
378 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

Cooperative Co-Evolution With Differential
Grouping for Large Scale Optimization
Mohammad Nabi Omidvar, Student Member, IEEE, Xiaodong Li, Senior Member, IEEE,

Yi Mei, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Cooperative co-evolution has been introduced into
evolutionary algorithms with the aim of solving increasingly
complex optimization problems through a divide-and-conquer
paradigm. In theory, the idea of co-adapted subcomponents is
desirable for solving large-scale optimization problems. However,
in practice, without prior knowledge about the problem, it is not
clear how the problem should be decomposed. In this paper, we
propose an automatic decomposition strategy called differential
grouping that can uncover the underlying interaction structure
of the decision variables and form subcomponents such that
the interdependence between them is kept to a minimum. We
show mathematically how such a decomposition strategy can be
derived from a definition of partial separability. The empirical
studies show that such near-optimal decomposition can greatly
improve the solution quality on large-scale global optimization
problems. Finally, we show how such an automated decompo-
sition allows for a better approximation of the contribution of
various subcomponents, leading to a more efficient assignment
of the computational budget to various subcomponents.

Index Terms—Cooperative co-evolution, large-scale optimiza-
tion, nonseparability, numerical optimization, problem decompo-
sition.

I. Introduction

OPTIMIZATION problems in science and engineering
are often very complex and solutions cannot be readily

found with a direct approach. As a result, it is imperative to
investigate ways of simplifying a given complex problem. The
number of decision variables is a major contributing factor to
the complexity of an optimization problem [1]. There are a
number of approaches for solving large-scale problems with
a large number of decision variables. One such approach is
to decompose the original large-scale problem into a set of
smaller and simpler subproblems, which are more manageable
and easier to solve. Once such a decomposition is realized,

Manuscript received December 26, 2012; revised May 18, 2013; accepted
May 20, 2013. Date of publication September 11, 2013; date of current version
May 27, 2014. This work was supported in part by the EPSRC under Grant
EP/J017515/1 and the ARC Discovery under Grant DP120102205.

M. N. Omidvar, X. Li, and Y. Mei are with the Evolutionary
Computing and Machine Learning Group, School of Computer Sci-
ence and IT, RMIT University, Melbourne VIC 3001, Australia (e-mail:
mohammad.omidvar@rmit.edu.au; xiaodong.li@rmit.edu.au; yi.mei@rmit.
edu.au).

X. Yao is with the Centre of Excellence for Research in Computational
Intelligence and Applications, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2013.2281543

the whole problem can be solved by separately optimizing
the individual subproblems. This so-called divide-and-conquer
strategy can be traced back to René Descartes’ famous book
A Discourse on Method [2]. The effectiveness of decompo-
sition has been established in many classical optimization
methods [3]–[5].

The focus of this paper is to examine large-scale global
optimization of real-valued functions, using automatic de-
composition. Evolutionary algorithms (EAs) [6] are effective
optimization methods and have been extensively used for
solving a wide range of optimization problems [7]. However,
their performance deteriorates rapidly as the dimensionality
of the problem increases [8]. This is referred to as the
curse of dimensionality [9]. Cooperative co-evolution (CC)
has been proposed by Potter and De Jong [10] as an explicit
means of problem decomposition in evolutionary algorithms.
A major difficulty in applying CC is the choice of a good
decomposition strategy. Moreover, the performance of opti-
mization is potentially sensitive to the chosen decomposi-
tion. It was shown by Salomon [11] that interdependence
between variables can greatly affect the performance of op-
timization algorithms in continuous domains. In classical
genetic algorithm (GA) research, these variable interdepen-
dencies are referred to as linkage or epistasis [1], [12] and
have been extensively investigated in the context of binary
GAs [13].

The decomposition strategy in CC is very similar to the
problem of ordering genes in the early days of genetic algo-
rithm research [12]. Ordering of genes on a chromosome can
have a significant impact on the performance of EAs. In an
experiment conducted by Goldberg et al. [14], it was shown
that good ordering of genes is the difference between success
and failure of a simple genetic algorithm. The dependence
between ordering of genes and the performance of EAs is
directly related to the gene interaction problem.

Although decomposition plays a crucial role in the perfor-
mance of EAs, there is often insufficient knowledge about
the structure of a given problem to be able to manually
devise a suitable decomposition strategy. It is therefore de-
sirable to design new procedures capable of exploiting the
hidden structure of a problem to automatically find a suitable
decomposition.

In addition to the impact that a near-optimal decomposition
can have on the performance of CC, it has been shown
recently that it is possible to quantify the contribution of

1089-778X c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



OMIDVAR et al.: COOPERATIVE CO-EVOLUTION WITH DIFFERENTIAL GROUPING FOR LARGE SCALE OPTIMIZATION 379

a subcomponent to the global fitness [15]. Once this con-
tribution information is calculated, the computational budget
can be divided between the subcomponents according to their
contributions, unlike traditional CC where the computational
budget is equally divided between all subcomponents. It has
been shown that a contribution-based scheme outperforms
traditional CC [15].

In this paper, we propose a decomposition method called
differential grouping that allows an automatic near-optimal
decomposition of decision variables. More specifically, we
have the following research objectives:

1) to provide a theoretical foundation for identifying inter-
acting variables and to propose an algorithm to group
the interacting variables with high accuracy;

2) to design an automatic decomposition mechanism,
which is equally applicable to both traditional and
evolutionary optimization algorithms;

3) to show how a near-optimal decomposition is beneficial
in solving large-scale global optimization problems with
up to 1000 decision variables;

4) to show how an automatic near-optimal decomposition
strategy combined with contribution-based cooperative
co-evolution (CBCC) can further improve the perfor-
mance of an optimization process, especially on large-
scale problems.

The remainder of this paper is organized as follows. In
Section II, a review of variable interaction problems and
various decomposition methods is given. In Section III, the
proposed differential grouping algorithm is derived from a
definition of partial separability. Section IV outlines the bench-
mark problems used to evaluate the performance of differential
grouping. In Section V, first the performance of the differential
grouping algorithm is compared to another state-of-the-art de-
composition method, then the effectiveness of the differential
grouping algorithm in improving the optimization performance
of evolutionary algorithms is investigated; and finally, the
performance of differential grouping is benchmarked within
a contribution-based framework. Section VI summarizes and
concludes the paper.

II. Related Work

This section defines the notion of nonseparability and
provides a survey of cooperative co-evolutionary models and
various decomposition and linkage detection methods.

A. Gene Interaction

In natural genetics, two genes are said to interact with each
other if they collectively represent a feature at the phenotype
level [16]. Another form of interaction happens when the value
taken by one gene activates or deactivates an effect of other
genes [16]. The term epistasis is used to refer to any type of
gene interaction [1], [17], [18]. In the context of GAs, this is
also referred to as linkage [1], [13]. Nonseparability refers to
the same concept, but it is more widely used in the continuous
optimization literature. The formal definition of separability
and nonseparability is as follows [1], [19]:

Definition 1: A function f (x1, . . . , xn) is separable iff

arg min
(x1,...,xn)

f (x1, . . . , xn) =

(
arg min

x1

f (x1, . . . ), . . . , arg min
xn

f (. . . , xn)
)

(1)

and nonseparable otherwise (assuming minimization).
In other words, if it is possible to find the global optimum of

a function by optimizing one dimension at a time regardless
of the values taken by other dimensions, then the function
is said to be separable. It is nonseparable otherwise. One
way of creating a nonseparable function is by rotating the
fitness landscape of the original objective function around its
coordinate axes [11].

B. Cooperative Co-Evolution

CC is an effective method for solving large-scale opti-
mization problems. This effectiveness is attributed to the
decomposition of a large-scale problem into a set of smaller
subproblems. This has been empirically verified in [8]. How-
ever, one drawback of CC is that its performance is sensitive
to the choice of decomposition strategy. Here, we review
various decomposition strategies suggested for CC with more
emphasis on techniques proposed in the context of large-scale
global optimization.

In the original implementation of the cooperative co-
evolutionary genetic algorithm (CCGA), Potter and De
Jong [10] decomposed an n-dimensional problem into n 1-D
problems. Once the subcomponents are identified, they un-
dergo optimization using an evolutionary optimizer in a round-
robin fashion. It was shown that a variant of CCGA, CCGA-1,
did not perform well on the Griewank function [20], a non-
separable function. Further experiments on the Rosenbrock
function [20], another nonseparable function, confirmed that
the poor performance of CCGA-1 on nonseparable problems
is due to interdependencies between the decision variables.
In this original CCGA study [10], the problems only had a
maximum of 30 dimensions. Liu et al. [8] made the first
attempt to solve large-scale optimization problems using a
CC framework. They applied fast evolutionary programming
with CC [8] on benchmark problems with up to 1000 di-
mensions. The experimental results showed that a cooperative
co-evolutionary approach scales better as the dimensionality
of the problem increases. However, since they mostly used
separable functions for their experiments, it is unclear how
their algorithm will scale up on nonseparable functions.

Van den Bergh and Engelbrecht [21] were the first to
apply particle swarm optimization (PSO) [22] to a cooper-
ative co-evolutionary framework (CPSO). Unlike CCGA, they
decomposed an n-dimensional problem into k s-dimensional
problems for some s << n. However, CPSO was not tested
against large-scale problems. CC was also used with differ-
ential evolution [23] by Shi et al. [24], where the decision
variables were divided into two equally sized subcomponents.
It is clear that this decomposition strategy does not scale well
as the dimensionality increases.

Random grouping is a more recent decomposition strategy
proposed by Yang et al. [25]. Similar to CPSO, random



380 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

grouping decomposes a problem into k s-dimensional sub-
problems, but instead of using a static grouping, it randomly
allocates the decision variables to subcomponents in every co-
evolutionary cycle. It was shown mathematically that with
random grouping the probability of placing two interacting
variables in the same subcomponent for several cycles is rea-
sonably high. Random grouping achieved a good performance
on a set of benchmark functions with up to 1000 variables [25].
Li and Yao [26] developed CCPSO2 (an improved version
of CPSO) based on a revised random grouping scheme, and
tackled problems with up to 2000 dimensions. Despite the
success of random grouping, it has been shown that it is
ineffective when the number of interacting variables grows
beyond approximately five variables [27]. An alternative ap-
proach called delta grouping [28] was shown to outperform
random grouping on most functions from a set of 20 large-
scale benchmark problems [20]. However, a drawback of delta
grouping is its low performance when there is more than one
nonseparable subcomponent in the objective function.

All of the grouping strategies described so far use a pre-
defined and fixed subcomponent size. For example, random
grouping and delta grouping decompose an n-dimensional
problem into k s-dimensional problems. A major drawback of
these techniques is that the user needs to specify a value for
either k or s. If there are large groups of interacting variables in
the objective function then a small value of s may degrade the
performance of the algorithm. If the problem contains many
small groups of interacting variables then a large value of s

does not utilize the power of a decomposition approach to its
full potential. To alleviate this problem, Yang et al. proposed
a multilevel cooperative co-evolution (MLCC) algorithm [29].
In MLCC, instead of using a fixed number for s, a set of
possible s values is provided to the algorithm. During the
course of evolution, the performance of each of using these
subcomponent sizes is measured and the values with better
performance are given a higher probability of being selected in
the next co-evolutionary cycle. This technique partially solves
the problem of specifying a single s value. However, the user
still needs to decide about a set of potential s values. Another
drawback of this multilevel scheme is that once an s value is
chosen, the decision variables are divided into a set of equally
sized subcomponents. It is unlikely that in most real-world
problems the sizes of interacting groups will be equal. Hence,
it is desirable that a decomposition strategy can automatically
determine the number of subcomponents and their sizes.

C. Classification of Decomposition Strategies

Decomposition methods have been studied extensively in
the field of binary GAs [13]. Such algorithms are commonly
referred to as linkage learning algorithms. The main mo-
tivation in classical linkage learning research is to design
crossover operators, which take into account the linkage
structure, and allow a set of linked genes to be inherited
together in the mating process. More recently, especially in
the context of continuous global optimization, the grouping
which is discovered using an automatic decomposition strategy
is superimposed on a CC framework to form the co-evolving
subcomponents [28], [30].

Linkage learning algorithms were classified by Yu et al. [31]
into three major categories: perturbation, interaction adap-
tation, and model building. Here, we include a fourth cat-
egory, random methods, for a more complete treatment of
various decomposition strategies in both conventional and co-
evolutionary algorithms.

1) Random Methods: These algorithms do not rely on a
systematic or smart procedure to discover the interdependen-
cies. Instead, they randomly permute the decision variables to
increase the probability of placing interacting variables close
to each other for a few evolutionary cycles. The inversion
operator [12], [32], one of the early attempts to overcome
the gene interaction problem, inverts (reverses) the order of
genes on a randomly chosen portion of the chromosome.
Since the cutting points are selected at random, an arbitrary
ordering of the genes can be achieved by repeatedly applying
the inversion operator. This is why it should be classified as a
random method. In the context of CC, random grouping [25]
randomly permutes the order of the decision variables in every
co-evolutionary cycle to increase the probability of placing two
interacting variables in the same subcomponent for at least a
cycle. This technique has two major drawbacks. First, the user
has to decide about the number and the size of each subcompo-
nent. Second, if there are more than two interacting variables,
the probability of placing all of them in one subcomponent,
even for one co-evolutionary cycle, approaches zero as the
number of interacting variables increases [27].

2) Perturbation: These methods perturb the decision vari-
ables using various heuristics. By monitoring the changes to
the objective function, detection of the interactions between
decision variables is attempted. In most cases, the decompo-
sition stage is performed offline. When the full interaction
structure is realized, the representation is modified accordingly
and the optimization process starts. Algorithms that rely on
perturbation include mGA [14], fmGA [33], gemGA [34],
LINC [35], and LIMD [36]. These methods are typically
incorporated into a binary GA. A limited number of techniques
have also been developed for real-valued GAs, such as LINC-
R [37]. However, the experimental results for LINC-R were
limited to low dimensional functions with up to 40 dimen-
sions. More techniques have been developed for continuous
domains in the context of CC, such as adaptive co-evolutionary
optimization [38] and CC with variable interaction learning
(CCVIL) [30]. All perturbation techniques mentioned here rely
on various heuristics to identify interacting variables. However,
there is a very limited theoretical basis for these heuristics. The
differential grouping proposed in this paper can be considered
as a perturbation technique.

3) Interaction Adaptation: These methods incorporate the
interaction detection mechanism into the chromosome and
simultaneously evolve the order of genes and the decision
variables of the original optimization problem. These methods
assign a higher reproduction probability to individuals with a
tighter grouping of interacting variables. Unlike perturbation
methods, adaptive models evolve the decomposition structure
through the evolutionary process. Examples of these methods
include LEGO [39] and LLGA [40].



OMIDVAR et al.: COOPERATIVE CO-EVOLUTION WITH DIFFERENTIAL GROUPING FOR LARGE SCALE OPTIMIZATION 381

4) Model Building: These methods build a probabilistic
model based on promising solutions in the population. This
model is updated iteratively in the evolutionary process, and
the next generation is built from the model. Estimation of dis-
tribution algorithms [41], [42] fall into this category. Popular
model building algorithms include cGA [43], BOA [44], and
hBOA [45]. Some of these algorithms, such as BOA, are also
used for real-valued optimization [46].

In addition to the work in the field of evolutionary optimiza-
tion, a number of techniques in classical optimization [3], [4]
have been devised to deal with large-scale problems by using
a decomposition strategy. Griewank and Toint [3] proposed
the partitioned quasi-Newton method to deal with large-scale
optimization of partially separable problems. In their work,
instead of approximating the global Hessian matrix, they
approximate smaller partitions of this matrix by applying
the quasi-Newton formula on the component functions. In
other words, the Hessian matrix is partitioned into a set of
block matrices, where each block is based on independent
subfunctions, the sum of which forms the value of the global
objective function.

D. Automatic Decomposition in Cooperative Co-Evolution

A number of recent studies have focused on develop-
ing automatic decomposition strategies for cooperative co-
evolutionary algorithms. The main driving force behind such
studies is that CC is a suitable framework for large-scale
optimization due to its modular nature. However, a major
difficulty in applying CC lies in the decomposition of the
decision variables into a set of subcomponents. Without any
knowledge of the underlying structure, a given problem can be
decomposed in many different ways without any indication of
the superiority of one decomposition over another. Ideally, the
subcomponents should be formed according to the interaction
pattern of the decision variables so that the interactions be-
tween the subcomponents are kept to a minimum. Weicker and
Weicker [38] proposed a CC technique to identify interacting
variables. Although this technique has not been applied to high
dimensional problems, to the best of our knowledge it is the
first attempt at automatic formation of subcomponents in a
CC framework. Recently, Chen et al. [30] improved this tech-
nique and applied it to large-scale global optimization. Delta
grouping [28] is another technique for automatic identification
of the interacting variables. However, delta grouping is more
effective when there is only one group of interacting variables.

III. Differential Grouping

This section describes the details of differential grouping,
the decomposition strategy proposed in this paper. Differential
grouping is derived from the definition of partially additively
separable functions. These types of functions conveniently rep-
resent the modular nature of many real-world problems [47].

Definition 2: A function is partially additively separable if
it has the following general form:

f (�x) =
m∑
i=1

fi(�xi) (2)

where �xi are mutually exclusive decision vectors of fi, �x =
〈x1, . . . , xn〉 is a global decision vector of n dimensions, and
m is the number of independent subcomponents.

For a function of the above form if all subcomponent
functions are 1-D, then it is called completely additively
separable or fully separable for short. Hereafter, the phrase
additively separable is used to refer to partially additively
separable.

Theorem 1: Let f (�x) be an additively separable function.
∀a, b1 �= b2, δ ∈ R, δ �= 0, if the following condition holds:

�δ,xp
[f ](�x)|xp=a,xq=b1 �= �δ,xp

[f ](�x)|xp=a,xq=b2 (3)

then xp and xq are nonseparable where

�δ,xp
[f ](�x) = f (. . . , xp + δ, . . . ) − f (. . . , xp, . . . ) (4)

refers to the forward difference of f with respect to variable
xp with interval δ.

Theorem 1 simply states that given an additively separable
function f (�x), two variables xp and xq interact if (4) evaluated
with any two different values for xq yields different results
(i.e., inequality of delta values ⇒ nonseparability). In order
to prove the theorem it is sufficient to prove its contrapositive,
which states that if two variables xp and xq are separable,
then (4) evaluated with any two different values for xq yields
the same answer (i.e., separability ⇒ equality of delta values).

Lemma 1: If f (�x) is additively separable, then for any xp ∈
�x we have

∂f (�x)

∂xp

=
∂fi(�xi)

∂xp

, ∀xp ∈ �xi. (5)

Proof: Since f (�x) is additively separable, we have

∂f (�x)

∂xp

=
∂
∑m

i=1 fi(�xi)

∂xp

=
∂f1(�x1)

∂xp

+ · · · +
∂fm(�xm)

∂xp

(6)

∀xp ∈ �xi

where �x1, . . . , �xm are mutually exclusive decision vectors.
Therefore, ∂f (�xj)

∂xp
= 0 , ∀j �= i. Hence

∂f (�x)

∂xp

=
∂fi(�xi)

∂xp

, ∀xp ∈ �xi. (7)

Proof of Theorem 1: According to Lemma 1
∂f (�x)

∂xp

=
∂fi(�xi)

∂xp

, ∀xp ∈ �xi.

Then, ∀xq /∈ �xi we have

∂f (�x)

∂xp

∣∣∣∣
xq=b1

=
∂f (�x)

∂xp

∣∣∣∣
xq=b2

=
∂fi(�xi)

∂xp

, ∀b1 �= b2.

∫ a+δ

a

∂f (�x)

∂xp

dxp

∣∣∣∣
xq=b1

=
∫ a+δ

a

∂f (�x)

∂xp

dxp

∣∣∣∣
xq=b2

�δ,xp
[f ](�x)|xp=a,xq=b1 = �δ,xp

[f ](�x)|xp=a,xq=b2

∀a, b1 �= b2, δ ∈ R, δ �= 0.



382 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

Example 1: Consider the nonseparable objective function
f (x1, x2) = x2

1 + λx1x2 + x2
2, λ �= 0. According to (6) we have

∂f (x1, x2)

∂x1
= 2x1 + λx2.

This clearly shows that the change in the global objective
function with respect to x1 is a function of x1 and x2. Now
by applying (4) we have

�δ,x1 [f ] =
[
(x1 + δ)2 + λ(x1 + δ)x2 + x2

2

]
− [

x2
1 + λx1x2 + x2

2

]
= δ2 + 2δx1 + λx2δ.

It can be seen that the difference equation �δ,x1 [f ] is a
function of both x1 and x2. Therefore, evaluating �δ,x1 [f ] for
two different values of x2 does not give the same answer. So,
according to Theorem 1, we conclude that x1 and x2 interact
(they are nonseparable). Note that λ reflects the strength of
nonseparability. Setting λ to zero makes the function fully
separable.

A. Differential Grouping Algorithm

Algorithm 1 shows how Theorem 1 can be used to identify
and group the interacting variables into common subcompo-
nents. The algorithm starts by examining the interaction of
the first decision variable with all other decision variables in
a pairwise fashion by applying Theorem 1. If the algorithm
detects an interaction between the first variable and any other
variable, it excludes that variable from the set of all decision
variables and places it in a subcomponent. This process is
repeated until all the variables that interact with the first
variable are detected and the first subcomponent is formed. If
no interaction is detected, then the variable under examination
is considered to be a separable variable. This process is
repeated for the remaining variables until there are no more
decision variables left. Lines 10, 13, and 14 of Algorithm 1
show how Theorem 1 is used to identify the interacting
variables. Note that all the variables are initialized to the lower
bound of the function in vector �p1 (line 7). In order to check
for interaction between the ith and the jth dimensions, the
vector �p2 is set to be equal to �p1 except for the ith dimension.
The ith element of vector �p2 is set to the upper bound of the
domain. This allows us to calculate the value of �1. Then, the
jth element of �p2 is set to the center of the search space for
that dimension and �2 is calculated. If the quantity |�1 −�2|
is greater than a small number ε, then it is concluded that
the ith and the jth dimensions interact with each other (lines
7-16). The jth dimension is then removed from the set of
decision variables and is grouped with the ith dimension in
a common subcomponent. The same process is repeated until
all variables interacting with the ith dimension are extracted.
The algorithm then identifies all variables interacting with the
(i + 1)th dimension until there are no more dimensions to be
examined. It should be noted that the choices of upper bound,
lower bound, and the center of the search space to construct �p1

and �p2 are arbitrary. These points can be generated randomly
as long as they do not coincide with each other to give a
difference value of zero.

Algorithm 1: allgroups ←grouping(func, lbounds, ubounds, n)

1: dims ← {1, 2, ..., n}
2: seps ← {}
3: allgroups ←

{} // contains a set of all identified groups.
4: for i ∈ dims do
5: group ← {i}
6: for j ∈ dims ∧ i �= j do
7: �p1 ← lbound × ones(1, n)
8: �p2 ← �p1

9: �p2(i) ← ubound

10: �1 ← func(�p1) − func(�p2)
11: �p1(j) ← 0
12: �p2(j) ← 0
13: �2 ← func(�p1) − func(�p2)
14: if |�1 − �2| > ε then
15: group ← group ∪ j

16: end if
17: end for
18: dims ← dims − group

19: if length(group) = 1 then
20: seps ← seps ∪ group

21: else
22: allgroups ← allgroups ∪ {group}
23: end if
24: end for
25: allgroups ← allgroups ∪ {seps}

The choice of ε in Algorithm 1 affects the sensitivity of the
algorithm in detecting the interactions between the variables.
A smaller ε makes the algorithm more sensitive to very weak
interactions between the decision variables.

In Section II, it was mentioned that perturbation methods,
such as LINC-R [37], lack a theoretical basis. Using the
interpretation given in this section, we can show that the
heuristic used in LINC-R [37] can be derived by applying
Theorem 1.

In LINC-R, an interaction between two variables xi and xj is
identified by comparing the difference values calculated from
the following equations:

�xi,xj
[f ] = f (xi + δi, xj + δj) − f (xi, xj) (8)

�xi
[f ] = f (xi + δi, xj) − f (xi, xj) (9)

�xj
[f ] = f (xi, xj + δj) − f (xi, xj) . (10)

Given these difference values, two variables interact if the
following condition holds:∣∣�xi,xj

[f ] − (
�xi

[f ] + �xj
[f ]

)∣∣ > ε

or similarly

�xi,xj
[f ] �= �xi

[f ] + �xj
[f ] . (11)

By substituting �xi,xj
[f ], �xi

[f ], and �xj
[f ] from (8)–(10)

into (11) and reordering the terms we get

f (xi + δi, xj + δj) �= f (xi + δi, xj) (12)

+ f (xi, xj + δj) − f (xi, xj) .



OMIDVAR et al.: COOPERATIVE CO-EVOLUTION WITH DIFFERENTIAL GROUPING FOR LARGE SCALE OPTIMIZATION 383

Now, Theorem 1 can be used to show the equivalence of the
method used in LINC-R and differential grouping. According
to Theorem 1, the ith and jth dimensions interact if (4)
evaluated at two different xj yields different results, i.e.

f (xi + δi, xj) − f (xi, xj) �=
f (xi + δi, xj + δj) − f (xi, xj + δj) . (13)

By rearranging the terms, it can be seen that this equation is
identical to (12), showing how LINC-R and differential group-
ing are related. However, as mentioned in Section II, LINC-R
was tested on a very limited set of low dimensional benchmark
functions. The real benefit of such automatic decomposition
methods is realized only when they are applied to large-scale
optimization problems. Moreover, the LINC-R algorithm does
not use a CC framework. Instead, it uses an island model with
periodic migration of individuals between islands [37]. This
island model is constructed from the discovered interaction
groups. A disadvantage of this approach is that the periodic
migration of individuals requires re-evaluation of individuals
in all islands after each migration, which is not an effective use
of computational resources. In Section III-C, we show how a
CC framework can be used more efficiently in conjunction
with differential grouping to solve large-scale optimization
problems.

B. Time Complexity

This section describes how to calculate an upper bound
for the total number of fitness evaluations (FEs) required
by differential grouping under the assumption that there are
n
m

nonseparable subcomponents, each with m variables. As
shown in Algorithm 1 after each successful application of
differential grouping, m variables are removed from the set
of remaining decision variables. Based on the sum of an
arithmetic progression, an upper bound (S) can be calculated
for the number of times that the inner loop of Algorithm 1 is
executed

S = (n − 1) + (n − m − 1) + · · · +
(
n −

( n

m
− 1

)
m − 1

)
= (n − 1) + (n − m − 1) + · · · + (m − 1)

=
n

2m
(n + m − 2) . (14)

Since there are four fitness evaluations in the inner loop
(Algorithm 1, lines 10 and 13), a perfect grouping will require
a total of 4S fitness evaluations. However, Algorithm 1 can be
optimized further by realizing that �1 is not changed during
the execution of the inner loop and can be moved outside.
The total number of required fitness evaluations therefore
reduces to 2(S + n

m
). As an example, for n = 1000 and

m = 50, the following number of fitness evaluations is
required:

FE = 2(S +
n

m
) = 2

[1000

100
(1000 + 50 − 2) + 20

]
= 21000 .

Similarly for a fully separable function with n = 1000 and
m = 1, the number of fitness evaluations is

FE = 2(S +
n

m
) = 2

[1000

2
(1000 − 1) + 1000

]
= 1001000 .

Algorithm 2: CC(func, lbounds, ubounds, n)
1: groups ←

grouping(func, lbounds, ubounds, n)//grouping stage.
2: pop ← rand(popsize, n) //optimization stage.
3: (best, best val) ← min(func(pop))
4: for i ← 1 to cycles do
5: for j ← 1 to size(groups) do
6: indicies ← groups[j]
7: subpop ← pop[:, indicies]
8: subpop ← optimizer(best, subpop, FE)
9: pop[:, indicies] ← subpop

10: (best, best val) ← min(func(pop))
11: end for
12: end for

The time complexity of differential grouping with respect to
the maximum number of fitness evaluations is as follows:

O(FE) = O

(
2
(
S +

n

m

))
= O

(
n2

m

)
. (15)

C. Differential Grouping Algorithm With CC

This section explains how the differential grouping algo-
rithm is used in a CC framework for solving large-scale global
optimization problems.

Algorithm 2 shows the CC framework used for this research.
Note that the algorithm has two major stages: a grouping
stage (line 1) and an optimization stage (lines 4–12). During
the grouping stage the underlying interaction structure of the
decision variables is discovered by the grouping function,
and the subcomponents are formed accordingly. Note that the
grouping function can refer to any offline grouping procedure,
but in this paper it refers to the differential grouping procedure
introduced in Algorithm 1. In the optimization stage the
subcomponents that are formed in the grouping stage are
optimized in a round-robin fashion for a predetermined num-
ber of cycles. The optimizer function can be any numerical
optimization algorithm that can exploit the provided grouping
information.

It has been shown recently that putting equal emphasis on all
the subcomponents in a CC framework is not a very efficient
use of the computational budget [15]. Unlike traditional CC,
in contribution-based cooperative co-evolution (CBCC) [15],
subcomponents are chosen based on their contributions to the
improvement of the global fitness. As a result, a subcom-
ponent with a higher contribution to the global fitness will
be given more computational resources. However, one of the
requirements for effective estimation of contributions is that
the interdependencies between the subcomponents are kept to
a minimum. In other words, all the interacting variables should
be placed within the same subcomponents.

IV. Experimental Settings

In order to evaluate the performance of differential grouping
a set of 20 benchmark functions were used. These benchmark
functions were proposed for the IEEE CEC’2010 special



384 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

TABLE I

Performance of Differential Grouping and CCVIL on CEC’2010 Benchmark Functions (Separated By ‘‘/’’)

session on large-scale global optimization and the associated
competition [20]. The CEC’2010 benchmark functions are
classified into the following five groups making an ideal test
set for evaluating differential grouping:

1) separable functions (f1–f3);
2) single-group m-nonseparable functions (f4–f8);
3) n

2m
-group m-nonseparable functions (f9–f13);

4) n
m

-group m-nonseparable functions(f14–f18);
5) nonseparable functions (f19–f20);

where n is the dimensionality of the problem and m is the
number of variables in each nonseparable subcomponent. For
this research, n and m are set to 1000 and 50, respectively.

A. Parameter Settings

The subcomponent optimizer used in this paper is
SaNSDE [48], a variant of differential evolution (DE) [49].
SaNSDE self-adapts the crossover rate and the scaling factor
of DE. The population size is 50 as suggested in [48]. All
experimental results are based on 25 independent runs for
each algorithm. The maximum number of fitness evaluations
was set to 3 × 106 as suggested in [20]. We used these
settings to compare our results with other algorithms that were
benchmarked against the same test suite. For the grouping
stage, the value of ε was arbitrarily set to 10−3 (Algorithm 1,
line 14). Other values such as 10−1 and 10−6 were used to test
the sensitivity of differential grouping to ε (see Section V-C).

V. Analysis of Results

This section provides an analysis of the effectiveness of
differential grouping in terms of identifying the interacting
variables and a comparison with the CCVIL algorithm [30].
Experimental results are provided to analyze the performance
of differential grouping in the context of a CC framework for

large-scale optimization problems. Additionally, this section
also shows how a CBCC can further enhance the optimization
performance.

A. Performance of Differential Grouping

Table I shows the experimental results for the grouping
performance of differential grouping and the CCVIL grouping
algorithm. The entries of the two algorithms are separated
by the symbol “/.” The last column shows the grouping
accuracies of nonseparable variables for both algorithms. The
double lines separate different classes of functions according
to the description in Section IV. This section focuses on the
performance of differential grouping and the next section is
devoted to comparison with CCVIL. It can be seen from
Table I that the grouping accuracy for 13 out of 20 benchmark
functions is 100%. For functions f1 to f3, which are fully
separable (class 1, see Section IV), all the variables were
placed in one separable group. Differential grouping correctly
identified the decision variables of these functions as fully
separable. Another possibility would have been to place each
of the decision variables in a separate subcomponent. How-
ever, this is not necessarily an optimal grouping arrangement
in terms of both efficiency and accuracy for a large-scale
fully separable problem. Studies [21] and [24] have shown
that an intermediate decomposition between these two extreme
cases is more efficient. Since the focus of this paper is on
the decomposition of nonseparable subcomponents, in all of
our experiments, the separable variables identified by the
differential grouping algorithm were placed into one common
subcomponent.

For the second class of benchmark functions (f4–f8), where
there is one nonseparable subcomponent with 50 variables
and another separable group with 950 variables, the grouping
accuracy for three out of these five functions is 100%. It
may seem odd that the grouping accuracy on f4 is reported



OMIDVAR et al.: COOPERATIVE CO-EVOLUTION WITH DIFFERENTIAL GROUPING FOR LARGE SCALE OPTIMIZATION 385

TABLE II

Detailed Grouping Matrix of Some Selected Functions (ε = 10−3
). The Rows Indicate the Groups Formed By the Differential

Grouping Algorithm and the Columns Represent the Permutation Groups From Which

the Variables in Each Group Were Extracted

to be 100% while the number of groups is incorrect. The
reason for this is that, although the number of groups is not
correct, all 50 nonseparable variables were correctly grouped
into a common subcomponent. The reason for the incorrect
number of groups is that the algorithm unexpectedly subdi-
vided some separable variables into nine other nonseparable
groups. Since the grouping of separable variables does not
affect the nonseparable ones, we report 100% accuracy as
long as the nonseparable variables were not misplaced. Further
details of how the variables were grouped is shown in Table II
for some representative functions. The grouping accuracy

for the remaining two functions in this category (f7 and
f8) is also acceptable, especially for f8 where only four
variables were misplaced. In the case of f7, 16 variables were
mixed with separable variables in a total of four nonseparable
groups.

For the next set of functions (f9–f13), there are ten non-
separable subcomponents, each with 50 variables and one
separable subcomponent with 500 variables. Except for f13,
the grouping accuracy for this class is very high, with an
accuracy of 100% for 3 functions out of the five. The grouping
accuracy on f11 is 99.2% because one nonseparable variable



386 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

TABLE III

Results of Differential Grouping With Parameter ε Set to 10−1
and 10−6

on CEC’2010 Benchmark Functions (Separated By ‘‘/’’)

was misplaced. A further experiment revealed that with a
smaller value of ε in Algorithm 1, it is possible to perform
a fully accurate grouping on this function (see Section V-C).
The fourth category of functions (f14–f18) has a very similar
grouping accuracy as the previous group. Note that there are
no separable subcomponents in these functions and all 20
subcomponents are nonseparable.

In the last category, where all the variables interact with
each other, the grouping accuracy for f19 is 100% and all the
variables were correctly placed into one big group. However,
the grouping accuracy for f20 is poor.

An interesting pattern that can be seen in Table I is the
overall low grouping accuracy on almost all instances of the
Rosenbrock function (f8, f13, f18, and f20). For example, in
the case of f13 and f18, 40 and 49 nonseparable groups were
formed where there are only 10 and 20 such subcomponents.
A detailed investigation on this behavior is beyond the scope
of the current paper.

Table II shows in detail how the subcomponents were found
for a number of functions. Each row shows a nonseparable
group, which is formed by differential grouping. The column
group size shows the size of each group. Columns (P1–P20)
are permutation groups that contain the indices of 50 randomly
chosen dimensions. The numbers in each column shows how
many variables of a group belong to each permutation group.
For example, in the case of f4 from a total of 145 variables
in the first group, none is from P1, 8 is from P2, 10 is
from P3, and so forth. The numbers in columns P1 to P20
add up to the group size. This function has only one 50-D
nonseparable subcomponent, which is represented by P1 and
one 950-D separable subcomponent which is represented by
the remaining permutation groups. It can be seen that in group
6 (G06), 50 variables are from P1 and none from the rest
of the permutation groups. Take f9 as another example. For
this function, an ideal grouping should form ten nonseparable

groups with 50 variables from the first ten permutation groups
(P1–P10) and none from the remaining permutation groups.
Table II shows how differential grouping formed such an ideal
grouping for this function.

One final remark about the performance of differential
grouping relates to the number of fitness evaluations used for
each function to discover the underlying grouping structure.
It can be seen from Table I that the number of required
fitness evaluations to identify the interaction structure for fully
separable functions (f1–f3) is relatively high. The reason for
this behavior is that to find out whether a variable interacts
with another variable, a pairwise comparison is required over
all decision variables. In each full scan of all variables no
interaction was detected and only one variable was excluded
from the list of all decision variables. As a result, approx-
imately n × (n + 1) fitness evaluations were required. This
is a special case of the result obtained in Section III-B
where m = 1. For the second class of functions (f4–f8),
slightly fewer fitness evaluations were needed because in
the first scan, 50 variables were extracted for each accurate
grouping. This effect is also present in the fourth group
where there are 20 nonseparable groups. The least number
of fitness evaluations was required for f19 where all the
variables were excluded in the first pass of the algorithm. This
behavior is implied by the complexity analysis presented in
Section III-B.

B. Comparison With CCVIL

This section discusses the similarities and differences be-
tween differential grouping and another recently proposed
automatic grouping procedure, CCVIL [30].

CCVIL is a two-stage algorithm where the grouping struc-
ture is discovered prior to the optimization stage. However,
unlike the technique proposed in this paper, the grouping
stage of CCVIL is also based on a CC framework. According



OMIDVAR et al.: COOPERATIVE CO-EVOLUTION WITH DIFFERENTIAL GROUPING FOR LARGE SCALE OPTIMIZATION 387

to [30], two variables xi and xj are said to interact with each
other if the following condition holds:

∃ �x, x′
i, x

′
j :

f (x1, ..., xi, ..., xj, ..., xn) < f (x1, ..., x
′
i, ..., xj, ..., xn) ∧

f (x1, ..., xi, ..., x
′
j, ..., xn) > f (x1, ..., x

′
i, ..., x

′
j, ..., xn) (16)

where �x is a candidate decision vector and x′
i, x′

j are to be
replaced by the ith and jth decision variables, respectively.
The way these two values are chosen is similar to the method
proposed by Weicker and Weicker [38]. However, the approach
taken by CCVIL is more accurate and reduces the number of
falsely detected interactions.

CCVIL initially places each variable in a separate subcom-
ponent. Then, by repeatedly applying the above equation to
any two variables xi and xj , the subcomponents containing the
interacting variables are merged until the termination criteria
is met.

Since the focus of this paper is on proposing a decomposi-
tion algorithm, we omit the details of the optimization stage of
the CCVIL algorithm. The interested reader is referred to [30].

Table I shows the performance of CCVIL on the CEC’2010
benchmark functions (right-hand side entries). It can be seen
from the table that differential grouping provides a more
accurate grouping with considerably fewer fitness evaluations
on most of the functions. Exceptions are f1, f2, and f7. It is
notable that, like differential grouping, CCVIL also behaved
differently on all instances of the Rosenbrock function. Indeed,
CCVIL classified all variants of the Rosenbrock function as
fully separable functions. An advantage of CCVIL is its ability
to quickly detect fully separable variables with a relatively low
number of fitness evaluations, whereas in differential grouping,
approximately one million fitness evaluations were required to
discover the underlying grouping structure.

An example shows why differential grouping detects inter-
acting variables much faster than the CCVIL algorithm. Fig. 1
shows three regions A, B, and C on the contour plot of a 2-D
Schwefel’s Problem 1.2 (lighter areas have smaller function
values). For this function, both variables interact over the entire
search space. The condition given in (16) is only satisfied by
points in region A. If the points are in regions B or C, the
condition will be false and the algorithm will need to search
further to find values of the decision variables that satisfy (16).
This kind of behavior is expected since (16) uses an existential
quantifier, and the amount of search effort required to find a set
of points to satisfy the criteria in (16) is unknown. In order to
alleviate this problem a stochastic approach is taken in [30].
If an interaction is not found by (16) after a small number
of applications, the probability of there being an interaction
becomes very small and the search is terminated.

Since differential grouping approximates the gradient, it
uses a more accurate measure for detecting interacting vari-
ables without excessive search. Unlike CCVIL, which directly
compares the fitness of the sample points, in differential
grouping, the changes in the fitness values are compared to
detect whether there is an interaction. As shown in Fig. 1,
differential grouping compares the differences between the
elevations of the two pairs of points |f (x1, x2) −f (x1 + δ, x2)|

Fig. 1. Detection of interacting variables using differential grouping and
CCVIL on different regions of a 2-D Schwefel Problem 1.2.

and |f (x1, x
′
2) − f (x1 + δ, x′

2)|, as shown by the dashed lines.
If these two values are different, it is inferred that the cor-
responding dimensions are nonseparable. In other words, this
is like forming a difference equation based on (4) (�x1 [f ])
and evaluating it for two different values of x2 and comparing
the results. The figure shows that, regardless of the chosen
region, differential grouping can detect an interaction in its
first attempt. However, differential grouping may fail when
a portion of the search space is fully separable while other
regions are fully nonseparable. In such scenarios, if all four
chosen points fall inside the separable region, the interaction
will not be detected, but if at least one point falls in the
nonseparable region, the interaction will be correctly detected.
The situation is even worse with CCVIL, because even if at
least one of the four points falls inside the nonseparable region,
it is still not guaranteed that (16) is satisfied. For most of
CEC’2010 test functions, the interaction occurs over the whole
search space, and this is why differential grouping managed
to accurately and efficiently detect the interactions.

The results in Table I clearly show that differential grouping
is superior to CCVIL. It is clear that if the same subcomponent
optimizer is used under identical conditions, it is highly likely
that the algorithm with the better grouping would perform
better in the optimization stage. The fact that differential
grouping had roughly twice as many fitness evaluations for
the optimization stage also increased this possibility.

C. Sensitivity Analysis

In order to test the sensitivity of differential grouping to the
parameter ε, the differential grouping algorithm was tested
with two additional ε values, the result of which is reported
in Table III. Therefore, by considering the results provided in
Table I, differential grouping was tested with three different ε

values which are: 10−1, 10−3, and 10−6.
As it can be seen from Tables I and III, the differential

grouping algorithm with three different ε values consistently
outperform CCVIL. This shows that the performance of
differential grouping is not very sensitive to this parameter
as long as it is set to a relatively small value. A general
trend that can be seen is that more separable variables are
correctly classified when a larger ε (10−1) is used. This
behavior is evident in functions f1–f13, which have a separable



388 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

TABLE IV

Description of Various Algorithms That Are Used in the Empirical Studies

subcomponent. When a smaller ε (10−3) was used differential
grouping was able to identify the interacting variables with a
higher accuracy. This is evident in functions f14–f20 where
there is no separable subcomponent. However, when ε is
too small (10−6), more separable variables were classified as
nonseparable. This might be due to the precision error in
calculating the difference of the delta values. In the current
implementation of Algorithm 1, choosing a very small ε may
influence the grouping accuracy of nonseparable variables.
This is because in each scan of the decision variables in
Algorithm 1, all the variables that are found to interact with
the variable in examination are extracted from the set of
decision variables and grouped in a common subcomponent.
Therefore, a wrongly detected interaction between a separable
variable and a set of nonseparable variables may break a
nonseparable subcomponent into a set of smaller groups,
which reduces the overall accuracy of the grouping. Examples
of such a drop in grouping accuracy due to a very small
ε (10−6) are f7, f9.f12, f14, and f17 in Table III. Taking
f9 as an example, Table III shows that decreasing ε causes
the grouping accuracy to drop from 100% to 25.6%. This
function has 500 separable variables, but when ε = 10−6 the
differential grouping algorithm misclassified these variables
into a set of nonseparable groups. This reduced the number
of correctly classified separable variables from 500 to only 26
variables. Consequently, since variable interaction is a two-
way relationship, nonseparable subcomponents are divided
up into smaller groups due to the interference of separable
variables. For this reason instead of forming ten nonseparable
subcomponents, differential grouping formed 15 nonseparable
subcomponents. In short, the above observations show that
despite the changes in the grouping accuracy due to variations
in ε, the performance of differential grouping especially on
nonseparable functions is high. Even in the case that ε is very
small (10−6), out of 20 test functions, differential grouping
outperformed CCVIL on 11 functions, performed equally well
on three functions, but performed worse on six functions. It
should be noted that on the functions where CCVIL has a
better performance, two functions are fully separable.

D. Differential Grouping With CC

In this section, we present the experimental results for CC
with differential grouping and compare it against other similar
algorithms with various decomposition strategies. Specifically,
we compare differential grouping with random grouping [25],
delta grouping [28], and an ideal grouping that was constructed

TABLE V

Comparison of Differential Grouping and Other Grouping

Techniques on the CEC’2010 Benchmark Functions Using 25

Independent Runs. The Highlighted Entries Are Significantly

Better (Wilcoxon Test, α = 0.05)

manually using knowledge of the benchmark functions. All of
the algorithms used in our empirical studies are summarized
in Table IV. The experimental results can be found in Table V.
The entries shown in bold are significantly better than other
algorithms as determined by a two-sided Wilcoxon test with
a confidence interval of 95%.

Table V shows that DECC-DG outperformed other algo-
rithms. The performance of DECC-DML is very similar to
that of DECC-DG. On closer inspection, one can see that it
outperformed DECC-DG on all separable functions. However,



OMIDVAR et al.: COOPERATIVE CO-EVOLUTION WITH DIFFERENTIAL GROUPING FOR LARGE SCALE OPTIMIZATION 389

on nonseparable functions, DECC-DG outperformed DECC-
DML when the grouping accuracy (see Table I) is high. The
same trend continues when comparing DECC-DG against
DECC-D. Another observation is that the performance of
DECC-DG is either worse or the same as DECC-DML on
instances of rotated elliptic functions (f4, f9, and f14) even
though according to Table I differential grouping discovered
the optimal grouping.

In order to show how DECC-DG compares against an ideal
decomposition, the performance of DECC-I is also reported.
The grouping for DECC-I was done manually using prior
knowledge of the benchmark functions. Although this is not a
fair comparison, it serves as a good benchmark for evaluating
the performance of differential grouping. It is not fair because
the grouping information were provided to DECC-I and all the
allotted fitness evaluations were used for optimization, whereas
in the case of DECC-DG, a considerable number of fitness
evaluations had to be used to discover the grouping structure,
and the remaining fitness evaluations were used for the actual
optimization.

Fig. 2 shows the convergence behavior of different algo-
rithms. Each point on the plot was calculated by taking the
average of 25 independent runs. Although for some functions
a considerable number of fitness evaluations were used to
discover the grouping structure, this effort was compensated
for during the optimization stage. In Figs. 2 and 3, the
algorithms that use differential grouping initially do not have
any improvement for some number of iterations, but once the
grouping structure is identified there is a significant improve-
ment thereafter. Note that there are some other algorithms in
the convergence plots that will be discussed in Section V-E

Overall, the experimental results in Table V and the conver-
gence plots in Fig. 2 show that using an automatic grouping
that can identify the underlying structure of the benchmark
functions (in terms of nonseparability of the decision variables)
is highly beneficial, and it is advantageous to spend some
fraction of the computational budget to find such a structure
before running the optimizers.

E. Differential Grouping With CBCC

This section shows how the performance of DECC-DG can
be improved by using a CBCC instead of traditional CC where
the subcomponents are optimized in a round-robin fashion.

It has been shown recently that considerably better solutions
can be obtained by spending more computational budget on
the subcomponents with a higher contribution toward the
global fitness [15]. One general assumption in CBCC is that
the interdependencies between subcomponents should be kept
to a minimum. The algorithm proposed in [15] relies on a
manual grouping of the decision variables to show that a
contribution scheme is beneficial. The differential grouping
algorithm proposed in this paper allows the use of a CBCC
without relying on a manual decomposition of the decision
variables. In the remainder of this section the following two
comparisons are made: 1) the traditional CC is compared
with CBCC (DECC-DG versus CBCC-DG); and 2) CBCC-
DG is compared with the MA-SW-Chains [50] algorithm, the
top ranked algorithm in the IEEE CEC’2010 special session

TABLE VI

Comparison of Traditional CC With CBCC With Differential

Grouping on the CEC’2010 Benchmark Functions Using 25

Independent Runs. The Highlighted Entries Are Significantly

Better (Wilcoxon Test, α = 0.05). The Entries Marked With the

Symbol ‘‡’ Are Used to Compare CBCC With MA-SW-Chains

and competition on large-scale global optimization (CBCC-
DG versus MA-SW-Chains).

DECC-DG versus CBCC-DG: Table VI presents the results
on CEC’2010 benchmark functions. It is noteworthy that
CBCC1 and CBCC2 only differ in the policy that they use
to divide the computational budget between the subcompo-
nents. The reader is referred to [15] for the details of these
algorithms. For the purposes of this paper, it is sufficient to
note that in both CBCC1 and CBCC2 the subcomponents
with a higher contribution to the global fitness are given
more of the computational budget. This can be contrasted
with traditional CC, where the computational budget is equally
divided between all subcomponents.

Table VI shows that both instances of the CBCC algorithm
outperformed traditional cooperative co-evolution (DECC)
where differential grouping was used as the decomposition
procedure. At first glance, it might seem that DECC-DG and



390 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

Fig. 2. Convergence plots of various algorithms on selected CEC’2010 benchmark functions. The plots are generated from 25 independent runs. (a) f6.
(b) f9. (c) f12.

CBCC-DG have similar performance. However, if we look
at the results according to the classes of functions that were
described in Section IV, we can see that the CBCC algorithm
outperforms DECC-DG on the second class of functions (f4–
f8). With respect to the other classes (f9–f18), none of the
algorithms clearly outperforms the others. This behavior was
reported in [15] and was attributed to the fact that there were
equal contributions from all subcomponents. It is expected that
CBCC will perform as well as DECC-DG in situations where
there are equal contributions.

It is arguable that in most real-world problems some im-
balance will exist between various subcomponents. In such
cases, equal contribution to the global fitness is unlikely. In
order to properly benchmark the performance of CBCC-DG
on imbalanced problems, modified functions f9–f18 to create
artificial imbalance between the subcomponents. The effect of
functions with a higher degree of imbalance is analyzed in the
next section.

CBCC-DG versus MA-SW-Chains: In comparing CBCC-
DG and MA-SW-chains (see Table VI), the symbol “‡” is used
to indicate which algorithm performed significantly better than
the other. Table VI shows that MA-SW-chains outperformed
CBCC-DG algorithms on 15 out of 20 functions. However,
two important facts should be noted here. First, there is no
imbalance between the subcomponents of the functions f9–
f18, but if we look at the performance of CBCC on f4–
f8, which do have imbalance, it can be seen that CBCC is
slightly better than MA-SW-Chains. Second, the optimizers
used here are different in nature. It has been established that
if any subcomponent optimizer is used with a CC framework
using differential grouping as the decomposition method, the
performance will be greatly enhanced.

F. Effect of More Imbalance

To further investigate the effect of imbalance, the functions
in categories 3 and 4 can be modified in the following way:

Fcat3 =

n
2m

−1∑
i=0

102(i−9) × Fnonsep + Fsep

Fcat4 =

n
m

−1∑
i=0

10(i−9) × Fnonsep + Fsep .

TABLE VII

Experimental Results for Imbalanced Functions. The

Experiments Are Based on Modified Benchmark Functions

Using 25 Independent Runs. The Highlighted Entries Are

Significantly Better (Wilcoxon Test, α = 0.05). The Entries

Marked With the Symbol ‘‡’ Are Used to Compare CBCC

With MA-SW-Chains

The overall structure of the functions remains unchanged, but
the contribution of a component is multiplied by a coefficient
to create the imbalance effect. The third category (f9–f13) and
the fourth category (f14–f18) take the form of Fcat3 and Fcat4,
respectively.

The experimental results using the modified set of bench-
mark problems are given in Table VII. A prime symbol is used
to indicate the modified functions (such as f ′

9).
It can be seen from Table VII that in the presence of im-

balance, the CBCC-DG algorithm outperforms the DECC-DG
algorithm with a wider gap. This shows that, in the absence
of knowledge about the imbalance between subcomponents,
CBCC-DG performs at least as well as DECC-DG. However,
if such an imbalance exists, which we believe is highly likely
in many real-world problems, CBCC-DG finds better solutions
and outperforms traditional CC.

By comparing the performance of CBCC-DG and MA-SW-
chains, it can be seen that both algorithms perform similarly



OMIDVAR et al.: COOPERATIVE CO-EVOLUTION WITH DIFFERENTIAL GROUPING FOR LARGE SCALE OPTIMIZATION 391

Fig. 3. Convergence of traditional and CBCC using differential grouping against MA-SW-chains on some representative imbalanced problems. (a) f ′
11.

(b) f ′
12. (c) f ′

16.

TABLE VIII

CBCC-DG’s Number of Wins, Losses, and Ties Against DECC-DG

and MA-SW-Chains Before and After Inclusion of Imbalance in

Benchmark Problems. (Based on Functions f4–f8 , f ′
9–f ′

18 )

on the imbalanced problems, but MA-SW-chains performs
slightly better. This information is summarized in Table VIII.
Since functions f4-f8 from CEC’2010 are also imbalanced,
we have included them in Table VIII. For a better under-
standing of the behavior of both algorithms the convergence
plots are shown in Fig. 3. In almost all cases, there is a
drastic improvement in the value of the objective function and
thereafter the fitness becomes stagnant. Since MA-SW-chains
is a memetic algorithm [51], this behavior can be attributed
to the local search performed during evolution. Both DECC-
DG and CBCC-DG show a steady improvement in the global
fitness and in the case of f ′

11 and f ′
16, they overtake MA-SW-

chains at some point during the evolutionary process. It can
be seen that for some functions such as f ′

12 both DECC-DG
and CBCC-DG show a steady improvement and it is possible
that both algorithms would overtake MA-SW-chains with more
evolutionary cycles. This suggests that given a limited number
of fitness evaluations a local-search approach can find better
solutions in the short term, but, in the long run, a CBCC co-
evolutionary approach with differential grouping appears to be
more stable and has the potential to further improve. This can
be backed up by observing that CBCC-DG outperformed MA-
SW-chains on almost all instances of multimodal functions.
On nine imbalanced multimodal functions (f5–f8 and f ′

9–f ′
18)

CBCC-DG outperformed MA-SW-chains on six, performed
equally well on two and was worse on only one function.

VI. Conclusion

In this paper, we have proposed differential grouping, an
automatic way of decomposing an optimization problem into
a set of smaller problems where there are few or no inter-
dependencies between the subcomponents. We have shown
how differential grouping can be derived mathematically from
the definition of additively separable functions. We have also

shown how LINC-R [37] can be derived from our formulation.
The proposed decomposition procedure has been evaluated
using CEC’2010 benchmark functions and the results have
shown that it is capable of grouping interacting variables with
great accuracy for the majority of the benchmark functions. A
comparative study with the grouping procedure of the CCVIL
algorithm was conducted and the experimental results showed
that differential grouping is superior to CCVIL both in terms
of grouping accuracy and computational cost.

In order to evaluate the actual performance of differential
grouping on optimization problems, we used the grouping
structure identified by differential grouping in a CC framework
for the optimization of large-scale additively separable func-
tions. The experimental results revealed that the near-optimal
grouping accuracy of differential grouping can greatly enhance
the performance of optimization compared to the cases where
the grouping is less accurate.

In the presence of an accurate grouping of decision vari-
ables, it is possible to accurately quantify the contribution of
each of the subcomponents to the global fitness [15]. Once the
contribution information is obtained, it is possible to divide the
computational budget more wisely, according to the contribu-
tion of each subcomponent. Unlike traditional CC, where all
subcomponents are given equal resources, in a contribution-
based scheme subcomponents with higher contributions are
given more resources. The differential grouping approach that
is proposed in this paper makes it possible to accurately
quantify the contributions.

It was shown that CBCC has the potential to greatly enhance
the optimization performance for imbalanced problems. How-
ever, finding better strategies for allocation of computational
resources to each of the subcomponents is the subject of future
investigations.

Finally, we have shown for a given high performance evolu-
tionary optimizer, it is possible to make it scale better to high
dimensional problems by using it as a subcomponent optimizer
in a contribution-based framework with differential grouping.

Acknowledgment

The authors would like to thank K. Tang and W. Chen for
providing the source code of the CCVIL algorithm and also
for their valuable comments. They would also like to thank
K. Qin, J. Harland, V. Ciesielski, and M. Kirley for their
valuable comments.



392 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

References

[1] T. Weise, R. Chiong, and K. Tang, “Evolutionary optimization: Pitfalls
and booby traps,” J. Comput. Sci. Technol., vol. 27, no. 5, pp. 907–936,
2012.

[2] R. Descartes, Discourse on Method, 1st ed. Prentice Hall, Upper Saddle
River, NJ, USA, Jan. 1956.

[3] A. Griewank and P. L. Toint, “Local convergence analysis for parti-
tioned quasi-Newton updates,” Numerische Mathematik, vol. 39, no. 3,
pp. 429–448, 1982.

[4] G. B. Dantzig and P. Wolfe, “Decomposition principle for linear pro-
grams,” Oper. Res., vol. 8, no. 1, pp. 101–111, 1960.

[5] D. Bertsekas, Nonlinear Programming (Optimization and Neural Com-
putation Series). Belmont, MA, USA: Athena Scientific, 1995.

[6] T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of Evo-
lutionary Computation. Bristol, U.K./New York, NY, USA: Inst. Phys.
Publishing/Oxford Univ. Press, 1997.

[7] R. Sarker, M. Mohammadian, and X. Yao, Evolutionary Optimization
(International Series in Operations Research & Management Science),
Boston, MA, USA: Kluwer Academic, vol. 48, 2003.

[8] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary
programming with cooperative coevolution,” in Proc. IEEE Congr. Evol.
Comput., 2001, pp. 1101–1108.

[9] R. E. Bellman, Dynamic Programming (Dover Books on Mathematics).
Princeton, NJ, USA: Princeton Univ. Press, 1957.

[10] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Proc. Int. Conf. PPSN, 1994, vol. 2,
pp. 249–257.

[11] R. Salomon, “Reevaluating genetic algorithm performance under co-
ordinate rotation of benchmark functions: A survey of some theoreti-
cal and practical aspects of genetic algorithms,” BioSystems, vol. 39,
no. 3, pp. 263–278, 1995.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA, USA: Addison-Wesley, 1989.

[13] Y. P. Chen, T. L. Yu, K. Sastry, and D. E. Goldberg, “A survey of
linkage learning techniques in genetic and evolutionary algorithms,”
Illinois Genetic Algorithms Lib., Univ. Illinois, Urbana-Champaign, IL,
USA, Tech. Rep. 2007014, Apr. 2007.

[14] D. Goldberg, B. Korb, and K. Deb, “Messy genetic algorithms: Mo-
tivation, analysis, and first results,” Complex Syst., vol. 3, no. 5,
pp. 493–530, 1989.

[15] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computational
resources based on contribution for cooperative co-evolutionary algo-
rithms,” in Proc. Genetic Evol. Comput. Conf., 2011, pp. 1115–1122.

[16] M. Ptashne, “How gene activators work,” Sci. Amer., vol. 260, no. 1,
pp. 40–47, Jan. 1989.

[17] W. S. Klug, M. R. Cummings, C. Spencer, C. A. Spencer, and M. A.
Palladino, Concepts of Genetics, 9th ed., Pearson, New York, USA.
2008.

[18] Y. Davidor, “Epistasis variance: Suitability of a representation to genetic
algorithms,” Complex Syst., vol. 4, no. 4, pp. 369–383, 1990.

[19] A. Auger, N. Hansen, N. Mauny, R. Ros, and M. Schoenauer, “Bio-
inspired continuous optimization: The coming of age,” in Proc. Invited
Talk IEEE CEC, Sep. 2007.

[20] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise.
(2009). Benchmark functions for the CEC’2010 special session
and competition on large-scale global optimization. Nature
Inspired Comput. Applicat. Lab., University of Science and
Technology of China. Hefei, China. [Online]. Available:
http://goanna.cs.rmit.edu.au/∼xiaodong/publications/lsgo-cec10.pdf

[21] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[22] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., vol. 4. 1995, pp. 1942–1948.

[23] R. Storn, “On the usage of differential evolution for function optimiza-
tion,” in Proc. Biennial Conf. North Amer. Fuzzy Inform. Process. Soc.,
Jun. 1996, pp. 519–523.

[24] Y. Shi, H. Teng, and Z. Li, “Cooperative co-evolutionary differential
evolution for function optimization,” in Proc. Int. Conf. Natural Com-
put., 2005, pp. 1080–1088.

[25] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Inf. Sci., vol. 178, pp. 2986–2999,
Aug. 2008.

[26] X. Li and X. Yao, “Cooperatively coevolving particle swarms for
large scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2,
pp. 210–224, Apr. 2012.

[27] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-
evolution for large scale optimization through more frequent ran-
dom grouping,” in Proc. IEEE Congr. Evol. Comput., Jul. 2010,
pp. 1754–1761.

[28] M. N. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with delta
grouping for large scale non-separable function optimization,” in Proc.
IEEE Congr. Evol. Comput., Jul. 2010, pp. 1762–1769.

[29] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution
for large scale optimization,” in Proc. IEEE Congr. Evol. Comput.,
Jun. 2008, pp. 1663–1670.

[30] W. Chen, T. Weise, Z. Yang, and K. Tang, “Large-scale global optimiza-
tion using cooperative coevolution with variable interaction learning,” in
Proc. Int. Conf. PPSN, 2011, LNCS 6239, pp. 300–309.

[31] T.-L. Yu, D. E. Goldberg, K. Sastry, C. F. Lima, and M. Pelikan, “Depen-
dency structure matrix, genetic algorithms, and effective recombination,”
Evol. Comput., vol. 17, pp. 595–626, Dec. 2009.

[32] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor,
MI, USA: Univ. Michigan Press, 1975.

[33] D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik, “Rapid, accurate
optimization of difficult problems using fast messy genetic algorithms,”
in Proc. Int. Conf. Genetic Algorithms, 1993, pp. 56–64.

[34] H. Kargupta, “The performance of the gene expression messy genetic
algorithm on real test functions,” in Proc. IEEE Congr. Evol. Comput.,
May 1996, pp. 631–636.

[35] M. Munetomo and D. Goldberg, “A genetic algorithm using linkage
identification by nonlinearity check,” in Proc. IEEE Int. Conf. Syst.,
Man, Cybern., vol. 1. 1999, pp. 595–600.

[36] M. Munetomo and D. E. Goldberg, “Linkage identification by non-
monotonicity detection for overlapping functions,” Evol. Comput., vol. 7,
pp. 377–398, Dec. 1999.

[37] M. Tezuka, M. Munetomo, and K. Akama, “Linkage identification by
nonlinearity check for real-coded genetic algorithms,” in Proc. Genetic
Evol. Comput. Conf., 2004, LNCS 3103, pp. 222–233.

[38] K. Weicker and N. Weicker, “On the improvement of coevolutionary
optimizers by learning variable interdependencies,” in Proc. IEEE Congr.
Evol. Comput., Jul. 1999, pp. 1627–1632.

[39] J. Smith and T. C. Fogarty, “An adaptive poly-parental recombination
strategy,” in Sel. Papers From AISB Workshop on Evolutionary Comput-
ing. London, U.K.: Springer-Verlag, 1995, pp. 48–61.

[40] G. R. Harik, “Learning gene linkage to efficiently solve problems of
bounded difficulty using genetic algorithms,” Ph.D. dissertation, Dept.
Comput. Sci. Eng., University of Michigan, Ann Arbor, MI, USA, 1997.

[41] S. Baluja, “Population-based incremental learning: A method for in-
tegrating genetic search based function optimization and competitive
learning,” School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA,
USA, Tech. Rep. CMU-CS-94-163, 1994.

[42] H. Mühlenbein and G. Paaß, “From recombination of genes to the
estimation of distributions I. Binary parameters,” in Proc. Int. Conf.
PPSN, 1996, pp. 178–187.

[43] G. Harik, F. Lobo, and D. Goldberg, “The compact genetic algorithm,”
IEEE Trans. Evol. Comput., vol. 3, no. 4, pp. 287–297, Nov. 1999.

[44] M. Pelikan and D. E. Goldberg, “BOA: The Bayesian optimization
algorithm,” in Proc. Genetic Evol. Comput. Conf., 1999, pp. 525–532.

[45] M. Pelikan, M. Pelikan, D. E. Goldberg, and D. E. Goldberg, “Escaping
hierarchical traps with competent genetic algorithms,” in Proc. Genetic
Evol. Comput. Conf., 2001, pp. 511–518.

[46] M. Pelikan, D. E. Goldberg, and S. Tsutsui, “Combining the strengths
of Bayesian optimization algorithm and adaptive evolution strategies,”
in Proc. Genetic Evol. Comput. Conf., 2002, pp. 512–519.

[47] P. L. Toint, “Test problems for partially separable optimization and
results for the routine PSPMIN,” Dept. Math., Univ. Namur, Namur,
Belgium, Tech. Rep. 83/4, 1983.

[48] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution with
neighborhood search,” in Proc. IEEE Congr. Evol. Comput., Jun. 2008,
pp. 1110–1116.

[49] R. Storn and K. Price, “Differential evolution: A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimiz., vol. 11, no. 4, pp. 341–359, 1995.

[50] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic
algorithm based on local search chains for large scale continuous
global optimization,” in Proc. IEEE Congr. Evol. Comput., Jul. 2010,
pp. 3153–3160.

[51] P. Moscato, “On evolution, search, optimization, genetic
algorithms and martial arts: Towards memetic algorithms,”
Caltech Concurrent Computation Program, California Inst. of
Technol., CA, USA, [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.27.9474&rep=rep1&type=pdf, 1989.



OMIDVAR et al.: COOPERATIVE CO-EVOLUTION WITH DIFFERENTIAL GROUPING FOR LARGE SCALE OPTIMIZATION 393

Mohammad Nabi Omidvar (S’09) received the
bachelor of computer science degree with first class
honors from RMIT University, Melbourne, Aus-
tralia, in 2010. He has been a member of the Evolu-
tionary Computing and Machine Learning Group at
RMIT University, Melbourne, Australia, since 2008,
where he is currently working toward the Ph.D.
degree in the field of evolutionary optimization and
the bachelor program in applied mathematics.

His research interests include evolutionary com-
putation and machine learning. His current research

is on efficient optimization of large-scale partially separable real-valued
functions.

Mr. Omidvar has been a Student Member of ACM SIGEVO since 2009.
He was a recipient of the Australian Postgraduate Award Scholarship in 2010
and also the Best Computer Science Honors Thesis Award from the School
of Computer Science and IT, RMIT University in 2010.

Xiaodong Li (M’03–SM’07) received the B.Sc. de-
gree in information science from Xidian University,
Xi’an, China, in 1988, and the Dip. Com. and Ph.D.
degrees in information science from the University
of Otago, Dunedin, New Zealand, in 1992 and 1998,
respectively.

He is currently an Associate Professor with the
School of Computer Science and Information Tech-
nology, RMIT University, Melbourne, Australia. His
research interests include evolutionary computation
(in particular evolutionary multiobjective optimiza-

tion, evolutionary optimization in dynamic environments, large scale optimiza-
tion, and multimodal optimization), neural networks, complex systems, and
swarm intelligence.

Dr. Li is an Associate Editor of the IEEE Transactions on Evolu-

tionary Computation and the International Journal of Swarm Intelligence
Research. He is currently Chair of the IEEE CIS Task Force on Large Scale
Global Optimization and Vice-Chair of the IEEE CIS Task Force on Swarm
Intelligence. He is a member of the editorial board of the Journal of Swarm
Intelligence (Springer), and Journal of Soft Computing (Springer), and a
member of the Technical Committee on Soft Computing, Systems, Man and
Cybernetics Society, IEEE. He is an Advisor on the Scientific Advisory Board
of SolveIT Software. He is a Vice-Chair of the IEEE Victorian Section CIS
Chapter, Melbourne, Australia.

Yi Mei (S’09–M’13) received the bachelor’s degree
in mathematics from the University of Science and
Technology of China (USTC), Hefei, China, in 2005,
and the Ph.D. degree in computer science from
the Nature Inspired Computation and Applications
Laboratory, School of Computer Science and Tech-
nology, USTC, in 2010.

He is currently a Research Fellow with the School
of Computer Science and Information Technol-
ogy, RMIT University, Melbourne, Australia. His
research interests include evolutionary algorithms,

memetic algorithms, and other meta-heuristics with various real-world ap-
plications in the logistic area, such as arc routing problems, vehicle routing
problems, and traveling salesman problems.

Xin Yao (F’03) is a Chair (Professor) of computer
science and the Director of the Centre of Excellence
for Research in Computational Intelligence and Ap-
plications, University of Birmingham, Birmingham,
U.K. His major research interests include evolu-
tionary computation and ensemble learning. He has
more than 400 refereed publications in international
journals and conferences.

Dr. Yao is a Distinguished Lecturer of the IEEE
Computational Intelligence Society (CIS). His work
won the 2001 IEEE Donald G. Fink Prize Paper

Award, 2010 IEEE Transactions on Evolutionary Computation Out-
standing Paper Award, 2010 BT Gordon Radley Award for Best Author of
Innovation (Finalist), 2011 IEEE Transactions on Neural Networks

Outstanding Paper Award, and many other best paper awards at conferences.
He won the prestigious Royal Society Wolfson Research Merit Award in 2012
and was selected to receive the 2013 IEEE CIS Evolutionary Computation
Pioneer Award. He was the Editor-in-Chief of the IEEE Transactions on

Evolutionary Computation from 2003 to 2008.


