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Abstract—Differential evolution (DE) is one of the most power-
ful continuous optimizers in the field of evolutionary computation.
This work systematically benchmarks a classic DE algorithm
(DE/rand/1/bin) on the CEC-2013 single-objective continuous
optimization testbed. We report, for each test function at different
problem dimensionality, the best achieved performance among a
wide range of potentially effective parameter settings. It reflects
the intrinsic optimization capability of DE/rand/1/bin on this
testbed and can serve as a baseline for performance comparison
in future research using this testbed. Furthermore, we conduct
parameter sensitivity analysis using advanced non-parametric
statistical tests to discover statistically significantly superior
parameter settings. This analysis provides a statistically reliable
rule of thumb for choosing the parameters of DE/rand/1/bin to
solve unseen problems. Moreover, we report the performance of
DE/rand/1/bin using one superior parameter setting advocated
by parameter sensitivity analysis.

I. INTRODUCTION

Differential evolution (DE) [1]–[3] is a very effective and
powerful stochastic optimizer, which was proposed by Storn
and Price in 1995 and has now developed into one of the
most promising research areas in the field of evolutionary
computation. Over the past decades, numerous studies have
been carried out to improve DE’s performance [4]–[12], to give
a theoretical explanation of the behavior of DE [13], to apply
DE and its variants to solve various scientific and engineering
problems [3], as evidenced by a huge body of publications on
DE in the forms of monographs, edited volumes and research
articles. DE related algorithms have demonstrated the outstand-
ing performance when solving many challenging tasks. It is
worth noting that DE variants have always been one of the top
performers in previous optimization competitions held at the
IEEE Congress on Evolutionary Computation (CEC) such as
CEC-2005 single-objective, CEC-2007 and CEC-2009 multi-
objective and CEC-2008 large-scale continuous optimization.

This work systematically benchmarks the performance of
a well-known classic DE algorithm (DE/rand/1/bin) on the
newly proposed CEC-2013 single-objective continuous opti-
mization testbed. This testbed, consisting of 28 test functions,
expands its CEC-2005 counterpart by adding new test func-
tions, introducing oscillation and symmetric breaking transfor-
mations and modifying the formula of composition functions.
As the most widely used classic DE algorithm, DE/rand/1/bin
has succeeded in solving various numerical and real-world
problems and is often chosen as a baseline to gauge the
effectiveness of newly proposed optimizers. However, its own
performance can be significantly influenced by three involved
control parameters, i.e., population size (NP), crossover rate

(CR) and mutation scale factor (F). Consequently, using im-
proper parameter settings will greatly degrade its efficacy as
both a problem solver and a baseline method.

We evaluate DE/rand/1/bin, using a wide range of pa-
rameter settings, on all 28 test functions in the CEC-2013
testbed at three different problem dimensionality (10D, 30D
and 50D) and present the best achieved results among all these
parameter settings for each function at each dimensionality.
The reported results reveal the intrinsic optimization capa-
bility of DE/rand/1/bin on this testbed and provide a handy
reference for future research using this testbed by choosing
DE/rand/bin as a baseline method for performance comparison.
Furthermore, we conduct parameter sensitivity analysis with
respect to all 28 functions at each dimensionality using the
Iman and Davenport test and the Hochberg post-hoc procedure
[14], [15]. The results indicate that medium NP values (e.g.,
40, 50 and 60), large CR values (e.g., 0.9) and medium F
values (e.g., 0.5) can lead to the statistically significantly
better performance than the other parameter settings at any
tested problem dimensionality. This finding provides a sta-
tistically reliable rule of thumb for choosing the parameters
of DE/rand/1/bin for solving unseen problems. Moreover,
we present the results corresponding to one of the superior
parameter settings, i.e., NP: 50, CR: 0.9 and F: 0.5, suggested
by parameter sensitivity analysis to comply with the protocol
of the CEC-2013 testbed about using a single parameter setting
to conduct all experiments [16].

The remaining paper proceeds with a brief review of DE
in Section II. Section III presents experimental results on the
CEC-2013 testbed and parameter sensitivity analysis. Section
IV concludes the paper.

II. DIFFERENTIAL EVOLUTION

A general black-box continuous optimization task aims at
finding the optimal real-valued decision variables to minimize
(or maximize) one or more real-valued objective functions
given no prior knowledge about function characteristics. For
example, the single-objective continuous optimization consid-
ered in the scope of this paper can be formulated as:

x∗ = arg min
x∈RD

f(x), f(x) ∈ R

where x = {x1, . . . , xD} ∈ RD is a decision vector composed
of D real-valued decision variables. The real-valued objective
function f(x) ∈ R quantifies the quality of such a decision
vector. DE is a population-based stochastic search algorithm
very proficient in solving black-box continuous optimization
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problems. It has been widely applied in various scientific and
engineering fields [3].

A. Algorithm Description

DE evolves a population of individuals (decision vectors)
towards global optima via three operations: mutation, recom-
bination and selection. Specifically, a fixed-size population is
first randomly initialized within the solution space. Then, each
individual in the population, so-called target vector, undergoes
the following three operations in sequence:

• Mutation: a base vector is first generated using popu-
lation members, which is the reference point of the
mutation. Then, the vector difference of randomly
sampled population members excluding the target vec-
tor under consideration is scaled and added to the base
vector to produce a mutant vector. There exist different
ways to create the base vector and vector difference,
which correspond to different mutation strategies.

• Recombination: the above-generated mutant vector
and the target vector under consideration are recom-
bined to generate a trial vector. Discrete recombina-
tion, so-called crossover, is most often used in DE,
e.g., binominal (uniform) crossover and exponential
(circular two-point) crossover. Alternatively, line re-
combination can be used.

• Selection: if the trial vector has better quality than
the target vector under consideration, it will replace
the target vector and enter the population for the next
generation. Otherwise, the target vector will remain in
the population for the next generation.

The population is iteratively updated by applying these three
operations until certain termination criteria are met, e.g., the
maximum number of function evaluations is reached.

The success of DE is mainly attributed to its differential
mutation scheme and its capability of exploiting contour
matching (the population tends to distribute along functional
level sets), which distinguish DE from other existing evolu-
tionary algorithms. Scaled difference vectors with respect to
all possible pairs of population members distributed along
function level sets can well adapt to the property of the
searching landscape currently explored, which thus provide
promising mutation directions with adaptive mutation step-
sizes balancing between the global and local search. Specifi-
cally, at the initial searching stage, population members spread
over the entire solution space. Accordingly, lengths of dif-
ference vectors are large to favor the global search. As the
evolution goes on, population members gradually converge to
a sub-region of the solution space. Consequently, the local
search is advocated by small lengths of differential vectors.

DE variants can be denoted using “DE/x/y/z” in which:

• “x” defines the scheme to generate the base vector,
e.g., “rand” and “best” indicate the base vector is a
randomly selected population member and the so-far
best population member, respectively.

• “y” defines the number of pairs of population members
used to construct the vector difference, e.g., 1 and 2
mean the vector difference is composed of one and
two pairs of population members, respectively.

• “z” defines the recombination scheme, e.g., “bin”
and “exp” stand for the binominal and exponential
crossover (discrete recombination), respectively.

Among classic DE algorithms, DE/rand/1/bin is most widely
used. Its pseudo-code is described in Algorithm 1.

B. Control Parameters

DE has three control parameters:

• Population size (NP) determines the population di-
versity and accordingly influences the convergence
speed. Its choice usually depends on the complexity
and scale of the given problem. For example, large
population sizes are preferred to solve highly multi-
modal problems or large-scale problems having hun-
dreds (or thousands) of decision variables. However,
limited computational budgets in practice may prevent
DE with large population sizes from converging to a
desirable solution.

• Crossover rate (CR), in the most often used discrete
recombination, controls how many decision variables
in a target vector interchange their values with those
in the corresponding mutant vector to generate a trial
vector. Its choice usually depends on the interaction
of decision variables in a given problem. When fewer
decision variables are interacted with each other, small
CR values are more effective than large ones in
terms of the convergence speed. However, when more
decision variables are interrelated, large CR values are
more effective.

• Mutation scale factor (F) adjusts the mutation step-
size in the relative manner to control the exploration
and exploitation power. Its choice should aim to
prevent the undesirable convergence speed. Too small
F values may lead to premature convergence while
too large F values may much slow down the speed of
convergence.

Among existing research works on DE, the ways of con-
figuring parameters can be divided into three categories:

• Fixed schemes use a fixed parameter setting through-
out the searching course, which is suggested on a basis
of theoretical or empirical studies on some suites of
test problems [1], [2], [13].

• Control schemes use some predefined rules to alter the
parameter setting throughout the searching course [6].

• Adaptive schemes incessantly adapt the parameter set-
ting by online learning its impact on the searching
performance throughout the searching course [4], [5],
[7]–[10], [12].

Recent works on investigating control parameters of DE
mainly focus on adaptive schemes. In most of these works,
the effectiveness of the newly proposed adaptive scheme is
gauged in contrast with some fixed schemes. However, this
comparison may become less reliable when the parameter
setting in the chosen fixed scheme is based on test problems of
different properties from the currently used ones. Furthermore,
it is interesting to compare, for each test problem at certain
dimensionality, the performance of a newly proposed adaptive

1100



Algorithm 1 Classic DE Algorithm: DE/rand/1/bin
Input: NP, CR, F
Output: x∗ = argminx∈RD f(x)

1: Initialize the generation counter g: g = 0
2: Initialize the population Pg of NP D-dimensional individuals: Pg = {x1,g, . . . ,xNP,g} with xi,g = {x1

i,g, . . . , x
D
i,g}

The following uniformly random initialization is used in our experiments (Section III):
for j = 1→ D
xj
i,g = randu(0, 1) · (bjU − bjL) + bjL, bjL and bjU are the upper and lower bounds of the jth individual element

end for
3: Evaluate the objective function value of each individual in Pg , i.e., f(xi,g), i = 1, . . . ,NP
4: while the predefined termination criteria are not met do
5: for i = 1→ NP do
6: Randomly select in {1, . . . ,NP} three mutually exclusive indices that are distinct from i:

do r1 = ceil(randu(1,NP))
while r1 6= i
do r2 = ceil(randu(1,NP))
while r2 6= i and r2 6= r1
do r3 = ceil(randu(1,NP))
while r3 6= i and r3 6= r1 and r3 6= r2

7: Generate a mutant vector vi,g = {v1i,g, . . . , vDi,g}:
vi,g = xr1,g + F · (xr2,g − xr3,g)

8: Generate a trial vector ui,g = {u1
i,g, . . . , u

D
i,g}:

jrand = ceil(randu(1, D))
for j = 1→ D

uj
i,g =

{
vji,g if randu(0, 1) ≤ CR or j = jrand

xj
i,g otherwise

end for
9: Evaluate the objective function value of the generated trial vector ui,g

10: Determine the ith individual in the population for the next generation Pg+1 = {x1,g+1, . . . ,xNP,g+1}:

xi,g+1 =

{
ui,g iff(ui,g) ≤ f(xi,g)
xi,g otherwise

11: end for
12: Increase the generation counter: g = g + 1
13: end while

NOTE: (1) randu(a, b) is a uniform random number generator sampling in [a, b].
(2) ceil(c) takes on the smallest integer larger than or equal to c.

scheme with the best achievable performance estimated over
the entire parameter space. This helps to discover whether
and when this new adaptive scheme can achieve or exceed
the performance obtained using the best-calibrated parameter
setting.

III. EXPERIMENTS

We evaluate the performance of DE/rand/1/bin under each
combination of 13 NP values (20, 30, 40, 50, 60, 70, 80,
90, 100, 150, 200, 250 and 300), three CR values (0.1, 0.5
and 0.9) and two F values (0.5 and 0.8) on 28 numerical test
functions in the CEC-2013 testbed at three problem dimen-
sionality (10D, 30D and 50D). In addition to the performance
measures described in the protocol of the CEC-2013 testbed
[16], we also report the success rate, the expected running time
to succeed (ERT) and the empirical cumulative distribution
function (ECDF) of the number of function evaluations at
success.

To reveal the intrinsic optimization ability of DE/rand/1/bin
on the CEC-2013 testbed, we report, for each function at
each of three problem dimensionality, the results corresponding

to the best parameter setting (among 78 tested ones) that
leads to the smallest average objective function error value
(Section III-B) at execution termination over all execution
runs. To provide a statistically reliable rule of thumb for the
parameter choice, we perform parameter sensitive analysis
using advanced non-parametric statistical tests to compare all
78 parameter settings over all 28 test functions at 10D, 30D and
50D, respectively. To comply with the protocol of the CEC-
2013 testbed in regard to parameter configuration, we report
the results corresponding to one parameter setting advocated
by parameter sensitivity analysis.

A. CEC-2013 Testbed

The CEC-2013 testbed contains 28 numerical test func-
tions of different characteristics, which are grouped into three
categories: uni-modal functions (f1-f5), multi-modal functions
(f6-f20) and composition functions (f21-f28). This testbed
improves its CEC-2005 counterpart with additional test func-
tions, oscillation and symmetric-breaking transforms as well
as modification of the formula of composition functions. The
complete description of this testbed is available in [16].
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B. Experimental Setup

We test DE/rand/1/bin under 78 parameter settings ([NP,
CR, F] ∈ [20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200,
250, 300] × [0.1, 0.5, 0.9] × [0.5, 0.8]) on each of 28
test functions at three problem dimensionality (10D, 30D and
50D), respectively. These parameter settings include most of
the parameter setting advices in previous works.

For each test function at each problem dimensionality,
DE/rand/1/bin under each of 78 parameter settings are executed
51 times with each run using different random seeds while all
parameter settings share the same random seed with respect to
any individual run.

According to the protocol of the CEC-2013 testbed [16],
two stopping criteria are applied: (1) the maximum number of
function evaluations (maxFEvals) is reached where maxFEvals
is set to 104 times problem dimensionality. (2) The difference
of objective function values between the best solution found so
far and the global optimal solution, so-called object function
error value (FEV), is smaller than or equal to 10−8. In such
a case, the FEV is set to 10−8. Here, we do not follow the
CEC-2013 protocol to set the FEV to zero since this may
deliberately reduce the average FEV at termination if only a
few runs reach 10−8.

We implement all algorithms in OCTAVE, and execute
them on a Linux PC having the AMD Opteron 2376 CPU
at 2.3 GHz.

C. Performance measures

The optimization performance is measured by (1) the best,
worse, median and mean (standard deviation) of the FEVs
achieved when the algorithm terminates over 51 runs; (2) the
success rate (SR) over 51 runs. An optimization algorithm is
regarded as succeeding in solving the problem once it achieves
the FEV smaller than 10−8; (3) the expected running time
to succeed (ERT) [17]. This measure estimates the expected
number of function evaluations to succeed at the first time,
which is calculated as the total number of function evaluations
when the algorithm succeeds or terminates (if not succeeding)
summed over 51 runs and divided by the total number of
successful runs. If the success rate equals zero, this measure
becomes invalid.

Practical optimization tasks often impose demanding re-
quirements on the computation time of optimizers, which
is usually proportional to the number of executed function
evaluations. To clearly inspect an optimization algorithm’s
efficacy with respect to various computation budgets, i.e.,
the maximally allowed number of function evaluations, the
empirical cumulative distribution function (ECDF) [17] of the
number of executed function evaluations at success over all
51 runs of all 28 test functions are illustrated at three problem
dimensionality (10D, 30D and 50D), respectively.

The computational complexity is measured by CPU-
seconds with respect to each problem dimensionality according
to the protocol of the CEC-2013 testbed [16].

D. Results

Table I reports, for each test function at each dimen-
sionality, the performance of DE/rand/1/bin using the best-

TABLE IV. COMPUTATIONAL COMPLEXITY MEASURED BY CPU
SECONDS ( [16]) AT 10D, 30D AND 50D, RESPECTIVELY. T0 MEASURES

THE COMPUTATION TIME OF BASIC OPERATIONS. T1 MEASURES THE
COMPUTATION TIME OF ONE EXECUTION RUN ON TEST FUNCTION f14 . T̂2

TAKES INTO ACCOUNT THE VARIATION OF T1 IN DIFFERENT EXECUTION
RUNS.

DIM T0 T1 T̂2 (T̂2 − T1)/T0

D = 10
18.49

62.30 61.97 -0.02
D = 30 71.54 70.68 -0.05
D = 50 75.08 73.44 -0.09

calibrated parameter setting, among 78 configurations: [NP,
CR, F] ∈ [20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200,
250, 300] × [0.1, 0.5, 0.9] × [0.5, 0.8], which leads to the
smallest average FEV at execution termination over 51 runs. It
reflects the intrinsic optimization capability (represented by the
best achieved performance over all tested parameter settings)
of DE/rand/1/bin on the CEC-2013 testbed. It is observed
that the performance of DE/rand/1/bin decreases as problem
dimensionality increases. For 10D problems, DE/rand/1/bin
achieves the non-zero SRs on 10 (f1, f2, f4, f5, f6, f7, f10,
f11, f13 and f14) out of 28 test functions among which the
SR on seven problems (f1, f2, f4, f5, f6, f11 and f14) hits 1.
On five (f3, f9, f12, f16 and f19) out of the remaining 18 test
functions, it achieves FEVs less than 1.00e+00 in at least one
execution run. For both 30D and 50D problems, DE/rand/1/bin
achieves the non-zero SRs (equal to 1) on three (f1, f5 and f11)
out of 28 test functions. For the remaining 25 test functions,
it achieves FEVs less than 1.00e+00 in at least one execution
run on five functions (f3, f6, f7, f10, f14) at 30D and four
functions (f3, f7, f10, f14) at 50D.

Figures 1a, 1c and 1e illustrate the empirical cumulative
distribution function (ECDF) of the number of executed func-
tion evaluations when the algorithm succeeds in reaching some
pre-specified FEV divided by problem dimensionality, which
is accumulated over all 51 runs of all CEC-2013 test functions.
It is observed that, for all three problem dimensionality, given
smaller termination FEVs, e.g., 10−1, 10−4 and 10−8, the
proportion of successful execution runs starts to increase from
zero after around 102.5 · D (316 · D) function evaluations.
Such increasing tendency is still fairly strong even when
the maxFEvals (104 · D) is reached, which implies that the
larger maxFEvals might lead to the improved performance of
DE/rand/1/bin.

E. Parameter sensitivity analysis

Choosing suitable parameter settings of DE/rand/1/bin for
solving numerical or practical optimization problems in the
black-box manner can be time-consuming. The trial-and-error
scheme, as used to produce the results in Table III, may
reveal the best achievable performance over the parameter
space at the expense of computational resources. In many real-
world applications, one single objective function evaluation
may take seconds or minutes, far many times slower than
the evaluation of any CEC-2013 function. As a result, one
execution run on even a 10D problem may takes a couple
of days or months, which makes the trial-and-error scheme
infeasible for the parameter choice. One alternative, so-called
fixed schemes for parameter configuration (Section II-B), is to
carry out extensive empirical studies on a considerable number
of test functions of diverse properties, and deduce some rules
of thumb of choosing parameters that can consistently lead to
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TABLE I. PERFORMANCE (PFM) OF DE/RAND/1/BIN USING THE BEST PARAMETER SETTING (AMONG 78 CONFIGURATIONS: [NP, CR, F] ∈ [20, 30,
40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300] × [0.1, 0.5, 0.9] × [0.5, 0.8]) THAT LEADS TO THE SMALLEST AVERAGE FEV AT EXECUTION

TERMINATION OVER 51 RUNS WITH RESPECT TO EACH OF 28 CEC-2013 TEST FUNCTIONS AT PROBLEM DIMENSIONALITY (DIM) 10D, 30D AND 50D,
RESPECTIVELY. BEST, WORST, MEDIAN, MEAN (STD) STAND FOR THE BEST, WORST, MEDIAN, MEAN (STANDARD DEVIATION) OF THE FEVS AT
EXECUTION TERMINATION OVER 51 RUNS, RESPECTIVELY. SR AND ERT REPRESENT THE SUCCESS RATE AND THE EXPECTED RUNNING TIME TO

SUCCEED, RESPECTIVELY. ERT IS DENOTED BY “-” (INVALID) WHEN SR EQUALS ZERO.

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

10D

Best 1.00e-08 1.00e-08 3.51e-05 1.00e-08 1.00e-08 1.00e-08 1.00e-08 2.02e+01 1.47e-06 1.00e-08 1.00e-08 9.95e-01 1.00e-08 1.00e-08
Worst 1.00e-08 1.00e-08 1.42e+00 1.00e-08 1.00e-08 1.00e-08 1.48e-04 2.05e+01 2.68e+00 1.18e-01 1.00e-08 2.19e+01 2.81e+01 1.00e-08
Median 1.00e-08 1.00e-08 5.30e-02 1.00e-08 1.00e-08 1.00e-08 8.85e-07 2.03e+01 2.41e-01 4.92e-02 1.00e-08 6.96e+00 1.15e+01 1.00e-08
Mean 1.00e-08 1.00e-08 1.06e-01 1.00e-08 1.00e-08 1.00e-08 1.47e-05 2.03e+01 5.05e-01 4.92e-02 1.00e-08 8.24e+00 1.20e+01 1.00e-08
Std 0.00e-00 0.00e-00 2.25e-01 0.00e-00 0.00e-00 0.00e-00 3.05e-05 7.66e-02 6.05e-01 2.58e-02 0.00e-00 5.62e+00 6.01e+00 0.00e-00
SR 1.00 1.00 0.00 1.00 1.00 1.00 0.10 0.00 0.00 0.06 1.00 0.00 0.02 1.00
ERT 5.81e+03 6.76e+04 - 5.94e+04 7.38e+03 6.48e+04 1.02e+06 - - 1.63e+06 1.15e+04 - 5.04e+06 8.76e+04

f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28
Best 2.90e+02 5.11e-01 1.45e+00 2.14e+01 1.27e-02 1.68e+00 1.67e+02 5.13e+00 4.17e+01 1.12e+02 1.41e+02 1.05e+02 3.00e+02 1.03e+02
Worst 1.13e+03 1.19e+00 1.02e+01 3.55e+01 3.31e-01 3.50e+00 2.86e+02 4.56e+01 1.92e+03 1.94e+02 2.17e+02 2.00e+02 3.34e+02 3.16e+02
Median 7.30e+02 9.05e-01 1.01e+01 2.83e+01 1.43e-01 2.28e+00 2.22e+02 1.47e+01 8.58e+02 1.41e+02 1.88e+02 1.23e+02 3.00e+02 1.06e+02
Mean 7.25e+02 9.08e-01 8.57e+00 2.80e+01 1.68e-01 2.35e+00 2.25e+02 1.47e+01 8.62e+02 1.43e+02 1.89e+02 1.28e+02 3.01e+02 2.02e+02
Std 1.80e+02 1.72e-01 2.91e+00 3.41e+00 8.86e-02 3.01e-01 2.31e+01 6.05e+00 3.99e+02 1.47e+01 1.61e+01 1.92e+01 4.77e+00 1.04e+02
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - - - - - - - - - - - -

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

30D

Best 1.00e-08 2.38e+04 4.21e-07 1.32e+01 1.00e-08 9.33e-02 3.22e-03 2.08e+01 4.49e+00 2.93e-08 1.00e-08 2.34e+01 3.50e+01 1.25e-01
Worst 1.00e-08 1.84e+05 8.17e+00 1.69e+03 1.00e-08 2.64e+01 1.21e+00 2.10e+01 1.64e+01 1.23e-02 1.00e-08 9.95e+01 2.02e+02 2.91e-01
Median 1.00e-08 7.60e+04 1.06e-03 9.44e+01 1.00e-08 6.19e+00 5.48e-02 2.09e+01 8.85e+00 2.54e-07 1.00e-08 3.78e+01 9.48e+01 2.29e-01
Mean 1.00e-08 8.49e+04 1.78e-01 1.59e+02 1.00e-08 8.32e+00 1.50e-01 2.09e+01 9.17e+00 1.02e-03 1.00e-08 4.41e+01 1.02e+02 2.18e-01
Std 0.00e-00 4.18e+04 1.14e+00 2.42e+02 0.00e-00 6.83e+00 2.50e-01 5.66e-02 2.24e+00 2.88e-03 0.00e-00 1.88e+01 3.96e+01 4.41e-02
SR 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
ERT 1.65e+04 - - - 2.15e+04 - - - - - 4.74e+04 - - -

f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28
Best 4.26e+03 1.49e+00 3.04e+01 1.20e+02 1.19e+00 8.94e+00 2.00e+02 1.90e+01 2.07e+03 2.00e+02 2.27e+02 2.00e+02 3.00e+02 3.00e+02
Worst 6.41e+03 2.75e+00 3.04e+01 2.19e+02 2.34e+00 1.40e+01 3.00e+02 1.31e+02 7.71e+03 2.07e+02 2.52e+02 2.00e+02 5.76e+02 3.00e+02
Median 5.62e+03 2.18e+00 3.04e+01 1.94e+02 1.83e+00 1.15e+01 2.04e+02 6.75e+01 6.53e+03 2.01e+02 2.39e+02 2.00e+02 3.02e+02 3.00e+02
Mean 5.59e+03 2.19e+00 3.04e+01 1.89e+02 1.80e+00 1.15e+01 2.16e+02 7.26e+01 5.97e+03 2.01e+02 2.39e+02 2.00e+02 3.62e+02 3.00e+02
Std 3.78e+02 2.95e-01 0.00e-00 2.41e+01 2.63e-01 7.97e-01 2.80e+01 4.08e+01 1.46e+03 1.31e+00 5.48e+00 1.49e-02 9.20e+01 0.00e-00
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - - - - - - - - - - - -

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

50D

Best 1.00e-08 2.07e+05 9.01e-01 3.23e+02 1.00e-08 4.34e+01 6.73e-02 2.10e+01 1.87e+01 1.93e-07 1.00e-08 6.18e+01 1.43e+02 4.00e-01
Worst 1.00e-08 9.74e+05 1.99e+04 3.66e+03 1.00e-08 4.34e+01 9.09e+00 2.12e+01 7.11e+01 4.44e-02 1.00e-08 1.67e+02 4.41e+02 1.17e+01
Median 1.00e-08 4.70e+05 7.27e+01 1.27e+03 1.00e-08 4.34e+01 9.96e-01 2.11e+01 2.62e+01 1.48e-02 1.00e-08 1.02e+02 2.95e+02 2.40e+00
Mean 1.00e-08 4.72e+05 7.88e+02 1.38e+03 1.00e-08 4.34e+01 1.80e+00 2.11e+01 2.73e+01 1.70e-02 1.00e-08 1.08e+02 2.91e+02 2.80e+00
Std 0.00e-00 1.63e+05 2.83e+03 8.14e+02 0.00e-00 0.00e+00 1.94e+00 4.15e-02 7.55e+00 1.14e-02 0.00e-00 2.59e+01 8.10e+01 1.94e+00
SR 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
ERT 2.65e+04 - - - 3.56e+04 - - - - - 2.73e+05 - - -

f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28
Best 1.17e+04 2.27e+00 5.08e+01 3.54e+02 3.40e+00 1.99e+01 2.00e+02 2.37e+01 4.32e+03 2.01e+02 2.62e+02 2.04e+02 3.09e+02 4.00e+02
Worst 1.38e+04 3.72e+00 5.08e+01 4.18e+02 1.91e+01 2.35e+01 3.19e+02 7.01e+02 1.42e+04 2.56e+02 2.87e+02 2.24e+02 7.92e+02 4.00e+02
Median 1.29e+04 3.23e+00 5.08e+01 3.99e+02 5.15e+00 2.12e+01 2.00e+02 5.61e+01 1.35e+04 2.02e+02 2.74e+02 2.11e+02 6.16e+02 4.00e+02
Mean 1.28e+04 3.18e+00 5.08e+01 3.95e+02 5.89e+00 2.13e+01 2.13e+02 9.85e+01 1.27e+04 2.14e+02 2.74e+02 2.11e+02 6.02e+02 4.00e+02
Std 4.75e+02 3.23e-01 2.09e-03 1.51e+01 2.73e+00 6.31e-01 3.13e+01 1.12e+02 2.24e+03 1.70e+01 5.37e+00 3.23e+00 1.09e+02 0.00e-00
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - - - - - - - - - - - -

TABLE II. PARAMETER SENSITIVITY ANALYSIS RESULTS BY USING THE IMAN AND DAVENPORT TEST WITH THE HOCHBERG POST-HOC PROCEDURE
ON 28 CEC-2013 TEST FUNCTIONS AT PROBLEM DIMENSIONALITY 10D, 30D AND 50D, RESPECTIVELY. AMONG 78 TESTED PARAMETER SETTINGS ([NP,

CR, F] ∈ [20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300] × [0.1, 0.5, 0.9] × [0.5, 0.8]), THOSE LEADING TO THE STATISTICALLY
SIGNIFICANTLY BETTER PERFORMANCE (AT THE SIGNIFICANCE LEVEL 0.05) OVER OTHERS WITH RESPECT TO 10D, 30D AND 50D PROBLEMS ARE

DENOTED BY 10, 30 AND 50 AND ORDERLY SEPARATED BY “/” IN THEIR CORRESPONDING TABLE CELLS. “-” MEANS THE CORRESPONDING PARAMETER
SETTING IS STATISTICALLY SIGNIFICANTLY WORSE THAN SOME OTHER PARAMETER SETTINGS FOR SOLVING ALL 28 TEST FUNCTIONS AT CERTAIN

PROBLEM DIMENSIONALITY.

Parameter Population Size
CR F 20 30 40 50 60 70 80 90 100 150 200 250 300

0.1 0.5 -/30/50 -/30/- -/30/- -/30/- -/30/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/-
0.8 -/30/- -/30/- -/30/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/-

0.5 0.5 10/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/-
0.8 -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/-

0.9 0.5 -/-/- -/-/- 10/30/50 10/30/50 10/30/50 -/30/- -/30/- -/30/- -/-/- -/-/- -/-/- -/-/- -/-/-
0.8 -/30/- -/30/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/- -/-/-

the satisfactory performance on most of test functions. Since
consideration was given to a wide range of problems, the
generally good performance can be expected by applying such
derived rules of thumb to solve unseen problems.

Although previous works had already given many rules of
thumb for choosing the parameters of DE/rand/1/bin [1]–[3],
most of them were not derived in a statistically rigorous way.
In this paper, we employ advanced non-parametric statistical
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(a) Problem dimensionality: 10D
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(b) Problem dimensionality: 10D
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(c) Problem dimensionality: 30D
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(d) Problem dimensionality: 30D

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log 10 of FEvals / DIM

pr
op

or
tio

n 
of

 s
uc

ce
ss

fu
l e

xe
cu

tio
n 

ru
ns

 

 
TERMFEV: 10E+1

TERMFEV: 10E-1

TERMFEV: 10E-4

TERMFEV: 10E-8

(e) Problem dimensionality: 50D
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(f) Problem dimensionality: 50D

Fig. 1. Empirical cumulative distribution function (ECDF) of the number of executed function evaluations (FEvals) when the algorithm succeeds in reaching
certain function error values (denoted in the legend as TERMFEV: 10e+1, 10e-1, 10e-4 and 10e-8) divided by problem dimensionality, which is accumulated
over all 51 execution runs of 28 CEC-2013 test functions at problem dimensionality 10D, 30D and 50D, respectively. (a)(c)(e): DE/rand/1/bin using the best
parameter setting (among 78 tested cases: [NP, CR, F] ∈ [20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300] × [0.1, 0.5, 0.9] × [0.5, 0.8]) that leads to
the smallest mean FEV at execution termination over 51 runs with respect to each of 28 test functions. (b)(d)(f): DE/rand/1/bin using one superior parameter
setting (NP:50, CR:0.9, F:0.5) advocated by parameter sensitivity analysis (Section III-D) on 28 test functions.

tests to conduct parameter sensitivity analysis in order to
discover some parameter settings (out of a wide range of
potentially effective parameter settings) that can lead to the
statistically significantly better performance than the other
settings. Specifically, we apply the Iman and Davenport test
[14], [15] to compare 78 parameter settings over all 28 test
functions to determine whether at least two parameter settings
out of 78 tested cases can lead to the statistically significantly
different (at the significance level 0.05) performance. If so, the
Hochberg post-hoc procedure [14], [15] is used to demarcate
statistically significantly superior parameter settings.

The Iman and Davenport test is a derivative of the famous
Friedman two-way analysis of variances by ranks [18], which
is a statistical hypothesis testing method to detecting the
existence of the significant difference between the behavior
of two or more algorithms. It is a non-parametric test, which
converts original results to ranks before calculating the test
statistic. For example, given several algorithms in comparison,
their numerical performance indices will be first ranked with
respect to each test problem where smaller ranks indicate
the better performance. Then, the average rank over all test
problems will be used to calculate the test statistic. Finally,
the calculated test statistic will be converted to the p-value
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TABLE III. PERFORMANCE (PFM) OF DE/RAND/1/BIN USING ONE SUPERIOR PARAMETER SETTING (NP:50, CR:0.9, F:0.5) ADVOCATED BY
PARAMETER SENSITIVITY ANALYSIS (SECTION III-D) ON ALL 28 CEC-2013 TEST FUNCTIONS AT PROBLEM DIMENSIONALITY (DIM) 10D, 30D AND

50D, RESPECTIVELY. BEST, WORST, MEDIAN, MEAN (STD) STAND FOR THE BEST, WORST, MEDIAN, MEAN (STANDARD DEVIATION) OF THE FEVS AT
EXECUTION TERMINATION OVER 51 RUNS, RESPECTIVELY. SR AND ERT REPRESENT THE SUCCESS RATE AND THE EXPECTED RUNNING TIME TO

SUCCEED. ERT IS DENOTED BY “-” (INVALID) WHEN SR EQUALS ZERO.

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

10D

Best 1.00e-08 1.52e-03 1.00e-08 2.72e-07 1.00e-08 7.59e-03 1.00e-08 2.02e+01 1.00e-08 1.00e-08 1.00e-08 9.95e-01 1.99e+00 3.66e+00
Worse 1.00e-08 3.06e+04 1.09e+01 5.48e+02 1.00e-08 9.81e+00 6.80e-02 2.05e+01 3.59e+00 1.18e-01 1.09e+01 2.19e+01 3.12e+01 1.12e+03
Median 1.00e-08 2.85e+02 3.11e-01 1.92e+00 1.00e-08 7.10e-01 8.41e-06 2.04e+01 1.03e+00 4.92e-02 9.95e-01 6.96e+00 1.18e+01 7.48e+01
Mean 1.00e-08 2.42e+03 1.41e+00 2.71e+01 1.00e-08 3.29e+00 1.44e-03 2.04e+01 1.14e+00 4.92e-02 1.14e+00 8.24e+00 1.21e+01 2.20e+02
Std 0.00e-00 5.27e+03 2.51e+00 8.34e+01 0.00e-00 4.30e+00 9.50e-03 6.64e-02 9.90e-01 2.58e-02 2.13e+00 5.62e+00 6.31e+00 2.80e+02
SR 1.00 0.00 0.16 0.00 1.00 0.00 0.24 0.00 0.22 0.06 0.45 0.00 0.00 0.00
ERT 1.38e+04 - 5.96e+05 - 1.74e+04 - 4.05e+05 - 4.27e+05 1.63e+06 1.89e+05 - - -

f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28
Best 2.83e+02 3.73e-01 6.68e+00 2.03e+01 4.98e-01 1.74e+00 2.00e+02 1.84e+01 1.10e+02 1.03e+02 2.00e+02 1.02e+02 3.00e+02 1.00e+02
Worse 1.49e+03 1.54e+00 2.71e+01 4.36e+01 2.21e+00 3.47e+00 4.00e+02 8.69e+02 1.61e+03 2.11e+02 2.10e+02 3.08e+02 5.20e+02 3.00e+02
Median 1.19e+03 1.03e+00 1.67e+01 3.12e+01 9.74e-01 2.33e+00 4.00e+02 1.16e+02 1.01e+03 2.05e+02 2.00e+02 2.00e+02 3.00e+02 3.00e+02
Mean 1.13e+03 1.01e+00 1.78e+01 3.16e+01 1.07e+00 2.36e+00 3.73e+02 2.23e+02 9.77e+02 2.02e+02 2.02e+02 1.67e+02 3.37e+02 2.92e+02
Std 2.69e+02 2.42e-01 5.36e+00 5.58e+00 4.98e-01 3.58e-01 6.96e+01 2.36e+02 3.34e+02 1.46e+01 2.76e+00 4.86e+01 7.58e+01 3.92e+01
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - - - - - - - - - - - -

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

30D

Best 1.00e-08 4.56e+04 3.04e+00 4.42e+01 1.00e-08 1.37e+01 7.71e-02 2.08e+01 4.49e+00 1.97e-02 3.98e+00 1.69e+01 3.30e+01 5.99e+01
Worse 1.00e-08 3.31e+05 2.44e+07 1.94e+03 5.99e-04 7.06e+01 7.27e+00 2.10e+01 1.64e+01 2.37e-01 2.49e+01 1.85e+02 1.84e+02 3.28e+03
Median 1.00e-08 1.46e+05 4.96e+05 3.46e+02 1.00e-08 1.41e+01 1.17e+00 2.10e+01 8.85e+00 6.41e-02 1.39e+01 1.57e+02 1.65e+02 4.79e+02
Mean 1.00e-08 1.54e+05 3.65e+06 4.62e+02 3.09e-05 1.98e+01 1.58e+00 2.09e+01 9.17e+00 7.62e-02 1.42e+01 1.14e+02 1.53e+02 5.72e+02
Std 0.00e-00 6.58e+04 5.84e+06 4.15e+02 1.17e-04 1.37e+01 1.60e+00 4.99e-02 2.24e+00 4.92e-02 4.56e+00 6.69e+01 3.90e+01 5.46e+02
SR 1.00 0.00 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT 3.94e+04 - - - 1.23e+05 - - - - - - - - -

f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28
Best 4.39e+03 1.28e+00 4.08e+01 1.73e+02 1.33e+00 1.09e+01 2.00e+02 1.44e+02 6.56e+03 2.01e+02 2.39e+02 2.00e+02 3.13e+02 3.00e+02
Worst 7.58e+03 2.88e+00 1.55e+02 2.14e+02 1.19e+01 1.26e+01 4.44e+02 9.65e+02 7.69e+03 2.44e+02 2.61e+02 3.39e+02 6.53e+02 3.00e+02
Median 7.11e+03 2.52e+00 5.20e+01 2.00e+02 2.76e+00 1.19e+01 3.00e+02 4.23e+02 7.12e+03 2.16e+02 2.48e+02 2.00e+02 5.09e+02 3.00e+02
Mean 7.01e+03 2.45e+00 5.62e+01 1.99e+02 3.93e+00 1.19e+01 3.07e+02 4.44e+02 7.11e+03 2.17e+02 2.48e+02 2.37e+02 4.95e+02 3.00e+02
Std 5.42e+02 3.02e-01 1.96e+01 9.87e+00 2.87e+00 3.41e-01 7.92e+01 2.01e+02 2.64e+02 1.09e+01 4.38e+00 5.52e+01 9.30e+01 0.00e-00
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - - - - - - - - - - - -

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

50D

Best 1.00e-08 1.30e+05 5.13e+05 7.22e+02 1.00e-08 4.34e+01 2.32e+00 2.10e+01 1.48e+01 4.19e-02 1.89e+01 4.48e+01 3.14e+02 3.45e+02
Worst 1.00e-08 1.16e+06 7.63e+07 5.17e+03 3.07e-03 8.56e+01 2.73e+01 2.12e+01 7.35e+01 2.88e-01 6.57e+01 3.70e+02 3.90e+02 2.38e+03
Median 1.00e-08 4.55e+05 7.75e+06 1.71e+03 1.00e-08 4.34e+01 1.29e+01 2.11e+01 2.32e+01 1.21e-01 3.58e+01 3.44e+02 3.52e+02 1.17e+03
Mean 1.00e-08 4.91e+05 1.97e+07 1.83e+03 1.34e-04 4.46e+01 1.24e+01 2.11e+01 2.94e+01 1.37e-01 3.64e+01 2.94e+02 3.50e+02 1.25e+03
Std 0.00e-00 1.89e+05 2.30e+07 8.34e+02 5.52e-04 5.93e+00 5.80e+00 4.11e-02 1.67e+01 6.44e-02 9.09e+00 1.12e+02 1.34e+01 4.82e+02
SR 1.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT 6.92e+04 - - - 2.33e+05 - - - - - - - - -

f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28
Best 1.24e+04 2.18e+00 7.50e+01 3.60e+02 3.40e+00 2.11e+01 2.00e+02 6.27e+02 1.20e+04 2.23e+02 2.71e+02 2.00e+02 5.46e+02 4.00e+02
Worst 1.45e+04 3.76e+00 1.26e+02 4.29e+02 1.91e+01 2.24e+01 1.12e+03 2.28e+03 1.45e+04 2.74e+02 3.11e+02 3.68e+02 9.94e+02 3.40e+03
Median 1.38e+04 3.35e+00 9.45e+01 3.97e+02 5.15e+00 2.19e+01 8.36e+02 1.12e+03 1.37e+04 2.53e+02 2.92e+02 3.49e+02 8.39e+02 4.00e+02
Mean 1.38e+04 3.25e+00 9.52e+01 3.95e+02 5.89e+00 2.18e+01 7.05e+02 1.23e+03 1.36e+04 2.50e+02 2.92e+02 3.21e+02 8.34e+02 5.16e+02
Std 3.75e+02 3.33e-01 1.15e+01 1.31e+01 2.73e+00 2.72e-01 4.23e+02 4.20e+02 4.45e+02 1.26e+01 9.50e+00 6.10e+01 8.68e+01 5.82e+02
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - - - - - - - - - - - -

according to the F distribution. If the obtained p-value is
smaller or equal to a pre-specified significance level (e.g.,
0.05 used in our experiments), we can draw a conclusion
that the significant difference exists between the performance
of two or more algorithms in comparison. However, the
Iman and Davenport test cannot discover which algorithms
are significantly different from others. To resolve this issue,
post-hoc procedures can be applied, which perform pairwise
comparisons under the control of the family-wise error rate
(FWER) [14]. Here, we choose the Hochberg procedure, which
had been recommended in [15] for demarcating algorithms
having the statistically significantly better performance than
others. This post-hoc procedure first determines the control
method as the algorithm with the lowest rank (algorithm’s
ranks are obtained from the Iman and Davenport test in our
work). Then, the test statistic is calculated for each algorithm
except for the control method based on the ranks of that
algorithm and the control method, and converted to the p-value
according to the standard normal distribution. After that, the

obtained p-values are sorted. Finally, in the descending order,
each p-value is compared with an adjusted significant level
(for controlling the FWER). Once a p-value is smaller or equal
to its adjusted significant level, the comparison is terminated.
Those algorithms with p-values larger than this p-value that
terminates the comparison together with the control method
are claimed to be statistically significantly better than other
algorithms. The detailed description of the Iman and Davenport
test and the Hochberg post-hoc procedure is available in [14],
[15], [18] .

The power and reliability of the above-described statistic
tests can be influenced by the number of compared algorithms
and the number of tested problems. It was suggested that the
number of tested problems should be both not smaller than two
times and not larger than eight times the number of compared
algorithms [15]. Since we are investigating a population-based
stochastic algorithm, different random seeds may cause the
population to explore different parts of the solution space and
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consequently result in the distinct performance even when
optimizing the same problem. Therefore, it is reasonable to
treat applying different random seeds to the same test function
as different test problems. Having considered this, for each
test function at any tested problem dimensionality, we choose
10 execution runs corresponding to 10 distinct random seeds
to serve as different test problems, which lead to 280 test
problems in total for each tested problem dimensionality. This
makes the number of test problems around 3.5 times the
number of tested parameter settings, which comply with the
suggestions in [15].

Table II reports the results of parameter sensitivity analysis.
It can be observed that medium NP values (e.g., 40, 50 and 60),
large CR values (e.g., 0.9) and medium F values (e.g., 0.5) can
lead to the statistically significantly better performance than the
other parameter settings at any tested problem dimensionality.

To comply with the protocol of the CEC-2013 testbed [16]
about using a single parameter setting to conduct all exper-
iments, Table III reports the performance of DE/rand/1/bin
using the parameter setting (NP:50, CR:0.9, F:0.5) advocated
by the above parameter sensitivity analysis. The computational
complexity and ECDF corresponding to such a parameter
setting are reported in Table IV and illustrated in Figures 1b,
1d and 1f, respectively.

IV. CONCLUSIONS

This work systematically benchmarks a classic DE al-
gorithm (DE/rand/1/bin) on the CEC-2013 single-objective
continuous optimization testbed. We report, for each of 28
CEC-2013 test functions at different problem dimensionality
(10D, 30D and 50D), the best achieved performance among
78 potentially effective parameter settings ([NP, CR, F] ∈ [20,
30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300] × [0.1,
0.5, 0.9] × [0.5, 0.8]). It reflects the intrinsic optimization
capability of DE/rand/1/bin on this testbed and provides a
handy reference for future research using this testbed by
choosing DE/rand/bin as a baseline method for performance
comparison. Furthermore, we conduct parameter sensitivity
analysis using the Iman and Davenport test followed by the
Hochberg procedure to compare all 78 parameter settings over
all 28 test functions at 10D, 30D and 50D, respectively. The
results indicate that medium NP values (e.g., 40, 50 and 60),
large CR values (e.g., 0.9) and medium F values (e.g., 0.5) can
lead to the statistically significantly better performance than the
other parameter settings at any tested problem dimensionality.
It provides a statistically reliable rule of thumb for choosing
the parameters of DE/rand/1/bin for solving unseen problems.
Moreover, to comply with the protocol of the CEC-2013
testbed about using a single parameter setting to conduct all
experiments, we report the performance of DE/rand/1/bin using
one of the superior parameter settings (NP:50, CR:0.9, F:0.5)
advocated by parameter sensitivity analysis.
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