for high dimensional
problems”. In: |[EEE Congress on Evolutionary Computation. |IEEE. 2016, pp. 1917-1923.

[4] Zhenyu Yang et al. “Target shape design optimization by evolving B-splines with cooperative coevolution”. In: Applied
Soft Computing 48 (Nov. 2016), pp. 672-682.

[5] Peng Yang, Ke Tang, and Xin Yao. “Turning high-dimensional optimization into computationally expensive optimization”.
In: IEEE Transactions on Evolutionary Computation 22.1 (2018), pp. 143-156.
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Local Search and Memetic Algorithms

@ Multiple Trajectory Search (MTS) [1].

@ Memetic algorithm with local search chaining [2].
» MA-SW-Chains [3].
» MA-SSW-Chains [4].

@ Multiple offspring sampling (MOS) [5], [6].

[1] Lin-Yu Tseng and Chun Chen. “Multiple trajectory search for large scale global optimization”. In: /EEE Congress on
Evolutionary Computation. |EEE. 2008, pp. 3052-3059.

[2] Daniel Molina, Manuel Lozano, and Francisco Herrera. “Memetic algorithm with local search chaining for large scale
continuous optimization problems”. In: /EEE Congress on Evolutionary Computation. |EEE. 2009, pp. 830-837.

[3] Daniel Molina, Manuel Lozano, and Francisco Herrera. “MA-SW-Chains: Memetic algorithm based on local search chains
for large scale continuous global optimization”. In: |[EEE Congress on Evolutionary Computation. |EEE. 2010, pp. 1-8.

[4] Daniel Molina et al. “Memetic algorithms based on local search chains for large scale continuous optimisation problems:
MA-SSW-Chains". In: Soft Computing 15.11 (2011), pp. 2201-2220.

[5] Antonio LaTorre, Santiago Muelas, and José-Maria Pefia. “Multiple offspring sampling in large scale global optimization”.
In: IEEE Congress on Evolutionary Computation. |EEE. 2012, pp. 1-8.

[6] Antonio LaTorre, Santiago Muelas, and José-Maria Pefia. “A MOS-based dynamic memetic differential evolution algorithm
for continuous optimization: a scalability test”. In: Soft Computing 15.11 (2011), pp. 2187-2199.
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Parallelization

@ Algorithms capable of parallelization [1], [2].
e GPU [3], [4].
e CPU/OpenMP [5].

[1] Jing Tang, Meng Hiot Lim, and Yew Soon Ong. “Diversity-adaptive parallel memetic algorithm for solving large scale
combinatorial optimization problems”. In: Soft Computing 11.9 (2007), pp. 873-888.

[2] Hui Wang, Shahryar Rahnamayan, and Zhijian Wu. “Parallel differential evolution with self-adapting control parameters
and generalized opposition-based learning for solving high-dimensional optimization problems”. In: Journal of Parallel and
Distributed Computing 73.1 (2013), pp. 62-73.

[3] Kumara Sastry, David E Goldberg, and Xavier Llora. “Towards billion-bit optimization via a parallel estimation of
distribution algorithm”. In: Genetic and Evolutionary Computation Conference. ACM. 2007, pp. 577-584.

[4] Alberto Cano and Carlos Garcia-Martinez. “100 Million dimensions large-scale global optimization using distributed GPU
computing”. In: IEEE Congress on Evolutionary Computation. |EEE. 2016, pp. 3566—-3573.

[5] AJ Umbarkar. “OpenMP Genetic Algorithm for Continuous Nonlinear Large-Scale Optimization Problems”. In:
International Conference on Soft Computing for Problem Solving. Springer. 2016, pp. 203-214.
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Hybridization (The best of both worlds)

@ Rationale: benefiting from unique features of different optimizers.
EDA+DE: [1].

PSO-+ABC: [2].

Different DE variants: JADE+SaNSDE [3].

PSO+ACO [4].

Minimum Population Search+CMA-ES [5].

v

vV vy VvVYyy

[1] Yu Wang, Bin Li, and Thomas Weise. “Estimation of distribution and differential evolution cooperation for large scale
economic load dispatch optimization of power systems”. In: Information Sciences 180.12 (2010), pp. 2405-2420.

[2] LN Vitorino, SF Ribeiro, and Carmelo JA Bastos-Filho. “A hybrid swarm intelligence optimizer based on particles and
artificial bees for high-dimensional search spaces”. In: |[EEE Congress on Evolutionary Computation. |EEE. 2012, pp. 1-6.

[3] Sishi Ye et al. “A hybrid adaptive coevolutionary differential evolution algorithm for large-scale optimization”. In: /EEE
Congress on Evolutionary Computation. |EEE. 2014, pp. 1277-1284.

[4] Wu Deng et al. “A novel two-stage hybrid swarm intelligence optimization algorithm and application”. In: Soft Computing
16.10 (2012), pp. 1707-1722.

[5] Antonio Bolufé-Rahler, Sonia Fiol-Gonzélez, and Stephen Chen. “A minimum population search hybrid for large scale
global optimization”. In: |IEEE Congress on Evolutionary Computation. |EEE. 2015, pp. 1958-1965.
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Decomposition Methods

@ Divide-and-conquer
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Variable Interaction, Linkage, Epistasis

What is variable interaction?

@ Genetics: two genes are said to interact with each other if they collectively
represent a feature at the phenotype level.

@ The extent to which the fitness of one gene can be suppressed by another gene.
@ The extent to which the value taken by one gene activates or deactivates the effect

of another gene.
v

Why variable interaction?

@ The effectiveness of optimization algorithms is affected by how much
they take variable interaction into account.

@ Also applies to classic mathematical programming methods.
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Variable Interaction, Linkage, Epistasis

[llustrative Example
o f(x,y) = x>+ My’
0 g(x,y) = x* + My + doxy
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Definitions

Variable Interaction

A variable x; is separable or does not interact with any other variable iff:

arg minf(x) = (arg minf(x), arg minf(x)),
x x; Vit

Xj A

where x = (x1,...,x,) " is a decision vector of n dimensions.

Partial Separability

A function f(x) is partially separable with m independent subcomponents iff:

arg minf(x) = (arg minf(xy,...),...,arg minf(... ,xm)),

X1

X1,...,Xm are disjoint sub-vectors of x, and 2 < m < n.
Note: a function is fully separable if sub-vectors xi, ..., X, are 1-dimensional (i.e.,
m = n).

Mohammad Nabi Omidvar, Xiaodong Li, Dan Decomposition and CC for LSGO
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Definitions

Full Nonseparability

A function f(x) is fully non-separable if every pair of its decision variables interact with
each other.

Additive Separability

A function is partially additively separable if it has the following general form:

f(x) = Z fi(xi)

where x; are mutually exclusive decision vectors of f;, x = (xi, . .. ,x,,)T is a global
decision vector of n dimensions, and m is the number of independent subcomponents.
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Effect of Variable Interaction (1)

Sampling and Variation Operators:
@ GAs: inversion operator to promote tight linkage [1].
> Increasing the likelihood of placing linked genes close to each other to
avoid disruption by crossover.
> Rotation of the landscape has a detrimental effect on GA [2].
@ The need for rotational invariance:
» Model Building Methods:
* Estimation of Distribution Algorithms and Evolutionary Strategies:
Covariance Matrix Adaptation.
* Bayesian Optimization: Bayesian Networks.
» DE's crossover is not rotationally invariant.
» PSO is also affected by rotation [3].

[1] David E Goldberg, Robert Lingle, et al. “Alleles, loci, and the traveling salesman problem”. In: International Conference on
Genetic Algorithms and Their Applications. Vol. 154. 1985, pp. 154-159.

[2] Ralf Salomon. “Re-evaluating genetic algorithm performance under coordinate rotation of benchmark functions. A survey
of some theoretical and practical aspects of genetic algorithms”. In: BioSystems 39.3 (1996), pp. 263-278.

[3] Daniel N Wilke, Schalk Kok, and Albert A Groenwold. “Comparison of linear and classical velocity update rules in particle
swarm optimization: Notes on scale and frame invariance”. In: International journal for numerical methods in engineering 70.8
(2007), pp. 985-1008.
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Effect of Variable Interaction (2)

© Approximation and Surrogate Modelling:

» Should be able to capture variable interaction.
» Second order terms of HDMR.

© Local Search and Memetic Algorithms:
» What subset of variables should be optimized in each iteration of local
search?
» Coordinate-wise search may not be effective. Memetics perform well on
separable functions! A coincidence?!
© Decomposition and Divide-and-Conquer:
> Interacting variables should be placed in the same component.
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Linkage Learning and Exploiting Modularity

o Implicit Methods:

» In EC:
* Estimation of Distribution Algorithms
* Bayesian Optimization: BOA, hBOA, Linkage Trees
* Adaptive Encoding, CMA-ES

» Classic Optimization:
* Quasi-Newton Methods: Approximation of the Hessian.
* Adaptive Coordinate Descent

@ Explicit Methods:
» In EC:
Random Grouping
* Statistical Correlation-Based Methods
* Delta Grouping
* Meta Modelling
* Monotonicity Checking
Differential Grouping
» Classic Optimization

*

*

* Block Coordinate Descent
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Implicit Methods

@ Scaling Up EDAs:
Model Complexity Control [1].
Random Matrix Projection [2].

Use of mutual information [3].
Cauchy-EDA [4].

v

v vy

[1] Weishan Dong et al. “Scaling up estimation of distribution algorithms for continuous optimization”. In: |EEE Transactions
on Evolutionary Computation 17.6 (2013), pp. 797-822.

[2] Ata Kaban, Jakramate Bootkrajang, and Robert John Durrant. “Toward large-scale continuous EDA: A random matrix
theory perspective”. In: Evolutionary Computation 24.2 (2016), pp. 255-291.

[3] Qi Xu, Momodou L Sanyang, and Ata Kaban. “Large scale continuous EDA using mutual information”. In: /EEE Congress
on Evolutionary Computation. |EEE. 2016, pp. 3718-3725.

[4] Momodou L Sanyang, Robert J Durrant, and Ata Kaban. “How effective is Cauchy-EDA in high dimensions?” In: |EEE
Congress on Evolutionary Computation. |EEE. 2016, pp. 3409-3416.
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Implicit Methods

@ Scaling up CMA-ES:
» CC-CMA-ES [1].
> sep-CMA-ES [2]
» Reducing space complexity:
* L-CMA-ES [3].
* LM-CMA [4].

[1] Jinpeng Liu and Ke Tang. “Scaling up covariance matrix adaptation evolution strategy using cooperative coevolution”. In:
International Conference on Intelligent Data Engineering and Automated Learning. Springer. 2013, pp. 350-357.

[2] Raymond Ros and Nikolaus Hansen. “A simple modification in CMA-ES achieving linear time and space complexity”. In:
Parallel Problem Solving from Nature. Springer. 2008, pp. 296-305.

[3] James N Knight and Monte Lunacek. “Reducing the space-time complexity of the CMA-ES". In: Genetic and Evolutionary
Computation Conference. ACM. 2007, pp. 658—665.

[4] llya Loshchilov. “LM-CMA: An Alternative to L-BFGS for Large-Scale Black Box Optimization”. In: Evolutionary
Computation (2015).
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Scalability issues of EDAs

@ Accurate estimation requires a large sample size which grows
exponentially with the dimensionality of the problem [1].

@ A small sample results in poor estimation of the eigenvalues [2].

@ The cost of sampling from a multi-dimensional Gaussian distribution
increases cubically with the problem size [3].

Maximum Likelihood eigenvalue estimates True eigenvalues

n 4 n 2

[ @

= =

g g

c 2 c 1

o] 9]

2 k=3

o Ll o

20 40 60 80 100 20 40 60 80 100

[1] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. \/ol. 1. Springer series in
statistics Springer, Berlin, 2001.

[2] Roman Vershynin. “Introduction to the non-asymptotic analysis of random matrices”. In: arXiv preprint arXiv:1011.3027
(2010).

[3] Weishan Dong and Xin Yao. “Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms”.
In: Information Sciences 178.15 (2008), pp. 3000-3023.
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Random Projection EDA [1]

Samplo from full ML ostimate

X4 o0z 0 o0z 04
‘sample from diagonal estimate

oaf " 045
:

04
samplo from Ens-AP (M=2)

s 02 0 oz o4 b4 02z 0 oz o4

Ens—RP of search points, M=50 Samplo from Ens-AP (Ma50)

[1] Ata Kaban, Jakramate Bootkrajang, and Robert John Durrant. “Toward large-scale continuous EDA: A random matrix
theory perspective”. In: Evolutionary Computation 24.2 (2016), pp. 255-291.
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Explicit Methods

AND

@ A large problem can be subdivided into smaller and simpler problems.

@ Dates back to René Descartes (Discourse on Method).

@ Has been widely used in many areas:
> Computer Science: Sorting algorithms (quick sort, merge sort)
> Optimization: Large-scale linear programs (Dantzig)
> Politics: Divide and rule (In Perpetual Peace by Immanuel Kant: Divide et impera
is the third political maxims.)

Acknowledgement: the above image is obtained from: http://draininbrain.blogspot.com.au/
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Decomposition in EAs: Cooperative Co-evolution [1]

cv
‘ cv‘] ‘ e ‘ wr L...... ‘ wg ‘
[} X L3
iReplace
X1 Xi | | and X1
I
. { evaluate :
| .
X
‘ cvy : CcV, ‘
cv; ‘
b.STY ‘ Xiv ‘ Xon
| S S | S
[1] Mitchell A. Potter and Kenneth A. De Jong. “A cooperative coevolutionary approach to function optimization”. In: Proc.
Int. Conf. Parallel Problem Solving from Nature. Vol. 2. 1994, pp. 249-257.
Decomposition and CC for LSGO 30/91
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CC is a Framework

CC as a scalability agent:
@ CC is not an optimizer.
@ Requires a component optimizer.

@ CC coordinates how the component optimizer is applied to
components.

@ A scalability agent.
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Challenges of CC

Main Questions
© How to decompose the problem?
© How to allocated resources?

© How to coordinate?
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The Decomposition Challenge

How to decompose?
@ There are many possibilities.

@ Which decomposition is the best?

Optimal decomposition
@ It is governed by the interaction structure of decision variables.

@ An optimal decomposition is the one that minimizes the interaction
between components.
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Survey of Decomposition Methods

@ Uninformed Decomposition [1]
» n 1-dimensional components (the original CC)
» k s-dimensional components.

Random Grouping [2]

Statistical Correlation-Based Methods
Delta Grouping [3]

Meta Modelling [4]

Monotonicity Checking [5]
Differential Grouping [6]

[1] F. van den Bergh and Andries P Engelbrecht. “A cooperative approach to particle swarm optimization”. In: /EEE
Transactions on Evolutionary Computation 2.3 (June 2004), pp. 225-239.

e © ¢ ¢ ¢

[2] Zhenyu Yang, Ke Tang, and Xin Yao. “Large scale evolutionary optimization using cooperative coevolution”. In:
Information Sciences 178.15 (2008), pp. 2985-2999.

[3] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. “Cooperative co-evolution with delta grouping for large scale
non-separable function optimization”. In: /EEE Congress on Evolutionary Computation. |[EEE. 2010, pp. 1-8.

[4] Sedigheh Mahdavi, Mohammad Ebrahim Shiri, and Shahryar Rahnamayan. “Cooperative co-evolution with a new
decomposition method for large-scale optimization”. In: |/EEE Congress on Evolutionary Computation. |EEE. 2014,
pp. 1285-1292.

[5] Wenxiang Chen et al. “Large-scale global optimization using cooperative coevolution with variable interaction learning”. In:
Parallel Problem Solving from Nature. Springer. 2010, pp. 300-309.

[6] Mohammad Nabi Omidvar et al. “Cooperative co-evolution with differential grouping for large scale optimization”. In:
IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378-393.
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lllustrative Example (Canonical CC)

Figure: Variable interaction of a hypothetical function.

@ n l-dimensional components:

G {Xl}v {XQ}v {X3}> {X4}7 {X5}> {X6}> {X7}
G: {xa}, (e}, {xs} {xa}, {xs}, {x6}, {x7}

Ec: {Xl}v {X2}> {X3}7 {X4}> {X5}> {Xﬁ}v {X7}
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lllustrative Example (fixed k s-dimensional)

Figure: Variable interaction of a hypothetical function.

@ k s-dimensional (k =2,s = 4):

Gt {x1, %2, x3,xa}, {X5, X6, X7}
Got {x1,x2,x3,xa}, {x5, %6, X7 }

\{

vV vy

ClC: {X17X27X37X4}7 {X57X67X7}

Mohammad Nabi Omidvar, Xiaodong Li, Dan Decomposition and CC for LSGO
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lllustrative Example (Random Grouping)

Figure: Variable interaction of a hypothetical function.

@ Random Grouping (k =2,s = 4):

C1: {X27X37X67X5}7 {X77X17X4}
GCot {x3,xa,x1, %2}, {X6, X7, X5 }

\{

vV vy

Ce: {x1, %5, X6, X7}, { X2, Xa, X3}
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Random Grouping

Theorem

Given N cycles, the probability of assigning v interacting variables
X1, X2, ..., Xy INto one subcomponent for at least k cycles is:

N

oS () ()

where N is the number of cycles, v is the total number of interacting
variables, m is the number of subcomponents, and the random variable X
is the number of times that v interacting variables are grouped in one
subcomponent.
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Random Grouping

Example
Given n = 1000, m = 10, N =50 and v = 4, we have:

50
P(le):l-P(X:O):l-(l-%) — 0.0488

which means that over 50 cycles, the probability of assigning 4 interacting
variables into one subcomponent for at least 1 cycle is only 0.0488. As we

can see this probability is very small, and it will be even less if there are
more interacting variables.
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P(X >= 1), N=50 ——
P(X >= 1), N=10000 ~———

Probability

s T I I
7 8 9 10
Number of interacting variables(v)

Figure: Increasing v, the number of interacting variables will significantly decrease
the probability of grouping them in one subcomponent, given n = 1000 and
m = 10.
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Probability

0 bl T . I I ! ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of cycles

Figure: Increasing N, the number of cycle increases the probability of grouping v
number of interacting variables in one subcomponent.
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lllustrative Example (Informed with Fixed Groups)

Figure: Variable interaction of a hypothetical function.

@ Delta Grouping (k =2,s = 4):

Gt {x1, x5, %2, %}, {x3, X6, x7 }
C2: {X37 X5, X6, X7}7 {le X2, X4}

\{

vV vy

ClC: {X37X67X17X4}7 {X27X57X7}
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Delta Grouping

X2

Improvement Interval

Improvement Interval

x1

Improvement Interval Improvement Interval
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Informed Decompositions with Fixed Groups

@ Adaptive Variable Partitioning [1].
@ Delta Grouping [2].
@ Min/Max-Variance Decomposition (MiVD/MaVD) [3].

» Sorts the dimensions based on the diagonal elements of the covariance
matrix in CMA-ES.

o Fitness Difference Partitioning [4], [5], [6].

[1] Tapabrata Ray and Xin Yao. “A cooperative coevolutionary algorithm with correlation based adaptive variable
partitioning”. In: |[EEE Congress on Evolutionary Computation. |[EEE. 2009, pp. 983-989.

[2] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. “Cooperative co-evolution with delta grouping for large scale
non-separable function optimization”. In: |[EEE Congress on Evolutionary Computation. |[EEE. 2010, pp. 1-8.

[3] Jinpeng Liu and Ke Tang. “Scaling up covariance matrix adaptation evolution strategy using cooperative coevolution”. In:
International Conference on Intelligent Data Engineering and Automated Learning. Springer. 2013, pp. 350-357.

[4] Eman Sayed, Daryl Essam, and Ruhul Sarker. “Dependency identification technique for large scale optimization problems”.
In: IEEE Congress on Evolutionary Computation. |EEE. 2012, pp. 1-8.

[5] Eman Sayed et al. “Decomposition-based evolutionary algorithm for large scale constrained problems”. In: /nformation
Sciences 316 (2015), pp. 457-486.

[6] Adan E Aguilar-Justo and Efrén Mezura-Montes. “Towards an improvement of variable interaction identification for
large-scale constrained problems”. In: |/EEE Congress on Evolutionary Computation. |EEE. 2016, pp. 4167-4174.
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Informed Decompositions with Variable Groups

@ Multilevel Grouping: MLCC [1], MLSoft [2].
@ Adaptive Variable Partitioning 2 [3].

e 4CDE [4].

@ Fuzzy Clustering [5].

[1] Zhenyu Yang, Ke Tang, and Xin Yao. “Multilevel cooperative coevolution for large scale optimization”. In: |EEE Congress
on Evolutionary Computation. |EEE. 2008, pp. 1663-1670.

[2] Mohammad Nabi Omidvar, Yi Mei, and Xiaodong Li. “Effective decomposition of large-scale separable continuous functions
for cooperative co-evolutionary algorithms”. In: /EEE Congress on Evolutionary Computation. |EEE. 2014, pp. 1305-1312.

[3] Hemant Kumar Singh and Tapabrata Ray. “Divide and conquer in coevolution: A difficult balancing act”. In: Agent-Based
Evolutionary Search. Springer, 2010, pp. 117-138.

[4] Yazmin Rojas and Ricardo Landa. “Towards the use of statistical information and differential evolution for large scale
global optimization”. In: International Conference on Electrical Engineering Computing Science and Automatic Control. |EEE
2011, pp. 1-6.

[5] Jianchao Fan, Jun Wang, and Min Han. “Cooperative coevolution for large-scale optimization based on kernel fuzzy
clustering and variable trust region methods”. In: |EEE Transactions on Fuzzy Systems 22.4 (2014), pp. 829-839.
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lllustrative Example (Exact Methods)

Figure: Variable interaction of a hypothetical function.

o Differential Grouping and Variable Interaction Learning:

> Cl: {X17X27X4}7{X37X57X67X7}
» G {x1,x2, x4}, {x3, X5, X6, X7}

>

> CC: {X17X27X4}7 {X37X57X67X7}
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Monotonicity Check

’or . /
Ix, X, X; .f(xl,...,x,-,...,)g,... Xn) < (X150 Xy oy Xy ooy Xn)A

/ /
f(xt, o Xi ooy J, vy Xn) > F(xq, ... x,-,...,xj,...,x,,)
Contour for land of 2-D schwefel fi
2 e — = T -

Global Optimut

-15

— dimension i=1
15 2
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Monotonicity Check (Algorithms)

Linkage Identification by Non-Monotonicity Detection [1]
Adaptive Coevolutionary Learning [2]

°

°

@ Variable Interaction Learning [3]

@ Variable Interdependence Learning [4]
°

Fast Variable Interdependence [5]

[1] Masaharu Munetomo and David E Goldberg. “Linkage identification by non-monotonicity detection for overlapping
functions”. In: Evolutionary Computation 7.4 (1999), pp. 377-398.

[2] Karsten Weicker and Nicole Weicker. “On the improvement of coevolutionary optimizers by learning variable
interdependencies”. In: /EEE Congress on Evolutionary Computation. Vol. 3. IEEE. 1999, pp. 1627-1632.

[3] Wenxiang Chen et al. “Large-scale global optimization using cooperative coevolution with variable interaction learning”. In:
Parallel Problem Solving from Nature. Springer. 2010, pp. 300-309.

[4] Liang Sun et al. “A cooperative particle swarm optimizer with statistical variable interdependence learning”. In:
Information Sciences 186.1 (2012), pp. 20-39.

[5] Hongwei Ge et al. “Cooperative differential evolution with fast variable interdependence learning and cross-cluster
mutation”. In: Applied Soft Computing 36 (2015), pp. 300-314.
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Differential Grouping [1]

Theorem

Let f(x) be an additively separable function. Ya, by # by, d € R, # 0, if
the following condition holds

A6,Xp[f](x)|xp:a,xq:b1 i Aé,xp[f](x)|xp:a,xq:bza (5)
then x, and xq are non-separable, where
A(;’XP[IC](X) =f(...,xp+0,...)—f(...,Xp,...), (6)

refers to the forward difference of f with respect to variable x, with
interval é.

[1] Mohammad Nabi Omidvar et al. “Cooperative co-evolution with differential grouping for large scale optimization”. In:
IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378-393.
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2 + )
p1 = (x1,x2)

0O —F+—F——F—F+—F+—F+—F+—+—
o 1 2 3 4 5 6 7 8 9 10

Figure: f(Xl7 X2) = X12 -+ X22
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o 1 2 3 4 5 6 7 8 9 10

Figure: f(Xl, X2) = X12 -+ X22
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Figure: f(Xl, X2) = X12 -+ X22
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pT={(x1,%)

A —

p1= (1, %2)! YV p2 = (f1%2)
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P2 = ( ivxé)

P2 = (11, x2)

Il Il

1 1 1
o 1 2 3 4 5 6 7 8 9 10
Figure: f(Xl, X2) = X12 + X5
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Separability = A; = Ay

Assuming:

We prove that:
Separability = A; = Ay

By contraposition (P = Q@ = —Q = —P):

A1 # Ay = non-separability
or
|A1 — As| > € = non-separability
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The Differential Grouping Algorithm

Detecting Non-separable Variables

|A1 — Az| > € = non-separability

Detecting Separable Variables

|A1 — Ap| < e = Separability (more plausible)

Mohammad Nabi Omidvar, Xiaodong Li, Dan Decomposition and CC for LSGO



Example

Consider the non-separable objective function f(xi,x2) = x2 + Axixa + X3,
A£0.
8f(X1, X2)

8X1
This clearly shows that the change in the global objective function with
respect to x1 is a function of x; and x>. By applying the Theorem:

= 2x1 + AXp.

Do [f] = [(x1 +0)? + A0t + 8)x2 + x3] — [xF + Axxe + 53 |

=182 + 20x1 + Axa0.
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Differential Grouping vs CCVIL

X1 Xy =x1+0
)(2‘5 ";\ \
(/=
, L N
2 L\ (\ \/ { e \\

ol \’
H Ny

Figure: Detection of in"tseractir‘ng variables Ousingﬂaiffere‘ntial é}oupiﬁg and CCVIL
on different regions of a 2D Schwefel Problem 1.2.
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Differential Grouping Family of Algorithms

@ Linkage Identification by Non-linearity Check (LINC, LINC-R) [1]
Differential Grouping (DG) [2]

Global Differential Grouping (GDG) [3]

Improved Differential Grouping (IDG) [4]

eXtended Differential Grouping (XDG) [5]

Graph-based Differential Grouping (gDG) [6]

Fast Interaction ldentification [7]

@ Recursive Differential Grouping (RDG1 and RDG2) [8]

[1] Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama. “Linkage identification by nonlinearity check for real-coded
genetic algorithms”. In: Genetic and Evolutionary Computation-GECCO 2004. Springer. 2004, pp. 222-233.

)
)
)
)
)
)

[2] Mohammad Nabi Omidvar et al. “Cooperative co-evolution with differential grouping for large scale optimization”. In:
IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378-393.

[3] Yi Mei et al. “Competitive Divide-and-Conquer Algorithm for Unconstrained Large Scale Black-Box Optimization”. In
ACM Transaction on Mathematical Software 42.2 (June 2015), p. 13.

[4] Mohammad Nabi Omidvar et al. IDG: A Faster and More Accurate Differential Grouping Algorithm. Technical Report
CSR-15-04. University of Birmingham, School of Computer Science, Sept. 2015.

[5] Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge. “Extended differential grouping for large scale global
optimization with direct and indirect variable interactions”. In: Genetic and Evolutionary Computation Conference. ACM. 2015,
pp. 313-320.

[6] Yingbiao Ling, Haijian Li, and Bin Cao. “Cooperative co-evolution with graph-based differential grouping for large scale
global optimization”. In: International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. |EEE.
2016, pp. 95-102.

[7] Xlao-Mln Hu et al. “Cooperatlon coevolution with fast interdependency identification for large scale optimization”. In

3 60
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Shortcomings of Differential Grouping

@ Cannot detect the overlapping functions.
@ Slow if all interactions are to be checked.
@ Requires a threshold parameter (e).

@ Can be sensitive to the choice of the threshold parameter (e).
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Direct/Indirect Interactions

Indirect Interactions

In an objective function f(x), decision variables
x; and x; interact directly (denoted by x; <> x;)

if
of m
da: £0, 2
aXIa){I - Qz\ >
decision variables x; and x; interact indirectly if S k’
of o, Ty . T3
8X,'8Xj

and there exists a set of decision variables
{Xk1, .-, Xks } such that x; <> X1, ..., Xks <> Xj.
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Efficiency vs Accuracy

Saving budget at the expense of missing overlaps:
@ eXtended Differential Grouping [1].

@ Fast Interdependence ldentification [2].

Figure: The interaction structures represented by the two graphs cannot be
distinguished by XDG.

[1] Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge. “Extended differential grouping for large scale global
optimization with direct and indirect variable interactions”. In: Genetic and Evolutionary Computation Conference. ACM. 2015,

pp. 313-320.
[2] Xiao-Min Hu et al. “Cooperation coevolution with fast interdependency identification for large scale optimization”. In:
Information Sciences 381 (2017), pp. 142-160.
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Differential Grouping 2: Improving Accuracy [1]

DG2 Estimates the computational round-off errors as the threshold value:
et = v2 max{f(x) + f(y"), f(y) + F(xX')} (7)

esup = Vym max{f(x), F(x), f(y), F(y')} (8)

® )\ < e, — separable;
® \ > eyp — non-separable.
Otherwise o m
€= ————enf + —— Eup, 9
m+m o mo+m ©)
® )\ < € — separable;

@ )\ > ¢ — non-separable.

[1] Mohammad Nabi Omidvar et al. “DG2: A faster and more accurate differential grouping for large-scale black-box
optimization”. In: IEEE Transactions on Evolutionary Computation 21.6 (2017), pp. 929-942.
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DG2 Error Analysis

A=A — Ag
Genuine zeros

/_/H

———> Genuine non-zeros
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VA -\

€inf ] Csup
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Differential Grouping 2: Improving Efficiency

(a,b,c)

(a,b',c)

X2

(@, b,c)

Figure: Geometric representation of point generation in DG2 for a 3D function.

xix0: A=F (2 b, ¢)—F(a, b, ¢),AP=f (', b, c)~F(a, b, C)
x1¢3 x3:AN=F (' b, ¢)~f(a, b, c),AD=f (' b, /) (a. b.c)
xoer x3: A=f (a, b ¢)-F(a, b, c),APD=f(a, b, c')~f(a. b. '),

A= a0 — AQ)
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Differential Grouping 2: Improving Efficiency

Minimum Evaluations
The minimum number of unique function evaluations in order to detect
the interactions between all pairs of variables is

h(n) > w +1. (10)

v

Improving efficiency beyond the given lower bound is impossible
unless:

@ Sacrifice on the accuracy (partial variable interaction matrix);
@ and/or

o Extending the DG theorem.

Mohammad Nabi Omidvar, Xiaodong Li, Dan Decomposition and CC for LSGO
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Extending the Theorem: Further Improving Efficiency

© Fast Interaction Identification (FII) [1]

» identifying separable variables by checking the interaction between a
single variable with remaining variables.
» examining pairwise interaction for non-separable variables.

@ Recursive Differential Grouping (RDG) [2] (O(nlog(n)))

> examining interaction between two variable subsets.
> using a recursive procedure to group variables.

[1] Xiao-Min Hu et al. “Cooperation coevolution with fast interdependency identification for large scale optimization”. In
Information Sciences 381 (2017), pp. 142-160.

[2] Yuan Sun, Michael Kirley, and Saman K Halgamuge. “A recursive decomposition method for large scale continuous
optimization”. In: IEEE Transactions on Evolutionary Computation 22.5 (2017), pp. 647—661.
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Variants of RDG
© RDG2 [1]: Combining the efficiency of RDG and accuracy of DG2.

© RDGS3 [2]: extending RDG2 for decomposing overlapping problems.

~
PRy S~ AR
7
~
- N 4 A
N 1 \
1
I
’
’ ’

[1] Yuan Sun et al. “Adaptive threshold parameter estimation with recursive differential grouping for problem decomposition”.
In: Proceedings of the Genetic and Evolutionary Computation Conference. ACM. 2018, pp. 889-896.

[2] Yuan Sun et al. “Decomposition for Large-scale Optimization Problems with Overlapping Components”. In: Proceedings of
the IEEE Congress on Evolutionary Computation. |EEE. 2019.
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Benchmark Suites

@ CEC'2005 Benchmark Suite (non-modular)

@ CEC'2008 LSGO Benchmark Suite (non-modular)
o CEC'2010 LSGO Benchmark Suite

o CEC'2013 LSGO Benchmark Suite
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Challenges of CC

Main Questions
© How to decompose the problem?
© How to allocated resources?

© How to coordinate?
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The Imbalance Problem

@ Non-uniform contribution of components.

Imbalanced Functions
F(x) =D wifi(x), (11)
=1

w; = 105./\[(0,1)’

Mohammad Nabi Omidvar, Xiaodong Li, Dan Decomposition and CC for LSGO



The Imbalance Problem (2)

1e+16 T T

I§DECC-I-l'\lonsep e |

1e+14

test2 |
1e+10 |\ -
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1e+06 [ T ]
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Contribution-Based Cooperative Co-evolution (CBCC)

Types of CC
@ CC: round-robin optimization of components.
o CBCC: favors components with a higher contribution.

Quantifies the contribution of components.
Optimizes the one with the highest contribution.
v

How to Quantify the Contribution
@ For quantification of contributions a relatively accurate decomposition
is needed.
@ Changes in the objective value while other components are kept

constant. )

75 /91

Decomposition and CC for LSGO

Mohammad Nabi Omidvar, Xiaodong Li, Dan



10000 y
1000 5556610000 15000 20000 25000 30000 1e12 73560 10000 15000 20000 25000 30000
Evaluations Evaluations
(¢) Round-Robin CC (d) Contribution-Based CC
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Contribution-Aware Algorithms

@ Contribution-Based Cooperative Co-evolution (CBCC) [1], [2].
@ Bandit-based Cooperative Coevolution (BBCC) [3].

@ Incremental Cooperative Coevolution [4]

@ Multilevel Framework for LSGO [5]

[1] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. “Smart use of computational resources based on contribution for
cooperative co-evolutionary algorithms”. [n: Proc. of Genetic and Evolutionary Computation Conference. ACM, 2011,
pp. 1115-1122.

[2] Mohammad Nabi Omidvar et al. “CBCC3 — A Contribution-Based Cooperative Co-evolutionary Algorithm with Improved
Exploration/Exploitation Balance”. In: Proc. IEEE Congr. Evolutionary Computation. 2016, pp. 3541-3548.

[3] kazimipour2018bandit.

[4] Sedigheh Mahdavi, Shahryar Rahnamayan, and Mohammad Ebrahim Shiri. “Incremental cooperative coevolution for
large-scale global optimization”. In: Soft Computing (2016), pp. 1-20.

[5] Sedigheh Mahdavi, Shahryar Rahnamayan, and Mohammad Ebrahim Shiri. “Multilevel framework for large-scale global
optimization”. In: Soft Computing (2016), pp. 1-30.
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Some Auxiliary Topics

@ Variable Interaction and Constraint Handling [1], [2], [3]
@ Large-Scale Multiobjective Optimization

@ Auvailable Benchmark Suites

[1] Eman Sayed et al. “Decomposition-based evolutionary algorithm for large scale constrained problems”. In: /nformation
Sciences 316 (2015), pp. 457-486.

[2] Adan E Aguilar-Justo and Efrén Mezura-Montes. “Towards an improvement of variable interaction identification for
large-scale constrained problems”. In: |/EEE Congress on Evolutionary Computation. |EEE. 2016, pp. 4167-4174.

[3] Julien Blanchard, Charlotte Beauthier, and Timoteo Carletti. “A cooperative co-evolutionary algorithm for solving
large-scale constrained problems with interaction detection”. In: Proceedings of the Genetic and Evolutionary Computation
Conference. ACM. 2017, pp. 697-704.
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Variable Interaction and Constraint Handling [1]

min f(x) = x%x2+4xs
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[1] Julien Blanchard, Charlotte Beauthier, and Timoteo Carletti. “A cooperative co-evolutionary algorithm for solving
large-scale constrained problems with interaction detection”. In: Proceedings of the Genetic and Evolutionary Computation
Conference. ACM. 2017, pp. 697-704.
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Large-Scale Multiobjective Optimization

Large-scale multiobjective optimization is growing popularity:
@ Benchmark development and analysis:
» Development of a benchmark [1].
» Analysis of the existing benchmarks [2].
@ Algorithm development:
» Exploiting modularity using CC [3], [4], [5], [6].
» Problem transformation [7].

[1] Ran Cheng et al. “Test problems for large-scale multiobjective and many-objective optimization”. In: |EEE Transactions on
Cybernetics (2016).

[2] Ke Li et al. “Variable Interaction in Multi-objective Optimization Problems”. In: Parallel Problem Solving from Nature
Springer International Publishing. 2016, pp. 399-409.

[3] Luis Miguel Antonio and Carlos A Coello Coello. “Use of cooperative coevolution for solving large scale multiobjective
optimization problems”. In: |[EEE Congress on Evolutionary Computation. |[EEE. 2013, pp. 2758-2765.

[4] Luis Miguel Antonio and Carlos A Coello Coello. “Decomposition-Based Approach for Solving Large Scale Multi-objective
Problems”. In: Parallel Problem Solving from Nature. Springer. 2016, pp. 525-534.

[5] Xiaoliang Ma et al. “A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective
optimization problems with large-scale variables”. In: |[EEE Transactions on Evolutionary Computation 20.2 (2016), pp. 275-298.

[6] Xingyi Zhang et al. “A Decision Variable Clustering-Based Evolutionary Algorithm for Large-scale Many-objective
Optimization”. In: IEEE Transactions on Evolutionary Computation (2016).

[7] Heiner Zille et al. “A Framework for Large-Scale Multiobjective Optimization Based on Problem Transformation”. In: /EEE
Transactions on Evolutionary Computation 22.2 (2018), pp. 260-275.

Mohammad Nabi Omidvar, Xiaodong Li, Dan Decomposition and CC for LSGO 80/91



Analysis of ZDT

xf 011111
X1 101111
xf 110111
X 111011
x4 111101
X\ 111110

X1 X2 X3 X4 X5 Xp

Figure: Variable interaction structures of the f, function of ZDT test suite [1].

[1] Ke Li et al. “Variable Interaction in Multi-objective Optimization Problems”. In: Parallel Problem Solving from Nature.
Springer International Publishing. 2016, pp. 399-409.
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Analysis of DTLZ1-DTLZ4

LS
OO OO

Figure: Variable interaction graphs of DTLZ1 to DTLZ4 .

Proposition 1

For DTLZ1 to DTLZ4, Vfi,i € {1,--- , m}, we divide the corresponding decision
variables into two non-overlapping sets: x; = (xi, - ,x¢)", £=m— 1 for i € {1,2}
while £ =m —i+1fori€{3,---,m}; and x = (Xm, -+ ,%,)". All members of x; not
only interact with each other, but also interact with those of x;; all members of x;; are

independent from each other.
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Analysis of DTLZ5-DTLZ7

n @
® @ ®
® ®

Figure: Variable interaction graphs of DTLZ5 and DTLZ6.

Proposition 2

For DTLZ5 and DTLZ6, Vfi,i € {1,--- ,m}, we divide the corresponding decision
variables into two non-overlapping sets: x; = (xi, - ,x¢)", £=m— 1 for i € {1,2}
while £ =m —i+1for i€ {3,---,m}; and xyy = (Xm, - ,x,,)T. For f;, where
i€{l,---,m— 1}, all members of x; and x;; interact with each other; for f,,, we have

the same interaction structure as DTLZ1-DTLZ4. )

Proposition 3
All objective functions of DTLZ7 are fully separable.
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Decomposition Based Large-Scale EMO

Subcomponent 2

Subcomponent 1
T ,

=

1

Diverse variables Distance variables

Figure: Image taken from [1]

[1] Xiaoliang Ma et al. “A multiobjective evolutionary algorithm based on decision variable analyses for multiobjective
optimization problems with large-scale variables”. In: |EEE Transactions on Evolutionary Computation 20.2 (2016), pp. 275-298.
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Weighted Optimization Framework (WOF) [1], [2]

Optimize Problem Z Select ¢ solutions Weighting optimization
(st }———» iornfuncion > (3,7 fom e
evaluations the current population
(See Algorithm 2)
Algorithm 1: Line 4 Algorithm 1: Line 5

Algorithm 1: Line 7
Algorithm 2

Create a new
population for Z from
the current population §
and the weight

populations W, ..., Wi
Algorithm 1: Line 9
Algorithm 3

Used evaluations
< é- total number
of evaluations?

Optimize Problem Z
until the termination
criterion is met

|

Algorithm 1: Line 11

Figure: Weighted Optimization Framework

[1] Heiner Zille et al. “Weighted Optimization Framework for Large-scale Multi-objective Optimization”. In: Genetic and
Evolutionary Computation Conference. ACM. 2016, pp. 83-84.

[2] Heiner Zille et al. “A Framework for Large-Scale Multiobjective Optimization Based on Problem Transformation”. In: /EEE
Transactions on Evolutionary Computation 22.2 (2018), pp. 260-275.
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Some Future Directions (1)

@ What if the components have overlap?

o Differential group is time-consuming. Is there a more efficient
method?

@ Do we need to get 100% accurate grouping? What is the relationship
between grouping accuracy and optimality achieved by a CC
algorithm?

Mohammad Nabi Omidvar, Xiaodong Li, Dan Decomposition and CC for LSGO 86 /91




Some Future Directions (II)

@ CC for combinatorial optimization, e.g.,
» Y. Mei, X. Li and X. Yao, “Cooperative Co-evolution with Route
Distance Grouping for Large-Scale Capacitated Arc Routing Problems,’
IEEE Transactions on Evolutionary Computation, 18(3):435-449, June
2014.

@ However, every combinatorial optimization problem has its own
characteristics. We need to investigate CC for other combinatorial
optimization problems.
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Some Future Directions (lII)

@ Learning variable interdependencies is a strength of estimation of
distribution algorithms (EDAs), e.g.,

» W. Dong, T. Chen, P. Tino and X. Yao, “Scaling Up Estimation of
Distribution Algorithms for Continuous Optimization,” IEEE
Transactions on Evolutionary Computation, 17(6):797-822, December
2013.

» A. Kaban, J. Bootkrajang and R.J. Durrant. “Towards Large Scale
Continuous EDA: A Random Matrix Theory Perspective.” Evolutionary
Computation

@ Interestingly, few work exists on scaling up EDAs.
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LSGO Resources

@ There is an IEEE Computational Intelligence Society (CIS) Task Force
on LSGO:

@ LSGO Repository: http://www.cercia.ac.uk/projects/lsgo
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Questions

Thanks for your attention!

g 90 ¢ 9 ?

Mohammad Nabi Omidvar, Xiaodong Li, Dan Decomposition and CC for LSGO 91/91



	Introduction: Large Scale Global Optimization
	Approaches to Large-Scale Optimization
	Variable Interaction: Definitions and Importance
	Interaction Learning: Exploiting Modularity
	Conclusion
	Questions

