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Abstract Differential Evolution (DE) is a powerful

optimization procedure that self-adapts to the search space,

although DE lacks diversity and sufficient bias in the

mutation step to make efficient progress on non-separable

problems. We present an enhancement to DE that intro-

duces greater diversity while also directing the search to

more promising regions. The Combinatorial Sampling

Differential Evolution (CSDE) is introduced which can

sample vectors in two ways; highly correlated with the

search space or around a ‘better’ individual. The CSDE

approach can provide a similar number of samples as

crossover, without being biased towards the principle

coordinate axes of a decision space. This approach to

sampling vectors is capable of optimizing problems with

extensive parameter interactions. It also demonstrates fast

convergence towards the global optimum and is highly

scalable in the decision space on a variety of single and

multi-objective problems due to the balance between

sampling highly directed correlated vectors and non-cor-

related vectors which contribute to sampling diversity.

Keywords Evolutionary Algorithm �
Differential Evolution � Optimization �
Non-separable problem � Parameter interactions

1 Introduction

Despite the power of many population-based stochastic

optimization algorithms, they can meet with difficulties on

optimization problems which are non-separable. Tradi-

tional Genetic Algorithms fail to optimize these problems

efficiently because they typically perform independent

perturbations of decision variables. Unfortunately, many

real-world problems are not linearly separable. On prob-

lems which are not aligned with the principle coordinate

axes, the small mutation rates frequently used in Genetic

Algorithms are known to be even less efficient than a

random search (Salomon 1996). One approach for opti-

mizing such problems is to use a vector-based scheme such

as Differential Evolution (DE).

Despite the fact that DE has many attractive character-

istics, it also has a number of limitations which we will

outline here and attempt to address in this paper.

First, crossover is needed to introduce sufficient diver-

sity. Unfortunately, crossover is not a rotationally invariant

operation.

The use of crossover in DE introduces diversity to the

population, far more than mutation alone. As the decision

space dimension scales, the importance of having a

diverse population from which to sample becomes sig-

nificantly important to make efficient progress towards

more optimal solutions in the search space. Unfortunately,

because the offspring that crossover can generate are

dependent on the principle coordinate axes, crossover

provides little benefit to the optimization of non-separable

problems.

For an algorithm to be rotationally invariant in the

context of optimization algorithms, it should produce off-

spring in the same relative location, irrespective of the

orientation of the fitness landscape. In addition, requiring
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that a DE algorithm be strictly rotationally invariant

introduces further problems.

Although rotationally invariant DE approaches provide

vector-wise samples which are not biased with respect to

any particular coordinate axes they also lowers the number

of potential offspring dramatically because they do not use

crossover (Lampinen and Zelinka 2000). This leads to the

second limitation associated with DE; a mutation-only

strategy is insufficient to make progress because it does not

provide sufficient sampling diversity to explore the search

space and can lead to stagnation.

Our contention is that for an optimization algorithm to

perform efficiently on a non-separable problem, it must not

exhibit the extreme dependency on the principle coordinate

axes that is typically the case with crossover. In addition,

we contend that it is unnecessary for it to be strictly rota-

tionally invariant, as long as it is capable of generating

sufficient diversity.

Clearly, these two limitations of DE are diametrically

opposed, which gives us an indication of the type of

algorithm that can address them. Such an algorithm must

maintain a balance between both requirements.

Ideally, we would like a scheme which is biased to

accelerate convergence, is capable of generating a diverse

variety of offspring solutions in a manner which minimizes

distribution bias, and is capable of optimizing non-sepa-

rable and separable problems equally well. Furthermore, it

should be simple to implement and computationally effi-

cient and capable of dealing with multi-objective search

spaces. Typically, in real-world problem solving domains,

multi-objective problems are the norm rather than the

exception, which compounds the difficulty of many prob-

lems that also exhibit parameter interactions. Our final

requirement is that DE should also utilise the unique

aspects of multi-objective search spaces to find non-dom-

inated solution sets efficiently.

As we mentioned earlier, traditional crossover offers

sampling diversity, but is really only effective on sepa-

rable problems because of the way it generates points. It

would be desirable for DE to have the capability of

producing a large number of samples, while still

remaining effective on non-separable problems in high

decision space dimensions.

1.1 Outline

To begin with, DE is introduced in Sect. 2, as well as the

issues that can hamper the performance of DE. Following

this, clarification of the terminology used in this paper is

provided in Sect. 3. In Sect. 4, we describe the issues

associated with algorithms that are not rotationally

invariant and go on to introduce the Combinatorial Sam-

pling Differential Evolution algorithm, CSDE (Li and Iorio

2008), which attempts to address some of the deficiencies

of existing DE approaches. In Sect. 5, the experimental

methodology and problems are introduced, including

methods employed for evaluating algorithm performance.

Sections 6, 7 and 8 provide the comparative analysis and

results of our experiments, followed by the important

implications and conclusions outlined in Sect. 9

2 Differential Evolution and its limitations

Differential Evolution is a population-based vector-wise

algorithm for global optimization as described by Price

(1996). It has demonstrated its robustness and power in a

variety of applications, such as neural network learning

(Ilonen et al. 2003), IIR-filter design (Storn 1996), and the

optimization of aerodynamic shapes (Rogalsky et al.

1999).

The DE optimization algorithm works by generating

difference vectors between points in the search space, and

using the resulting scaled difference vector to perturb

existing points in the population (Price 1996). For com-

parative purposes, a baseline Differential Evolution algo-

rithm (DE) is employed in this study and described here.

This algorithm is similar to the DE/rand/1/bin (Price 1999,

p. 79–108), but uses a crossover rate of CR ¼ 1:0, making it

rotationally invariant. This baseline algorithm is described

in Algorithm 1. In this approach, the population is iterated

over and every individual has a chance to participate in the

DE calculation. Two randomly selected individuals, xðr1Þ

and xðr2Þ are chosen from the population of size popsize

such that they are not equal to each other or xðiÞ. The DE

calculation is performed for all N parameters and the

mutation component, Fðxðr1Þ
j � x

ðr2Þ
j Þ is added to the current

individual x
ðiÞ
j to perturb xðiÞ. x

ðLÞ
j and x

ðUÞ
j refer to the lower

and upper bounds of parameter xj, respectively. A boundary

repair mechanism is employed when the offspring vector

u
ðiÞ
j is outside the boundary.

Although it is unstated in the algorithm description, the

offspring replaces the parent only if it is fitter than the

parent. In the multi-objective case, the offspring population

and parent population are sorted together, and this is

described in more detail in Sect. 4.3.

Differential Evolution has a number of attractive fea-

tures; difference vectors can be correlated with the search

space, it uses only OðpopsizeÞ processes, it does not need a

predefined probability distribution for generating offspring,

the objective functions do not need to be differentiable, it

can provide multiple solutions from a single run of the

algorithm, it is very simple to implement, and is a parallel

optimization procedure like many other population based

schemes.
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It is important to elucidate further on one of the reasons

for why the rotationally invariant DE/rand/1/bin used in

this study performs poorly on non-separable problems. In

Fig. 1b (Fig. 1a will be discussed after the CSDE algorithm

is introduced), the offspring and parents are represented for

a population size of 4. The number of potential unique

offspring that can be sampled for a single base-vector by

such a scheme is determined by Eq. 1

ðNp� 1ÞðNp� 2Þð2D � 1Þ ð1Þ

where D is the decision space dimension. The term 2D rep-

resents the number of possible offspring that can be gener-

ated from binomial crossover. The term ðNp� 1ÞðNp� 2Þ

is the number of possible offspring that can be generated

from vector-wise mutation. In addition, crossover can

produce duplicate individuals that were already sampled. In

order to not count these individuals, we subtract the

duplicates. It deserves to be noted that Eq. 1 is equivalent

to previous results which reported upon the number of

samples possible in an entire population (Lampinen and

Zelinka 2000).

In accordance with this equation, the offspring distri-

butions in Fig. 1b illustrate an enumeration of all 18 pos-

sible offspring for a single target vector. The first column

of this table details all possible differentials from Fig. 1b.

The second contains the location of offspring produced by

a mutation operation with F ¼ 0:5. The third column

contains the coordinates of unique offspring resulting from

crossover, which do not overlap with offspring resulting

from a mutation operation or any existing parents. The total

number of offspring possible from a population of four

individuals where 0\CR\1:0 is 18.

From Eq. 1, we can see that as the decision space

dimension scales, crossover is responsible for the majority

of the offspring individuals that the algorithm can generate

through the 2D term (Lampinen and Zelinka 2000). It is

also clear from this figure that crossover samples along the

principle coordinate axes, so although it generates many

offspring, it also constrains them to this region. It is only

capable of independent sampling in each decision space

dimension.

If we consider Fig. 1b, where crossover is absent, but

rotational invariance is maintained, significantly fewer

offspring can be sampled for a single base-vector. The

number of potential offspring that can be sampled is equal

to ðNp� 1ÞðNp� 2Þ. The implication here is that a rota-

tionally invariant DE scheme is highly dependent on the

population size to maintain sample diversity. Although it

samples offspring independent of any particular coordinate

axes, it does not scale in the decision space as well as a

scheme incorporating crossover.

3 Parameter interaction concepts and non-separability

In the literature, a number of concepts related to parameter

interactions have been used, such as non-separability,

separability, linkage, and epistasis. Until now, a clear dis-

cussion of how they relate to each other has not been

provided. To this end, we will define these concepts by

showing how they have been used in the literature and

discuss how they relate to each other.

We begin this discussion with a definition of additively

separable functions and derive a number of theorems which

clearly define what additive separability is and the converse

of this, namely non-separability.

(a) (b)

Fig. 1 a The offspring generated from a population of 4 using the

CSDE scheme. b The offspring generated from a population of 4

using the basic DE/rand/1/bin scheme with and without crossover
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Definition 2.6.1 (Additive separable function) A function

of two variables Fðx; yÞ is called additively separable if it

can be represented as f ðxÞ þ gðyÞ for two single-variable

functions f ðxÞ and gðyÞ.

One should note that functions of constants such as

Fðx; yÞ ¼ 2 as well as functions of one variable such as

Fðx; yÞ ¼ hðyÞ are also separable in the additive sense.

Furthermore, if f ðxÞ and gðyÞ equal constants in the defi-

nition then Fðx; yÞ is still additively separable. Consider

also what separability means geometrically for a function,

as detailed in Fig. 2, where for a fixed x ¼ a, each cross

section Fða; yÞ is gðyÞ þ C where C is some constant

translation of the function gðyÞ with C ¼ f ðaÞ. That is, the

sections where x ¼ a for different parameters of a all result

in Fða; yÞ exhibiting the same modalities. Clearly, this

function is additively separable.

A basic necessary requirement for a function to be

additively separable can be obtained if we assume that

Fðx; yÞ ¼ f ðxÞ þ gðyÞ and we then study the behavior of the

function at its four extremes fða; bÞ; ðc; bÞ; ðc; dÞ; ða; dÞg
(Fig. 3). From this, we can derive Fðc; bÞ þ Fða; dÞ �
Fða; bÞ ¼ ðf ðcÞ þ gðbÞÞ þ ðf ðaÞ þ gðdÞÞ � ðf ðaÞ þ gðbÞÞ ¼
f ðcÞ þ gðdÞ ¼ Fðc; dÞ. The following theorem follows

from this.

Theorem 2.6.1 If Fðx; yÞ is additively separable, then for

all fa; b; c; dg it follows that Fðc; bÞ þ Fða; dÞ � Fða; bÞ ¼
Fðc; dÞ.

Using a ¼ b ¼ 0 and c ¼ d ¼ 1 we can see Fðx; yÞ ¼ xy

is non-separable according to our definition, because the

left hand of this equation equals zero and the right hand

side is equal to one. In addition, if we let f ðxÞ ¼ ðx; 0Þ and

gðyÞ ¼ Fð0; yÞ � Fð0; 0Þ and use Theorem 2.6.1 with x ¼
c; y ¼ d and a ¼ b ¼ 0 we get Fðx; yÞ ¼ Fðx; 0Þþ
Fð0; yÞ � Fð0; 0Þ ¼ f ðxÞ þ gðyÞ.

Obviously, if Fðx; yÞ ¼ f ðxÞ þ gðyÞ then the partial

derivatives of F are easy to compute. Fx ¼ f 0ðxÞ since gðyÞ
is constant as a function of x. Similarly, Fy ¼ g0ðyÞ, Fxx ¼
f 00ðxÞ;Fyy ¼ g00ðyÞ and more importantly Fxy ¼ Fyx ¼ 0

when Fðx; yÞ is separable. This can be re-stated in Theorem

2.6.2.

Theorem 2.6.2 If Fðx; yÞ is additively separable, then
d2F
dxdy ¼ 0:

Theorem 2.6.2 provides us with a means to measure

the separability of a function and this notion can be

expanded upon with the use of a Hessian matrix.

Parameter interactions can be measured directly using a

Hessian matrix (Newham et al. 2003). The Hessian matrix

(Eq. 2) is useful for measuring parameter interactions and

is the square matrix of second-order partial derivatives of

a function.

Hðf Þ ¼

d2f
dx2

1

d2f
dx1dx2

� � � d2f
dx1dxn

d2f
dx2dx1

d2f
dx2

2

� � � d2f
dx2dxn

..

. ..
. . .

. ..
.

d2f
dxndx1

d2f
dxndx2

. . . d2f
dx2

n

2
666664

3
777775

ð2Þ

The mixed second-order derivatives of a function are the

entries off the main diagonal in the Hessian, and these

derivatives provide a indication of the degree to which

parameters are interacting with each other. The second-

order derivative test is a criterion often useful for

determining whether a given stationary point of a

function is a local maximum or a local minimum. If the

second-order derivative is less than zero, then the function

has a local maximum at that point, if it is greater than zero

then it has a local minimum, and if it is zero then the

second derivative test says that the variables are separable.
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Fig. 2 Graph of sinðxÞ þ sinðyÞ, a separable function

(a,d)

(a,b)

(c,d)

(c,b)

Fig. 3 Four extreme corners fða; bÞ; ðc; bÞ; ðc; dÞ; ða; dÞg of a func-

tion Fðx; yÞ
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In the last case, the function may have a local maximum or

minimum there, but the function is sufficiently ‘flat’ that

this is undetected by the second derivative. Such ‘flat’

situations arise where parameters have very little

interaction with each other.

In the Hessian matrix, element (i, j) of H can be

approximated by Eq. 3 where fij is the output when

parameters with indices i and j are perturbed, fi and fj are

the output values when each parameter is perturbed inde-

pendently, and Mxi and Mxj are the parameter perturbations.

d2f

dxidxj
ffi fij � fi � fj þ fo

MxiMxj
ð3Þ

From this equation, it is also apparent that if fij is a larger

perturbation than fi and fj then xi and xj exhibit parameter

interactions with each other. If the change resulting from a

perturbation of two variables is greater when they are

perturbed together, as opposed to when they are perturbed

individually, we can say that these variables interact with

each other. The definition of what constitutes separability

and non-separability provided in this section, is the defi-

nition we employ for the remainder of this paper.

Related to the notion of additively separable and non-

separable problems is the linkage problem (Whitley 1991)

associated with Genetic Algorithms and binary represen-

tations.

Consider the simple 3-bit deceptive problem in Fig. 4

which shows the allele values and the fitness of each

chromosome. In this problem, the chromosome with 111

has the highest fitness. The problem is considered decep-

tive because a canonical Genetic Algorithm is deceptively

guided towards the 000 chromosome even though it is sub-

optimal.

We remind the reader that in the context of Evolutionary

Algorithms a separable problem can be solved by individu-

ally perturbing the additively separable element of the

problem, such as f ðxÞ or gðyÞ. In a non-separable problem,

f ðxÞ and gðyÞ must be solved simultaneously to find the

optimal solution. The deceptive trap problem of Fig. 4 is

related to the concept of non-separability because to find the

optimal solution a number of mutations would have to occur

simultaneously and constructively for each allele. Individual

mutations of alleles lead towards the trap. Although mutation

is not the only scheme that could help the search, crossover

would require the relatively unfit individuals 011, 110, and

101 to be maintained by the population, which is unlikely

because they are not deemed to be fit.

Practitioners in Evolutionary and Genetic Algorithms

frequently borrow nomenclature from the biological sci-

ences. One such term is epistasis, which is the interaction

between genes. In the biological sense, epistasis takes place

when the fitness resulting from a gene can be masked by

one or more other genes. A definition of epistasis in the

field of Genetic Algorithms is ‘‘the effect on chromosome

fitness of a combination of alleles which is not merely a

linear function of the effects of the individual alleles’’

(Reeves and Wright 1995). This can be related to the

deceptive trap problem which exhibits a high degree of

epistasis, in that 011 has a low fitness due to the masking

effect of 0, and fitness in this instance is clearly not a linear

function of the effects of the individual alleles.

Similarly, epistasis in real-valued problems has come to

mean the non-separability of the problem, and by defini-

tion, the presence of non-linear interactions between

parameters. As described by Salomon (1997), ‘‘Epistasis

describes a nonlinear interaction of parameters with respect

to the fitness of an individual.’’

It is important to note at this point that even though a

function can be non-linear, such as the function x2 þ y2,

this function is obviously separable and the interactions

between parameters are the result of the addition term,

which results in a linear parameter interaction. Nonlinear

interactions are the result of non-additive operators acting

on two or more variables in a function, such as xy2 or x=y.

From this discussion, it is clear that the concept of epistasis

and non-separability (which is the result of a non-linear

parameter interaction between sub-functions of a problem)

are one and the same.

Finally, an interesting observation can be made with

respect to how separable problems can be turned into non-

separable problems. Consider the ellipsoid function

Fðx; yÞ ¼ f ðxÞ þ f ðyÞ where f ðxÞ ¼ x2 and f ðyÞ ¼ a0y2.

This function is separable, but after rotation (which is a

linear transformation of the function and does not change its

landscape, only its orientation), the ellipsoid function

becomes Fðx; yÞ ¼ x2 þ a1xyþ a0y2, a non-separable

function with parameter interactions introduced through the

term xy. Note that the term a1 plays an important role with

respect to the degree of parameter interactions. We note that

the use of multiplication to introduce parameter interactions

is not new; the approach from (Deb et al. 2006) introduces

parameter interactions between decision variables in a test

problem, using a transformation matrix that performs

shearing, scaling, and rotation. One of the limitations of this

approach is that a shearing or scaling operator changes the

fitness landscape, so the experimenter has to be particularly

careful to maintain the desired characteristics of the original

fitness landscape in each objective. Care must be taken with

any conclusions that are drawn, either as a result of

parameter interactions introduced to the problem, or as aFig. 4 3-bit deceptive problem
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result of a scaling or shearing of the original fitness land-

scape. Similarly, the approach described in Pelikan et al.

(2000) introduces epistasis through the multiplication of

parameters. The common element between these approa-

ches is that parameter multiplication is responsible for

parameter interactions.

Figure 5 shows the rotated ellipsoid function with

a1 ¼ 1:0. We note that the value of a1 is the result of the

second-order partial derivative Fxy ¼ Fyx ¼ a1. Clearly the

ellipsoid with a1 ¼ 1:0 is non-separable. Figure 6 shows

the ellipsoid function plotted again with a1 ¼ 0:001, indi-

cating a high degree of separability. As stated earlier, if the

second-order partial derivative is zero then the problem is

separable and there are no parameter interactions, and we can

see that as a1 approaches zero the ellipsoid function increases

in symmetry and approaches the configuration of a sphere

function. Furthermore, the application of a rotation operation

in the decision space of a non-linear test problem can be used

to introduce non-separability, although clearly it is not the

sole means to do so; it just provides a convenient way to do it.

Although rotation is not the only means by which parameter

interactions can be introduced (they can be introduced with a

multiplication operation as we described earlier), it is con-

venient in that it allows one to explore the performance

characteristics of an algorithm without biasing the experi-

ments towards any particular coordinate axes.

4 Rotationally invariant approaches, correlated

sampling, and the CSDE: an improved sample-based

DE algorithm

In the previous section, we mentioned how rotation can

introduce parameter interactions. Now, imagine an

arbitrary orientation of the fitness landscape and an algo-

rithm which can find the optimum of such a landscape

irrespective of the orientation of the landscape. An algo-

rithm with this property is said to be rotationally invariant.

Typically, the rotationally invariant property of an

algorithm is related to the distribution of offspring. For

example, in Fig. 7, the distribution of offspring clearly

changes when the relative position of the parents change,

indicating that a non-rotationally invariant operator is used

to generate offspring. If the distribution of offspring gen-

erated by an evolutionary optimization algorithm varies in

relation to the relative orientation of the parents then the

algorithm is said to be non-rotationally invariant. A rota-

tionally invariant evolutionary algorithm would produce

the same offspring distribution irrespective of the orienta-

tion of the parents, as detailed in Fig. 8.

If an optimization algorithm produces better perfor-

mance when parent solutions are aligned with a particular

coordinate axis, then such an algorithm is not rotationally

invariant.

Another feature of evolutionary algorithms is whether

they are capable of producing correlated samples. For

example, in Fig. 9, the uncorrelated sampling scheme

samples using a distribution which is independent of the

search space being explored by the algorithm. This can

result in inefficient exploration of the space. Ideally, in this

example, the step sizes along the length of the space should

be larger than those along the breadth of the search space.

In the correlated sampling scheme, the offspring candidates

are efficiently sampled with respect to the extent of the
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Fig. 5 Fðx; yÞ ¼ x2 þ a1xyþ a0y2 with a1 ¼ 1:0
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Fig. 6 Fðx; yÞ ¼ x2 þ a1xyþ a0y2 with a1 ¼ 0:001
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search space, resulting in greater efficiency of the search.

As we stated in the introduction, DE has the attractive

feature of generating correlated samples.

The characteristic of being rotationally invariant and the

ability to produce correlated samples are both critically

important features for efficient exploration of the search

space.

In this section, we describe the Combinatorial Sampling

Differential Evolution (CSDE) algorithm (Li and Iorio

2008) which uses a ‘target’ best individual and maintains

diversity using the sampling of difference vectors from two

parent vectors. For the purpose of simplicity, we describe

the behavior of the algorithm in a two-dimensional deci-

sion space, although the process easily generalizes to an

arbitrary number of decision space dimensions. We also

discuss some of the advantages and characteristics of the

approach which are different from the typical DE.

4.1 The CSDE algorithm

The CSDE algorithm works like many other DE algorithms

and is described in Algorithm 2. Each individual xðiÞ has an

opportunity to participate in the DE calculation. A second

individual xðrÞ is chosen for a difference vector calculation

such that the population index r is not equal to i, and r is an

index randomly chosen from the population.Distribution of offspring Distribution of offspring
when parents are aligned
with principle coordinate
axis.

when parents are not aligned
with principle coordinate
axis.

P1

P2

P1 P2

Fig. 7 Distribution of offspring from a non-rotationally invariant

operator

Distribution of offspring
when parents are not aligned
with principle coordinate
axis.

Distribution of offspring
when parents are aligned
with principle coordinate
axis.

P1

P2

P2P1

Fig. 8 Distribution of offspring from a rotationally invariant operator

P1P1

Distribution of offspring
from an uncorrelated
sampling scheme.

Distribution of offspring
from a correlated
sampling scheme.

Search space

Fig. 9 Distribution of offspring from correlated and uncorrelated

sampling schemes
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Two types of samples are performed in this algorithm

around an individual that is deemed to be better than

another. The first type of sample we call a C-sample

(correlated sample), which is outlined in Algorithm 3, such

that the vector difference and perturbation are in the same

direction, around a better individual (In Fig. 10, xðiÞ is

better than xðrÞ, for the purpose of explaining the operation

of the algorithm. Of course, if the opposite was true, then

sampling would occur around individual xðrÞ. In Algo-

rithms 3 and 4, ‘better’ is described in a multi-objective

context, with rank and crowding distance, as expanded

upon in Sect. 4.3. For single-objective domains ‘better’ is

with respect to a single fitness function evaluation). The

point labeled by � ` corresponds to the point specified by

Eqs. 4 and 5. In these equations, u
ðiÞ
1 represents the off-

spring parameter from the DE mutation equation for the

first parameter in the decision vector, and u
ðiÞ
2 represents the

offspring for the second parameter in the decision vector.

Similarly, the point labeled by ´ ˆ corresponds to the

point specified by Eqs. 6 and 7. Both points � ` and ´ ˆ

are correlated because they are in the same direction as the

difference vector. The points at � ` and ´ ˆ are sampled

with the same probability.

u
ðiÞ
1 ¼ x

ðiÞ
1 þ FðxðiÞ1 � x

ðrÞ
1 Þ ð4Þ

u
ðiÞ
2 ¼ x

ðiÞ
2 þ FðxðiÞ2 � x

ðrÞ
2 Þ ð5Þ

u
ðiÞ
1 ¼ x

ðiÞ
1 þ FðxðrÞ1 � x

ðiÞ
1 Þ ð6Þ

Fig. 10 In a two-dimensional decision space vectors are sampled

around a ‘better’ individual
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u
ðiÞ
2 ¼ x

ðiÞ
2 þ FðxðrÞ2 � x

ðiÞ
2 Þ ð7Þ

The second type of sample is labeled in Fig. 10 by � ˆ

and ´ ` which, respectively, correspond to the points

generated by Eqs. 4 and 7 and Eqs. 6 and 5. In the CSDE

scheme, when Eqs. 4 and 7 are used, then the points at � ˆ

can be generated. Similarly, when Eqs. 6 and 5 are used the

points at ´ ` can be generated. Figure 10 demonstrates

how points are generated depending on which combination

of DE equations are used. Both of these samples are

uncorrelated and not rotationally invariant because the

magnitudes of the difference vectors for these samples is

the result of the difference between xðiÞ and xðrÞ and they

vary depending on the orientation of xðiÞ and xðrÞ. It is this

second type of sampling that contributes diversity to the

search. In traditional DE, only a single difference vector

can result from two points. Our approach dramatically

increases the number of possible samples at the expense of

always generating rotationally invariant correlated sam-

ples. We call these sample points UC-samples (uncorre-

lated and correlated samples), the generation of which is

described in Algorithm 4. UC-Sampling occurs with equal

probability for each possible point, including the rotation-

ally invariant correlated sample points � ` and ´ ˆ and

the uncorrelated points � ˆ and ´ `. As the decision

space dimension scales, the number of such samples

increases in proportion to 2D, where D is the decision space

dimension. In two decision space dimensions, there are

four equations that can specify the possible sample points.

In three dimensions, there will be eight equations. This can

easily be implemented programmatically by specifying an

equal probability for u
ðiÞ
j ¼ x

ðiÞ
j þ FðxðiÞj � x

ðrÞ
j Þ and u

ðiÞ
j ¼

x
ðiÞ
j þ FðxðrÞj � x

ðiÞ
j Þ to be used for each decision space

parameter j ¼ 1 to D, so that all possible samples have an

equal chance of occurring.

Whether a C-sample or UC-sample occurs is determined

probabilistically by a control parameter j. This parameter

is responsible for controlling the balance between C-sam-

pling and UC-sampling in the generation of offspring.

4.2 Characteristics and advantages of the CSDE

approach

In CSDE, there are two pressures in the generation of

offspring; exploitation results from the highly correlated

rotationally invariant samples (C-samples) being gener-

ated, which rapidly drives the algorithm towards better

solutions, and exploration occurs from the UC-sampling,

which attempts to discover new and diverse points around

the better individual. The UC-sampling method sacrifices

emphasis on correlated rotationally invariant points for a

dramatic increase in diversity as the decision space

dimension scales to higher dimensions. The general idea of

this approach is to increase the diversity that DE is capable

of generating using a relatively small population size.

A critical point to consider here is that although crossover is

also not a rotationally invariant scheme, it only generates

points which are aligned with the target parent. The

UC-samples are not biased in such a fashion, and although

they do not result in rotational invariance, they do produce

offspring sample vectors distributed around the target vector.

An attractive feature of CSDE is that the number of

potential offspring that can be sampled is bounded by 2D,

as in the crossover based DE described in Fig. 1b.

Figure 1a shows how offspring is sampled using our approach.

The number of candidates that can potentially be sampled

around a base-vector in the sampling based approach is in

proportion to ðNp� 1Þ2D. From Fig. 1a, CSDE is superior

to standard DE with crossover because it can generate

points that are not solely sampled along the principle

coordinate axes, unlike DE with crossover in Fig. 1b. As a

result, CSDE can be highly effective on problems which

are non-separable compared with an algorithm which only

produces biased samples along the principle coordinate

axes aligned with a parent target vector. Furthermore, it

bears mentioning that the smallest population size that

CSDE can work with is two, unlike rotationally invariant

DE/rand/1/bin which requires four individuals.

The difference in efficiency between the CSDE

approach and DE/rand/1/bin is detailed further in Fig. 11

where the CSDE is capable of generating offspring in near

optimal regions of the search space with far fewer samples

than the DE/rand/1/bin approach. Although crossover

based DE generates more points, it is apparent from this

figure that the sampling based CSDE scheme is superior

because of the greater focus it produces on more promising

regions of the search space. In contrast, it is clear that

crossover based DE/rand/1/bin samples many more off-

spring but such offspring may not be advantageous towards

finding the optima efficiently.

best individuals

(b)(a)

Possible child
Parent candidate

Region encapsulated by

Fig. 11 Distribution of all possible offspring from 3 parent individ-

uals and a mutation scaling factor F = 0.5. a CSDE and b DE/rand/1/

bin with crossover
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The proposed sampling based approach can be effi-

ciently directed towards more optimal regions using

appropriate vector selection. The CSDE approach is also

capable of generating more points than standard rotation-

ally invariant DE and like rotationally invariant DE/rand/1/

bin, only OðNpÞ processes are required.

4.3 CSDE in a multi-objective domain

In the previous section, we described how CSDE samples

vectors near a ‘fitter’ individual. An individual is deemed to

be better than another individual with respect to fitness to

determine an appropriate direction for the vector difference.

If a better direction is not apparent from the measures of

fitness associated with both individuals, then a direction

is chosen randomly. In the single-objective domain, there is

only one measure of fitness to determine if an individual is

better than another, but in a multi-objective optimization

domain there are multiple conflicting objectives. In order to

evaluate the performance of CSDE in a multi-objective

domain, the NSGA-II (Deb et al. 2002) framework is

employed with DE substituting for the recombination/

mutation operations in this algorithm. In the NSGA-II

individuals are first compared based on their dominance

rank. If individuals are of the same rank, they are compared

on their crowding distance. This comparison is described in

Algorithms 3 and 4. If after these comparisons, the indi-

viduals are deemed to be equivalent, then a random direction

for the vector is chosen. The second difference between the

single-objective optimization algorithm runs and the multi-

objective runs incorporating NSGA-II is that in the single-

objective optimization runs if an individual has better fitness

than another individual it replaces the inferior individual in

the population. In the multi-objective variant of CSDE

incorporating NSGA-II, replacement is determined by non-

dominated sorting and elitism procedures. We refer the

reader to (Deb et al. 2002) for more detailed information on

how the NSGA-II is implemented.

5 Experiments and methodology

Four DE variants are evaluated in this study. First, a

baseline DE technique incorporating three vectors is

employed. This baseline approach was briefly discussed in

the introductory section. For our purposes, the baseline DE

algorithm used here for benchmarking is equivalent to the

DE/rand/1/bin approach (Lampinen and Zelinka 2000)

because we use it with CR ¼ 1:0 in this study.

Second, the CSDE algorithm is evaluated with j set to

1.0, 0.5 and 0. When j is set to 0.5, half the time the

algorithm favors C-samples that are highly directed towards

better solutions, otherwise it performs UC-sampling. When

j is set to 0 there is no bias, and vectors are sampled using

UC-sampling only. In addition, when j is set to 1.0, the

algorithm solely performs C-samples.

A population size of 100 individuals is used for each of

the algorithms on each of the test problems for the per-

formance evaluation of the variants over time (unless stated

otherwise). For all the DE variants, F is set to 0.5.

A rotation matrix O is used to introduced parameter

interactions between decision variables, thereby making

the problem non-separable. The same random seed is used

for each run of an algorithm on a specific test problem.

Rotations for each of these test problems are performed in

the decision space, on each plane, using a random uniform

rotation matrix, which introduces parameter interactions

between all parameters (Iorio and Li 2006). Each algorithm

is run 50 times on each single-objective test problem, for a

total of 200,000 problem evaluations (unless stated other-

wise) for each run to demonstrate a sufficient amount of

time is given to the canonical DE algorithm. A new random

uniform rotation matrix is generated for each run of each

algorithm for the purpose of an unbiased assessment. For

the multi-objective test problems, algorithms are run for 50

generations (5,000 problem evaluations) to demonstrate the

CSDE is capable of relatively fast performance.

The problems that are used in the evaluation of each of

the algorithms in the single objective domain are the

rotated Rosenbrock, Griewangk, Ackley and Rastrigin

functions. In addition, the Rosenbrock function is evalu-

ated with the algorithm variants to determine sensitivity to

population size and scalability in the decision space.

5.1 Multi-objective test problems with parameter

interactions

In order to assess the comparative performance of the

CSDE on multi-objective problems exhibiting parameter

interactions, we use four problems from the literature

which are rotated using an orthonormalized rotation matrix

which generates randomly uniform rotations for a unit-

vector (Iorio and Li 2008).

f1ðyÞ ¼ y1

f2ðyÞ ¼ gðyÞhðf1ðyÞ; gðyÞÞ

hðf1ðyÞ; gðyÞÞ ¼ exp
�f1ðyÞ
gðyÞ

� �

gðyÞ ¼ 1þ 10ðN � 1Þ þ
XN

i¼2

y2
i � 10 cosð4pyiÞ

� �

y ¼ Ox;�0:3� xi� 0:3; for i ¼ 1; 2; . . .;N

f1j j � 0:3

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðP1Þ

Problem P1 is characterized by a slightly inclined valley in

objective f2. Objective f1 is a plane with a gradient sloping
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in an opposing direction to the incline of objective f2. The

Pareto-optimal set is represented by a line segment

bisecting the decision space in objective f2 and f1, respec-

tively. This problem was constructed using the ZDT

framework. The g function specifies the modalities of

the problem, and the h function specifies the shape of the

Pareto-optimal front. In Problem P1, the decision space is

subject to a rotation matrix O.

Three further rotated problems which are also described

in Iorio and Li (2008) will be used in this study. Problem

P2 has a Pareto-optimal front which is not continuous, as

specified by the h function. f1 is bounded to the range,

f1j j � 1:0, to guarantee that the values of f1 do not go out of

range during rotation. This problem presents a difficulty to

an optimization algorithm, because such an algorithm has

to locate a number of discontinuous Pareto-optimal fronts.

f1ðyÞ ¼ y1

f2ðyÞ ¼ gðyÞhðf1ðyÞ; gðyÞÞ

hðf1ðyÞ; gðyÞÞ ¼ 1:0þ exp
�f1ðyÞ
gðyÞ

� �

þ f1ðyÞ þ 1:0

gðyÞ

� �
ðsinð5pf1ðyÞÞÞ

gðyÞ ¼ 1þ 10ðN � 1Þ þ
XN

i¼2

y2
i � 10 cosðpyiÞ

� �

y ¼ Ox; �1:0� xi� 1:0; for i ¼ 1; 2; . . .;N

f1j j � 1:0

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ðP2Þ

Problem P3 has decision space variables which

increment at a regular interval, evaluate with non-regular

intervals in the objective space, making it hard to find a

uniform distribution of points along the Pareto-optimal

front. The density of solutions is lower towards lower f1

values, making it difficult to find solutions in this region. f1

is bounded to the range, 0:3� f1� 1:0, to guarantee that the

values of f1 evaluate consistently no matter what rotation

operation the decision space vector is subjected to. Plots of

the objective space are not shown as the objective space is

unchanged under a rotation of the decision space.

f1ðyÞ ¼ 1:0� expð2:0y1Þsin6ð6py1Þ=9:0

f2ðyÞ ¼ gðyÞhðf1ðyÞ; gðyÞÞ

hðf1ðyÞ; gðyÞÞ ¼ 1:0� f1ðyÞ
gðyÞ

� �2

gðyÞ ¼ 1þ 10ðN � 1Þ þ
XN

i¼2

y2
i � 10 cosðpyiÞ

� �

y ¼ Ox; �1:0� xi� 1:0; for i ¼ 1; 2; . . .;N

0:3� f1� 1:0

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðP3Þ

Problem P4 is based on the Schwefel function, and is

multi-modal and highly deceptive with a local Pareto-

optimal front which is close to the global Pareto-optimal

front. In the decision space the local Pareto-optimal region

is actually located far from the Pareto-optimal set in the

decision space.

f1ðyÞ ¼ y1

f2ðyÞ ¼ gðyÞhðf1ðyÞ; gðyÞÞ

hðf1ðyÞ; gðyÞÞ ¼ exp
�f1ðyÞ
gðyÞ

� �

gðyÞ ¼ 1:0þ 0:015578ðN � 1:0Þ

þ
XN

i¼2

ðy2
i � 0:25ðyisinð32:0

ffiffiffiffiffiffi
yij j

p
ÞÞÞ

y ¼ Ox; �1:0� xi� 1:0; for i ¼ 1; 2; . . .;N

f1j j � 1:0

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ðP4Þ

5.2 Measuring algorithm performance

on multi-objective problems

A critical question arises when one is dealing with multi-

objective problems, and that is how can one measure their

performance? It is apparent that there are many different

performance metrics reported in the literature, some of

which are used more frequently than others. Furthermore,

some performance metrics have highly desirable theoretical

qualities. The first of these that we report on is the hyper-

volume indicator. As proposed by Zitzler and Thiele (1998),

the fundamental idea of this approach is that the larger the

area the solutions can cover in the objective space, the better

the approximation set is. It measures the size of the area that

is dominated by the boundary resulting from the approxi-

mation set in the objective space. It has the attractive feature

of not requiring a known Pareto-optimal set to evaluate the

quality of the approximation set. The hyper-volume indi-

cator is particularly attractive for practitioners interested in

evaluating approximation sets because whenever one

approximation set dominates another approximation set, the

hyper-volume indicator always yields a better value for the

dominating set (Fleischer 2003). Due to its desirable char-

acteristics and its wide use by practitioners, we have used it

in this study.

6 Results on single and multi-objective test problems

From Fig. 12a, it is apparent that CSDE with j ¼ 0:5 is

insensitive to an increase in decision space size on the 100

dimensional rotated Rosenbrock function. In addition, it is

able to find highly competitive solutions which are far

superior to a canonical rotationally invariant DE/rand/1/bin

approach, which performed poorly. In addition, in Fig. 12b

one can see that the CSDE approach with j ¼ 0:5 is highly

insensitive to a change in population size and is capable of
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finding similarly good solutions after 200,000 evaluations

because of the order of magnitude higher degree of sam-

pling that is possible compared with the canonical rota-

tionally invariant DE/rand/1/bin. In contrast, the

performance of CSDE with j ¼ 0 where only U-sampling

is performed, peaks in performance between a population

size of 20–100 individuals on the rotated Rosenbrock

function in 100 dimensions. This indicates that a large

population size detracts from the performance of CSDE

when U-sampling is used. The reasons for this are that as

the number of individuals in the population increases, the

probability of sampling highly directed correlated samples

reduces when U-sampling is employed. Rotationally

invariant correlated sampling is clearly beneficial to the

performance of the CSDE approach, to make it more

insensitive to the population size. In contrast, the CSDE

approach with j ¼ 1:0 is highly dependent on population

size for sampling diversity, and the performance only

begins to approach CSDE with j ¼ 0:5 as the population

size approaches 500 individuals on this problem. It is also

clear from Fig. 12 that rotationally invariant DE/rand/1/bin

performs extremely poorly on the 100 dimensional

Rosenbrock problem in the presence of parameter

interactions.

From these results, it is clearly apparent that when

j ¼ 0:5, the CSDE algorithm has superior performance

over the UC-sampling approach which uses j ¼ 0. This

indicates that sampling of highly directed rotationally

invariant correlated vectors is critically important for the

algorithm to remain insensitive to population size varia-

tions as well as discover highly fit solutions in extremely

large decision spaces.

In order to test the performance of the variants

over time, the rotated Ackley, Rastrigin, Griewangk and

Rosenbrock functions were employed with 100 dimen-

sions. The results in Fig. 13 indicate that the performance

of the CSDE approach with j ¼ 0:5 are dramatically

superior to the rotationally invariant DE/rand/1/bin algo-

rithm which does not employ sampling.

In Figs. 14, 15, 16, and 17, the average hyper-volume

indicator value over 50 generations is presented on prob-

lem P1, P2, P3, and P4 respectively in both the rotated

(non-separable) and un-rotated (separable) case. Further-

more, from these results one can see that NSGA-II with

SBX becomes competitive with CSDE ðj ¼ 0:5Þ when the

problems are un-rotated after about 50 generations. When

the problems are rotated, NSGA-II with SBX is no longer

competitive with CSDE ðj ¼ 0:5Þ. Furthermore, even the

UC-sampling approach in CSDE with j ¼ 0 is competitive

with NSGA-II in the rotated cases. The baseline DE

approach demonstrated the worse performance in both the

rotated and un-rotated cases. In addition, when j ¼ 0:5

CSDE has superior performance over CSDE with j ¼ 0.

This indicates that highly directed rotationally invariant

correlated samples in addition to vectors which contribute

to diversity is critically important for the algorithm to make

efficient progress.

In order to test the scalability of the CSDE approach,

Problem P1 is optimized in 200 decision space dimension

(Fig. 18). The relative performance of each of the rota-

tionally invariant DE algorithms is similar in the rotated and

un-rotated case. NSGA-II demonstrates that it has signifi-

cant difficulties in such a high decision space dimension in

the presence of parameter interactions. Interestingly, the

baseline DE is the second best performing approach next to

the CSDE ðj ¼ 0:5Þ. One would expect that the much

higher degree of sampling in CSDE ðj ¼ 0Þ would dem-

onstrate better performance than the baseline DE. The

obvious explanation is that although the CSDE ðj ¼ 0Þ
which performs UC-sampling provides many samples, the

vast majority of the samples are not rotationally invariant

nor correlated with the search space unlike the baseline DE.

When j ¼ 0:5 half the time rotationally invariant correlated

and highly directed C-sampling is performed, improving the

 0.0001

 0.01

 1

 100

 10000

 0  100  200  300  400  500

F
itn

es
s

Number of decision space dimensions

Decision space dimension size vs Fitness (200,000 evaluations)

Directed CSDE κ=0
Directed CSDE κ=0.5
Directed CSDE κ=1.0

DE

 10

 100

 1000

 10000

 0  50  100  150  200  250  300  350  400  450

F
itn

es
s

Population size

 Population size vs Fitness (200,000 evaluations)

Directed CSDE κ=0
Directed CSDE κ=0.5
Directed CSDE κ=1.0

DE

(b)

(a)
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performance of CSDE. The result reported here is consistent

with the observation that biasing selection pressure can

improve the performance of differential evolution on non-

separable problems (Sutton et al. 2007). Whether the bias is

a result of favoring fitter solutions for selection, or biasing

the direction of the search as is the case with our approach,

both are useful for improving the performance of rotation-

ally invariant DE on difficult non-separable optimization

problems.

7 Multi-objective truss-topology optimization problems

The truss problems we attempt to optimize in this paper

have parameter interactions between some, but not all of

the parameters. Many models that approximate problems in

the real world are of this type, and the purpose of this case

study is to investigate and evaluate the performance of the

CSDE on such a problem.

In this paper, we address the question of whether or not

the CSDE is efficient and competitive in comparison with a

multi-objective genetic algorithm applied to a multi-objective

truss-topology optimization problem. The purpose of the

study presented in this chapter is to convincingly demon-

strate that the CSDE can also be practically applied to real
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world problems, such as the plane truss optimization

problem, and demonstrate its competitiveness with

NSGA-II incorporating the SBX operator with polynomial

mutation. Furthermore, we describe the truss-topology

optimization problem in detail so that practitioners can

implement the FEM (Finite Element Model) we have

employed in this study.

The multi-objective optimization of truss structures has

received attention from both the structural engineering

community, and from evolutionary optimization practitio-

ners (Ruy and Yang 2001; Coello and Christiansen 2000;

Deb et al. 2000). In truss-structure design optimization, a

number of objectives can be considered, such as the min-

imization of stresses in the truss, minimization of the

weight, and the minimization of displacement of truss

nodes. These objectives are sometimes formulated as a

single objective problem with a constraint, or as a multi-

objective problem.

In the following study, given a model of a truss, the

optimization task is to find the Pareto-optimal set of trade

off solutions with respect to the two objectives: minimizing

the worst displacement of any node in the truss, and min-

imizing the weight of the truss.

An approach for modeling truss structures for the pur-

pose of multi-objective optimization was described in Deb

et al. (2000), which builds upon an approach applied to

single objective optimization (Deb et al. 1998). In the

multi-objective approach, truss structures are minimized

with respect to weight and displacement of nodes. These

objectives are conflicting, in that lighter trusses can be

expected to have greater node displacement, and vice

versa. Furthermore, truss topology and member cross sec-

tion areas are evolved.

A truss structure is composed of a number of bars

connected to each other at node points. The node points

that are required are called basic nodes, and node points

that may or may not be present in the truss are termed

non-basic nodes. Typically, the basic nodes are the

support nodes and the load bearing nodes. In the case of

Fig. 19, the support nodes are � and `, and the load

bearing nodes are ´ and ˜. All nodes are also numbered

in an enclosed circle, and the bar numbers are not

circled.
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Each bar in the truss has a cross-sectional area associ-

ated with it. Each of the members in the truss are identified

and numbered (Fig. 19). The cross-sectional areas are a

vector of real-values, one for each bar, which undergoes

evolution for the purposes of finding more optimal values

for these areas. The bars are initialized within the range of

-A to A. Bars that have cross-sectional areas less than

some critical value �1, are not included in the realized truss

structure, or any calculations to determine the forces and

displacements of the realized truss structure. The possi-

bility of the cross-sectional area of each bar taking on

values less than �1 provides a means of discovering a

variety of different topologies for the truss. For example,

Fig. 20 shows bars 2, 5, 6, and 10, absent from the realized

truss structure.

Most models of problems we find in the real-world are

constrained problems, and the plane-truss structural opti-

mization problem is no exception. In order to implement

this problem, a number of constraints must be calculated.

For the truss topology and shape design problem, three

types of constraints are considered: Constraint-I specifies

the degree to which the truss is acceptable to the user,

Constraint-II specifies whether the truss is kinematically

stable or not, and Constraint-III deals with tension in the

truss structure.

Constraint-I The first constraint is concerned with

whether or not the realized truss structure is acceptable to

the user. A structure is acceptable if all basic nodes are
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Fig. 17 Average hyper-volume over successive generations on

problem P4 in 30 decision space dimensions dimensions
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Fig. 18 Average hyper-volume over successive generations on

problem P1 in 200 decision space dimensions dimensions

Fig. 19 The 10 bar truss problem with all bars present
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present in the realized truss structure (Eq. 8), where NoBN

is Number of Basic Nodes and NoBNP is Number of Basic

Nodes Present. The presence of basic nodes can be dis-

covered with a simple breadth first search of the truss

structure. If constraint c1 is violated, no further calculations

occur.

c1 ¼ �ð10e15Þ � ðNoBNÞ � ðNoBNPÞ ð8Þ

Constraint-II The second constraint is concerned with

determining if the truss is kinematically stable. This is

achieved with a Singular Value Decomposition of the

stiffness matrix. Before this can occur, the stiffness matrix

needs to be computed, First, an automatic scheme for

numbering the degrees-of-freedom, of each node in the

realized truss is used. This numbering scheme can be

started from an arbitrary node in the structure, but should

be applied consistently (see Fig. 21). The basic load

bearing nodes have their degrees-of-freedom numbered

first, followed by the nodes with unknown displacements.

Finally, the degrees-of-freedom of the support nodes

are numbered as in Fig. 21. This scheme for numbering

the degrees-of-freedom of the realized truss simplifies the

calculation of displacements at each node. At this stage,

the stiffness matrix of the realized truss is computed using

the Direct Stiffness Method (Hibbeler 2006). Each of the

elements in the realized truss has to be transformed from its

local coordinates to global coordinates. Equations 9 and 10

are used to calculate the direction cosines for a member in

the realized truss.

kxi
¼ cos hxi

¼ xFi
� xNi

Li
i ¼ 1; . . .;m ð9Þ

kyi
¼ cos hyi

¼ yFi
� yNi

Li
i ¼ 1; . . .;m ð10Þ

xFi
is the x-coordinate of the far end of member i, and xNi

is

the x-coordinate of the near end of member i, where there

are m members in the realized truss. These direction

cosines are used in the global stiffness matrix ki. In this

matrix calculation, the global stiffness matrix, ki, is

calculated for each member m in the realized truss. The

indices of the global stiffness matrix are numbered, and

correspond to the degrees-of-freedom of the truss. In

Fig. 21, the arrows along each member show the direction

from the near to far ends of a member, and each node is

numbered with its degrees-of-freedom. In this example, Nx3

is 4, Ny3
is 3, Fx1

is 7, and Fy1
is 8. E is Young’s Modulus,

Ai is the cross sectional area of member i, and Li is the

length of member i.

ki ¼
AiE

Li
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If a truss has m members, it has 2m degrees of freedom, and

the global stiffness matrix of the truss is 2m-by-2m. The

global stiffness matrix of the entire truss is calculated in

Eq. 11, by summing each of the global stiffness matrices of

each member.

K ¼
Xm

i¼1

ki ð11Þ

The stiffness matrix K has a useful property in that, if the

matrix is positive definite, then the truss that the stiffness

matrix described is a structure. If the stiffness matrix is not

positive definite, and the corresponding truss is a mecha-

nism. A mechanism is different from a structure, in that it is

capable of movement as a result of how its joints are

connected. A structure is not a mechanism because its

joints are configured in such a way that natural movement

is impossible. Obviously, we are only interested in trusses

Fig. 20 The 10 bar truss problem with bars 2, 5, 6, and 10 absent

from the realised truss

Fig. 21 The 10 bar truss problem with bars 2, 5, 6, and 10 absent

from the realized truss and with the degrees-of-freedom numbered
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which do not have the behavior of a mechanism. Before the

positive definiteness of the stiffness matrix can be deter-

mined, the global stiffness matrix K is partitioned as in

Eqs. 13, 14 and 15. Dk are the known displacements of D,

and Qk are the known forces of Q. Similarly, Du are the

unknown displacements of D, and Qu are the unknown

forces of Q. Typically, the known displacements are 0, and

Eq. 14 can be simplified to Eq. 16. Equation 12 describes

the relationships between Q, K, and D. For the purposes of

the truss optimization problem, we only need to solve

Eq. 16 to find the displacement objective that requires

minimizing.

The matrix K11 is decomposed using singular value

decomposition (Golub–Reinsch SVD algorithm) into

K11 ¼ USVT, where U is an 2m-by-2m orthogonal matrix, S

is an 2m-by-2m diagonal matrix of singular values, and VT is

the transpose of a 2m-by-2m matrix. Equation 16 is then

solved for the unknown displacements, Du, using the sin-

gular value decomposition U,S,V and the known forces, Qk:

The SVD technique is used in the solution of the linear

equation problem to avoid issues associated with ill-con-

ditioned matrices. The diagonal matrix, S, is the squares of

the eigen-values of K11. If some of the eigen-values are

zero, or close to zero by some very small value �2, then the

matrix is not positive definite. For a matrix to be positive

definite, its eigen-values must be positive. We use this

property for the stability constraint, multiplying the number

of zero/near-zero eigen values by some large penalty, and

thereby determine whether the truss is kinematically stable,

or the degree of instability present in the truss. The eigen-

values are the diagonal of the matrix S, represented by Sii.

If the truss is unstable according to the constraint c2, then

the displacements calculated are not physically meaningful

and no further calculations will occur.

Q ¼ KD ð12Þ
Qk

Qu

� �
¼ K11

K21

				
K12

K22

� �
Du

Dk

� �
ð13Þ

Qk ¼ K11Du þK12Dk ð14Þ
Qu ¼ K21Du þK22Dk ð15Þ
Qk ¼ K11Du ð16Þ

Constraint-III The final constraint (Eq. 17) calculates the

tension and compression in each bar of the truss. If the

tension and compression in any bar exceeds the maximum

allowed tension and compression in that bar, then a bracket

penalty operator hi is used (Eq. 18), and no further

calculation occurs. The stress in each member of the

realized truss can be calculated as in Eq. 17, where E is

Young’s Modulus for the material the bar is composed of,

and Li is the length of the bar. If the stress Ti is positive the

member i is in tension, and if it is negative the member is

in compression. Constraint c3 is concerned with elimi-

nating violations of the maximum allowed tensional and

compressional stress, denoted by r.

Ti ¼
E

Li
�kxi

�kyi
kx ky½ �

DNxi

DNyi

DFxi

DFyi

2
664

3
775 i ¼ 1; . . .;m

ð17Þ

c3 ¼ �ð10e5Þ �
Xm

i¼1

r
Tij j
� 1:0


 �
ð18Þ

It is not until each of the constraints have been passed that

the objectives are calculated. The first objective calculates

the weight of the realized truss, and the second objective is

concerned with the worst displacement of any node in the

realized truss.

Objective-I The weight of the truss is calculated

according to Eq. 19. The weight of each bar in the

realized truss is calculated using the known density (q),

length, and cross-sectional area of each member. The

summed weights is the total weight of the truss.

W ¼
Xm

i¼1

AiLiq ð19Þ

Objective-II The worst displacement can be acquired

from Du, the vector of unknown displacements in the

structure. This may be the worst displacement out of all

truss nodes, or it may be the worst displacement of a

specific truss node in either x or y axis, depending on the

requirements of the particular problem.

The truss design and shape optimization problems are

problems that exhibit parameter interactions between

decision variables in the tail end of the Pareto-optimal front

(Fig. 23), where the weight minimization objective Hessian

of a tail end solution demonstrates larger relative partial-

second order derivatives than the Hessian associated with

the weight minimization objective, where parameter

interactions are significantly less (Fig. 22). The first truss

problem used in this study is the 13-bar problem, which is a

shape and topology optimization problem. With respect to

this problem, an optimization algorithm has to learn the

coordinates of truss nodes, as well as appropriate cross-

sectional areas for truss bars. In total, there are 17 decision

variables in this problem which have to be optimized. The

22-bar problem is similar to the 13-bar problem, in that it

too is a topology and shape optimization problem with 22

bars in the base structure, and 30 decision variables in total.

The CSDE (j ¼ 0), and CSDE (j ¼ 0:5) and the

NSGA-II with simulated binary crossover (SBX), will be

evaluated on two truss problems. The scaling factor F, for

each of the DE variants employed, was set to 0.5 for CSDE
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(j ¼ 0) and CSDE (j ¼ 0:5), as it was for all previous

experiments. The SBX variant used a mutation rate of 1/N

and a crossover rate of 0.9. gc and gm are parameters within

the NSGA-II with SBX that control the distribution of the

crossover and mutation probabilities and were assigned

values of 10 and 50, respectively. In all the algorithm

variants used on the truss problems the constraint domi-

nation principle is employed.

7.1 13-Bar truss topology and shape design problem

A 13-bar truss topology and shape optimization problem

(Espi 1998) which builds on the simple 10-bar truss

problem (Rajeev and Krishnamoorthy 1997) is also used by

practitioners to evaluate optimization algorithms. From

Fig. 24, it is apparent that the 13-bar problem has two load

bearing nodes ´ and ˜, and two support nodes, � and `.

Unlike the 10-bar truss problem, the nodes ˆ and Þ are

free nodes, which can vary their position during the opti-

mization process. An example of the truss structure after

shape and topology optimization is provided in Fig. 25.

7.2 22-Bar truss topology and shape design problem

The classic 18-bar cantilever truss has also been described

as a problem that can be used for topology and shape

optimization (Rajeev and Krishnamoorthy 1997). In this

section, we have extended the 18-bar truss optimization

Hessian of weight objective of 22−bar truss
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Fig. 22 The 22-bar truss problem Hessian matrix for a parameter

space vector that maps to a weight of 3,101.70 pounds and a

deflection of 9.27 inches
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Fig. 23 The 22-bar truss problem Hessian matrix for a parameter

space vector that maps to a weight of 10,482.56 pounds and a

deflection of 4.78 inches

1786 A. W. Iorio, X. Li

123



problem to a 22-bar problem. Figure 26 shows the rela-

tionship between beam members. Like the classic 18-bar

truss this truss has 11 joints. Nodes � and are support

joints, and 5 joints are load bearing joints. The remaining

four joints are free nodes that can have their positions

varied during optimization. Each of these free joints can

have its position varied on two axes, resulting in eight

decision variables for node positions for the nodes ´, ˜,

þ, and ½. The total number of decision variables is 30; 22

cross-sectional areas, and 8 position coordinates for the

free nodes. An example of the 22-bar truss after topology

and shape optimization is provided in Fig. 27. The range of

cross-sectional areas as reported by Rajeev and Krishna-

moorthy (1997) is between 2 and 20 in.2. For the purposes

of this study, the critical area �1 was set to 2.0 in.2.

7.3 Parameters for truss problems

Tables 1 and 2 detail the setup parameters associated with

each truss structure studied.

8 Performance in the optimization of truss structure

and topology

In this section the resulting performance of each of

the algorithm variants is reported on the two truss prob-

lems studied. In the 13-bar problem, there are 17

decision parameters requiring optimization. This problem

Fig. 24 The 13-bar truss with all bars present

Fig. 25 An example of the 13-bar truss structure after shape and

topology optimization

Fig. 26 The 22-bar truss with all bars present

Fig. 27 An example of the 22-bar truss structure after shape and

topology optimization

Table 1 13-Bar truss parameters

Young’s modulus (E) 10,000 ksi

Cross-sectional area (A) �35 in.2

Strength (tension and compression) ðrÞ �25 ksi

Density ðqÞ 0:1 lb in.�3

Critical Area ð�1Þ 0:1 in.2

Support nodes �, `

Load bearing nodes ´, ˜

y load on ´ -100,000 lb

x load on ´ 0 lb

y load on ˜ -100,000 lb

x load on ˜ 0 lb

y def. on � 0 in.

x def. on � 0 in.

y def. on ` 0 in.

x def. on ` 0 in.

x range of ˆ 0 to 720 in.

y range of ˆ 0 to 360 in.

x range of Þ 0 to 720 in.

y range of Þ 0 to 360 in.
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demonstrates the utility of emphasizing correlated direc-

tional vectors in CSDE ðj ¼ 0:5Þ.
In Fig. 28, the non-dominated solutions resulting from

all 50 runs are plotted for the SBX and CSDE ðj ¼ 0:5Þ
algorithms. The first and last locations at which a unique

truss structure occurred from the CSDE algorithm runs are

labeled. In addition, we can see in this figure that the range

specified by (B) overlaps with the range specified by (C). In

this region, solutions may have the truss structure of either

(B) or (C), as specified in Table 3. In Table 3, the weight

and deflection values are provided for the labeled solutions

in Fig. 28, along with the actual truss structures. Further-

more, the nearest solution to the labeled CSDE solution,

which resulted from the SBX variant, is also provided for

comparative purposes.

From Fig. 28 and the corresponding Table 3, it is

apparent that solution (A) resulting from CSDE ðj ¼ 0:5Þ
is lighter than the nearest solution provided by SBX, but

has marginally worse deflection. In addition, the truss

structure and topology is the same as the solution discov-

ered by SBX. In all respects, the two solutions are

comparable.

Solutions over the range of (B) are significantly dif-

ferent, in that the CSDE ðj ¼ 0:5Þ was able to discover a

unique structure and topology with one less member than

the solutions discovered with SBX. This resulted in a

better truss structure with less deflection and lower

weight.

Furthermore, the solutions discovered over the range of

(C) demonstrate that better or comparable solutions were

generated by the CSDE approach, compared with SBX.

Most of the solutions over this range had lower weight and

deflection than the nearest solutions discovered by SBX.

The higher weighing solutions from CSDE over this range

were slightly heavier than the nearest solutions from SBX,

but they also exhibited a lower deflection. Equally impor-

tant, it seems that the CSDE approach began to discover

solutions that double up one of the truss members to

strengthen the structure.

The trend of doubling up one of the truss members

continued over the range of (D), where an additional

member was added and the weight of the truss increased as

a result. Although the solutions discovered by CSDE were

heavier, the structures that were discovered exhibited less

deflection than the nearest corresponding solutions from

Table 2 22-bar truss parameters

Young’s modulus (E) 10,000 ksi

Cross-sectional Area (A) �20 in.2

Stress (tension and compression)

ðrÞ
�25 ksi

Density (q) 0:1 lb in.�3

Critical Area ð�1Þ 2:0 in.2

Support nodes �,

Load bearing nodes �,`,ˆ,Þ,¼

y load on � -20,000 lb

x load on � 0 lb

y load on ` -20,000 lb

x load on ` 0 lb

y load on ´ 0 lb

x load on ´ 0 lb

y load on ˆ -20,000 lb

x load on ˆ 0 lb

y load on ˜ 0 lb

x load on ˜ 0 lb

y load on Þ -20,000 lb

x load on Þ 0 lb

y load on þ -20,000 lb

x load on þ 0 lb

y load on ¼ -20,000 lb

x load on ¼ 0 lb

y load on ½ 0 lb

x load on ½ 0 lb

y def. on � 0 in.

x def. on � 0 in.

y def. on 0 in.

x def. on 0 in.

x range of ´ 750 to 1250 in.

y range of ´ 0 to 250 in.

x range of ˜ 500 to 1; 000 in.

y range of ˜ 0 to 250 in.

x range of þ 250 to 750 in.

y range of þ 0 to 250 in.

x range of ¼ 0 to 500 in.

y range of ¼ 0 to 250 in.
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Fig. 28 Non-dominated solutions over all 50 runs at generation 50

for SBX and CSDE ðj ¼ 0:5Þ on the 13-bar truss problem. (A), (B),

(C), (D), and (E), respectively, define the location or range over which

a unique truss structure occurs
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SBX. In addition, the structures discovered by CSDE over

the range of (D) were simpler and had two less members.

In the region of very heavy truss structures specified by

(E), it is clear that CSDE discovered the importance of

doubling up members to increase the rigidity of the truss.

The first of these structures and topologies discovered by

CSDE was lighter than the nearest solution from SBX, with

comparable deflection. At the extreme, the heaviest solution

discovered by CSDE had slightly better deflection than the

nearest solution from SBX, but was heavier. It is clear from

Table 3 that SBX attempted to discover solutions which are

similar to the solutions discovered by CSDE, but the

members did not overlap to the same degree as the solutions

that CSDE discovered.

8.1 22-Bar truss topology and shape design problem

In the 22-bar problem there are more free nodes, and more

cross-sectional areas to optimize, resulting in a total

number of 30 decision variables. On this problem, the

results are reported at generation 200, as it requires more

evaluations across all algorithm variants to find a reason-

able number of feasible solutions.

It is important to note that on this problem, it is harder

to find feasible solutions early in the search and in this

particular type of problem finding feasible kinematically

stable solutions which are also light structures is very

difficult. This was also the motivation for using a larger

population size on this problem.

In Table 4, the weights, deflections and structures of

CSDE ðj ¼ 0:5Þ are presented, along with the corre-

sponding solutions from SBX. Figure 29 indicates how

the labeled solutions correspond with points on the non-

dominated front. The solutions that are presented are the

non-dominated solutions out of all 50 runs. These results

indicate that the regions labeled by (A), (B), and (C)

resulting from the CSDE algorithm are dominated by

solutions generated by SBX. In these regions, SBX

was able to discover structures with lower weight and

deflection.

Table 3 Structures discovered by SBX and CSDE (j ¼ 0:5) on the 13-bar truss problem. (A), (B), (C), (D), and (E) correspond to the labels in

Fig. 28
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In the region specified by (D), where CSDE was able to

discover a set of unique solutions, most of the solutions

corresponding to the topology and structure detailed in

Table 4 had lower weight and deflection than the corre-

sponding nearest solutions discovered by SBX. Further-

more, it is apparent from Fig. 29 that in region (D) and (E)

the SBX variant could not find many solutions. CSDE was

capable of finding unique structures and topologies in

region (E) with lower deflection. Moreover, the topologies

discovered in the region indicated by (E) demonstrate that

CSDE was able to evolve solutions that double-up a beam

member which makes the structure more rigid. From

Fig. 29, it is clear that the regions indicated by (D) and (E)

are a significant portion of the non-dominated front, clearly

demonstrating that NSGA-II using CSDE ðj ¼ 0:5Þ is an

attractive alternative to NSGA-II using SBX on this

problem because it can find many better solutions relatively

early in the search.

Table 4 Structures discovered by SBX and CSDE (j ¼ 0:5) on the 22-bar truss problem

(A), (B), (C), (D), and (E) correspond to the labels in Fig. 29
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Fig. 29 Non-dominated solutions over all 50 runs at generation 200

for SBX and CSDE (j = 0.5) on the 22-bar truss problem. (A), (B),

(C), (D), and (E), respectively, define the location or range over which

a unique truss structure occurs
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The good performance of CSDE ðj ¼ 0:5Þ in the tail end

of the non-dominated set, which was also noted on the 10

and 13-bar truss problems, can be accounted for when the

Hessian matrix is considered. In the tail end of the search

space, the second-order partial derivative values have a

larger magnitude, indicating significant parameter interac-

tions. Parameter interactions are far more prevalent in the

tail end in comparison to other regions of the non-domi-

nated front where the second-order partial derivatives have

smaller values. The advantage that NSGA-II with SBX

apparently has where it out performs CSDE ðj ¼ 0:5Þ is is

because in this region of the search space there is greater

separability between decision space parameters. Similarly,

CSDE ðj ¼ 0:5Þ out performs NSGA-II with SBX in region

(D) and (E) because there are more parameter interactions

there.

On the 22-bar problem, it found many solutions with

significantly lower deflection because it can deal with

parameter interactions more effectively in this region of the

front. In contrast, NSGA-II with SBX could only find a few

because of its poorer performance on problems with

parameter interactions. This is of importance, because in

practice one would probably not be interested in the solu-

tions with high deflections found by NSGA-II with SBX.

Interestingly, CSDE had difficulty finding low weight

feasible structures for the 22-bar truss problem. In this

region of the search space it is very difficult to find feasible

solutions, and it’s possible that the vector-wise sampling of

CSDE in the infeasible space does not provide for suffi-

cient diversity because of the discretized constraint viola-

tion values that are used as a measure of ‘fitness’ to guide

the search. On the 13-bar problem many of the non-dom-

inated solutions discovered by CSDE ðj ¼ 0:5Þ over 50

runs were better than the nearest solutions discovered by

NSGA-II with SBX. The diversity that is provided through

the CSDE sampling scheme is important because it enables

DE to find feasible solutions faster than a DE scheme that

does not incorporate such sampling. A reproduction oper-

ator such as CSDE ðj ¼ 0:5Þ; that samples the space using

directional information, is more efficient in this regard.

We can also see that CSDE ðj ¼ 0:5Þ demonstrates that

directional information combined with sampling, is critical

to improving the performance of differential evolution on

the truss optimization problems investigated here.

9 Implications and conclusion

In this work, we have addressed the stagnation issue dis-

cussed by Lampinen and Zelinka (2000) with the CSDE

approach. Until now, to overcome stagnation in DE a very

large population size had to be employed, or crossover was

used to add more sampling diversity even though crossover

is typically ineffective when optimization problems have

many parameter interactions. Furthermore, rotationally

invariant DE applied to non-separable problems is limited

to rather low decision space dimensions and is highly

dependent on population size. In contrast, the CSDE

approach is insensitive to population size on the test

problems used, even though it does not employ crossover

in the traditional sense. It can also handle problems with

parameter interactions in high dimensional spaces very

well even though it is not a strict rotationally invariant

algorithm.

CSDE ðj ¼ 0:5Þ; which incorporates directional infor-

mation and also emphasizes sampling around the ‘better’

point as well as performing rotationally invariant correlated

sampling, demonstrated rapid convergence with respect to

the hyper-volume indicator on the multi-objective test

problems. This indicates that it may be usefully applied to

problem domains where the evaluation function is expen-

sive to evaluate because of its rapid convergence charac-

teristics. Furthermore, it is apparent that CSDE is highly

scalable in the decision space in multi-objective problem

domains as well, even to large numbers of decision vari-

ables, thanks to the diversity provided by its sampling

scheme in combination with its ability to direct the search

towards more optimal regions. The CSDE approach

addresses the issue highlighted by Sutton et al. (2007)

where high selection pressure can cause a rapid loss of

diversity and therefore a decrease in exploration potential.

This was demonstrated on multi-modal Problem P4 in a

decision space of 200 dimensions, with a population size of

only 100 individuals.

In this paper, we also addressed the question of whether

or not the proposed CSDE algorithm is efficient and

competitive in comparison with a multi-objective genetic

algorithm, namely NSGA-II with SBX. A comparison of

the directional information variants CSDE ðj ¼ 0Þ and

ðj ¼ 0:5Þ; within the NSGA-II framework, was performed

on two plane truss multi-objective optimization problems.

The major results from this are that the CSDE ðj ¼ 0:5Þ
variant that uses directional information with an equal

emphasis on C-sampling and UC-sampling demonstrated

superior or highly competitive performance against SBX.

In addition, CSDE ðj ¼ 0:5Þ was capable of finding many

better truss structures that NSGA-II with SBX could not

find over 50 runs.

The results presented in this paper are significantly

important to practitioners who are interested in optimizing

non-separable problems. Until now, previous work in this

area focussed on computationally expensive Evolutionary

Strategy techniques. We have presented a computationally

efficient, simple optimization algorithm for dramatically

improving optimization performance on non-separable

problems in high dimensional spaces.

Improving the performance and scalability of Differential Evolution 1791

123



In future work, we intend to investigate the comparative

performance of the CSDE approach on other state-of-the-

art DE algorithms and Evolution Strategies intended for

parameter-interaction problems, in addition to investigating

the scalability of the CSDE on much larger truss topology

and design problems.
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