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ABSTRACT
In this paper we propose to use a distance metric based
on user-preferences to efficiently find solutions for many-
objective problems. We use a particle swarm optimization
(PSO) algorithm as a baseline to demonstrate the usefulness
of this distance metric, though the metric can be used in con-
junction with any evolutionary multi-objective (EMO) algo-
rithm. Existing user-preference based EMO algorithms rely
on the use of dominance comparisons to explore the search-
space. Unfortunately, this is ineffective and computationally
expensive for many-objective problems. In the proposed dis-
tance metric based PSO, particles update their positions and
velocities according to their closeness to preferred regions in
the objective-space, as specified by the decision maker. The
proposed distance metric allows an EMO algorithm’s search
to be more effective especially for many-objective problems,
and to be more focused on the preferred regions, saving sub-
stantial computational cost. We demonstrate how to use a
distance metric with two user-preference based PSO algo-
rithms, which implement the reference point and light beam
search methods. These algorithms are compared to a user-
preference based PSO algorithm relying on the conventional
dominance comparisons. Experimental results suggest that
the distance metric based algorithms are more effective and
efficient especially for difficult many-objective problems.
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1. INTRODUCTION
Integrating user-preferences in Evolutionary Multi-objective

Optimization (EMO) algorithms has been gathering inter-
est during the recent years [3, 4, 5, 22]. These preference
mechanisms were seen originally in Multi-Criteria Decision
Making (MCDM) literature [8]. These classical approaches
have been integrated into Evolutionary Algorithms (EA)
as search strategies to efficiently find preferred solutions in
multi-objective problem instances. In recent studies user-
preference methods have been applied to both Genetic Al-
gorithms (GA) [3, 4, 5] and Particle Swarm Optimization
(PSO) [22] algorithms. In all of these studies the concept of
dominance plays a major role in the functionality of the al-
gorithms. In many-objective optimization problems (where
the number of objectives are greater than three), compar-
ing individuals using Pareto dominance becomes less effec-
tive [12, 13, 14, 15]. Theoretical results in [13] shows that in
many-objective search-spaces the number of non-dominated
individuals increases to a point where the entire population
becomes non-dominated to each other. This severely limits
an algorithm’s ability to compare and search for solutions in
many-objective problems. To combat this problem, in this
paper we propose to use a distance metric (rather than dom-
inance comparisons) to guide an EMO algorithm to move
towards the preferred region of the objective space.

In user-preference based EMO algorithms, a Decision Maker
(DM) is required to first indicate preferred regions of the
objective-space for an algorithm to find solutions in. This
information is extremely valuable and can be used to guide
the EMO algorithm to further explore the search-space. In
the multi-objective PSO algorithms described in this paper,
we use a distance metric to measure the closeness of each
particle to the preferred regions. Particles will move in the
search-space towards these preferred regions, updating their
velocities and positions according to this distance metric.
Once a particle has changed its position it will be evaluated
to see how close it is to the preferred regions. In PSO, each
particle has a memory of the best position it has visited so
far [11]. Updating each particle’s memory using the distance
metric and following particles that are close to the preferred
regions gives the necessary selection pressure to allow the
population to converge towards the Pareto-front near the
preferred regions.

To demonstrate the effectiveness of the proposed distance
metric, in this paper we use two user-preference methods,
one being the reference point method [18] and the other
being the light beam search [10]. The distance metric is in-
corporated into an existing multi-objective PSO, the Multi-
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objective Differential Evolution and PSO (MDEPSO) algo-
rithm [21]. We used MDEPSO because it has been shown
to be effective in finding solutions in difficult multi-modal
(having numerous local Pareto fronts and one true global
Pareto front) multi-objective problem instances. The dom-
inance comparisons used in MDEPSO will be replaced by
the guiding mechanism provided by the distance metric.
The proposed distance metric is less computationally expen-
sive, compared with the dominance based methods. Further-
more, the two EMO algorithms using this distance metric
are shown to perform well on several difficult multi-modal
many-objective problems. In contrast, the dominance-comparison
based approaches perform poorly on these same problems.

This paper is organized as follows. Section 2 briefly de-
scribes the MDEPSO algorithm, which is followed by de-
scriptions of the reference point method and light beam
search. Section 3 presents an overview on the related work
carried out in the field of user-preference based EMO al-
gorithms and many-objective optimization methods. Sec-
tion 4 describes the distance metric and its incorporation
into MDEPSO. Experiments used to evaluate the algorithm
are provided in section 5. Finally section 6 presents our
conclusions and avenues for future research

2. BACKGROUND
The MDEPSO algorithm and the main building blocks of

user-preference mechanisms are described in the following
sections.

2.1 MDEPSO algorithm
The MDEPSO algorithm [21] is a hybrid Differential Evo-

lution (DE) and PSO multi-objective algorithm. In PSO
algorithms, individuals (usually known as particles) update
their velocities and positions with respect to a known global
best’s or leader’s position (~pg) and personal best position
(~pi). The Constriction Type 1”PSO version used in MDEPSO
updates a particle’s velocity (~vi) and position (~xi) at time t
to t + 1 according to the following two equations:

~vi(t + 1) = χ(~vi(t) + φ1(~pi(t)− ~xi(t)) + φ2(~pg(t)− ~xi(t)))
(1)

~xi(t + 1) = ~xi(t) + ~vi(t) (2)

where φ1 and φ2 are random numbers generated uniformly
between [0, ϕ

2
]. ϕ is a constant equal to 4.1 [1]. χ is the

so called constriction factor, which is used to prevent a
particle from exploring too far into the search-space. χ
is normally set to 0.7298, which is calculated according to

2

|2−ϕ−
√

ϕ2−4ϕ|
[1].

In order to maintain a better diversity (thereby reduc-
ing the chance of getting stuck on local fronts), leaders
are generated by using a DE scheme, more specifically the
DE/rand/1/bin scheme. For a particle ~xi, a leader ~ui is
generated using three other individuals ~xr1, ~xr2, ~xr3 from the
population such that i 6= r1 6= r2 6= r3. The jth decision
variable of the leader ~ui is generated using (3).

~ui = uj,i =





xj,r1 + F (xj,r2 − xj,r3)
if (randj < CR or j = jrand)

xj,i otherwise
(3)

2f

f

Solution points

Reference point in feasible
region

Reference points in infeasible region

1

Figure 1: Reference point method

where jrand ∈ [1, D], and D is the number of dimensions in
the search-space. F ∈ [0, 1] is a scaling factor. CR is the
crossover ratio and randj is a random number generated
uniformly between [0, 1]. The values used in MDEPSO were
CR = 0.2 and F = 0.4 [21].

The original MDEPSO algorithm [21] relies on dominance
comparisons to choose individuals to move to the next iter-
ation. In this paper, we replace this dominance comparison
scheme with the proposed distance metric (see (9) and (10)).

2.2 The reference point method
The classical reference point method was first described

by Wierzbicki [5, 18]. It has been included successfully in

several EMO algorithms [5, 22]. A reference point ~z for
a multi-objective problem consists of aspiration values for
each objective. In the classical MCDM literature this ref-
erence point is used to construct a single objective function
(given by (4)), which is to be minimized over the entire
search-space. If ~x is a solution in the search-space,

minimize max
i=0,...,M−1

{wi(fi(~x)− zi)} (4)

where ~z = [z0, . . . , zM−1] is the reference point and ~w =
[w0, . . . , wM−1] is a set of weights. fi is the ith objective
function, while M denotes the number of objectives. The
DM can assign values for weights, which represent any bias
towards that objective.

Figure 1 illustrates the classical reference point method
in a two-objective space. The DM indicates (to the algo-
rithm) his/her preferred regions in the objective-space with
the use of reference points. Then the algorithm is expected
to concentrate on the regions around the reference points
and obtain solutions on the Pareto front near these refer-
ence points.

2.3 The light beam search
The light beam search was first introduced by Jaszkiewicz

and Slowinski [10]. The DM first needs to indicate two
points in the objective-space, the Aspiration Point (AP),
denoted by ~zr and the Reservation Point (RP), denoted
by ~zv. In situations where the AP and RP are not given,
some other points like the nadir point and ideal point can
be used instead. The search direction is given from AP to
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Figure 2: Light beam search

RP. Metaphorically, this illustrates a light beam originat-
ing from AP in the direction of RP. Figure 2 illustrates the
classical light beam search setup in a two-objective space.

In the classical MCDM literature the light beam search
method uses an achievement scalarizing function (given by
(5)), which is to be minimized. If ~x is a solution in the
search-space,

minimize max
i=0,...,M−1

{λi (fi(~x)− zr
i )}+ ρ

M−1∑
i=0

(fi(~x)− zr
i )

(5)
where, ~zr = [zr

0 , . . . , zr
M−1] and ~zv = [zv

0 , . . . , zv
M−1]. ρ is a

sufficiently small positive number called the augmentation

coefficient usually set to 10−6. ~λ = [λ0, . . . , λM−1], where
λi > 0 is a weighted vector. This weighted vector is derived
from (6), where in a minimization problem zr

i > zv
i .

λi =
1

zr
i − zv

i

(6)

The projection of the AP in the direction of the RP will
result in a middle point on the non-dominated solution front.
In the usual notation, a middle point is given by ~zc =
[zc

0, . . . , z
c
M−1]. The DM can then decide on a region sur-

rounding this middle point, which gives the preferred re-
gion. This region is obtained by the notion of outranking

(S) [10]. ~a outranks ~b (denoted by ~aS~b) if ~a is considered to

be at least as good as ~b. This outranking is defined by either
one of three possible threshold values. They are the indif-
ference threshold (mq), preference threshold (mp) or veto
threshold (mv). For example, if the veto threshold values
are ~v = [v0, . . . , vM−1] then ~xS~zc if mv(~zc, ~x) = 0 where,

mv(~zc, ~x) = card{i : fi(~x)− zc
i ≥ vi, i = 0, . . . , M − 1} (7)

Solutions are obtained in this preferred region illuminated
by the light beam.

3. RELATED WORK
Integrating user-preferences into EMO algorithms has been

increasing in popularity during the past few years. Deb et
al. [5] presented an EMO algorithm incorporating the ref-
erence point method into NSGA-II [2], which was one of

the very first attempts in integrating a preference method
to an EMO algorithm. The reference direction method, an
extension of the reference point method, was also incorpo-
rated into NSGA-II [3], and also subsequently the light beam
search method [4]. In [22] the work in [5] was extended by
introducing reference point based PSO algorithms. These
user-preference based EMO algorithms all use dominance
comparisons to select their candidate solutions. Unfortu-
nately, these algorithms suffer from the problem of not be-
ing able to distinguish solutions effectively for problems with
a large number of objectives, where most solutions are non-
dominated to each other. Consequently these algorithms are
less effective in search, and inclined to converge prematurely
to local Pareto-fronts. To address this issue, this paper in-
troduces a distance metric utilizing the user-preference infor-
mation which is provided by the DM. This method removes
the need to use dominance comparisons.

There are several examples in the EMO literature where
the dominance concept has been altered to better suit algo-
rithms in many-objective problems. A scheme named rank-
ing dominance was introduced in [15], where solution points
are ranked according to each objective. Then an aggrega-
tion function is used to obtain a fitness value from all the
rank values. For a minimization problem, if an individual’s
fitness obtained from the aggregate function is less than an-
other individual, then that individual is said to be better or
dominant than the other.

In [20] a relation named ε − Preferred was introduced.
This was an extension of the original Favour relation intro-
duced in [7]. The Favour relation is a relaxed version of
dominance. Here, ~a is said to be preferred (or favoured) to
~b if ~a is better than ~b in a larger number of objectives. It
is also interesting to note that this relation is not transitive
like dominance.

A method to avoid using the standard dominance relation
in the leader selection stage of a multi-objective PSO algo-
rithm was introduced in [14], where leaders are obtained
from the population using a gradual dominance relation.
The particles are assigned with a ranking value, which is the
maximum of the degree of being dominated. This value is cal-
culated using a fuzzy scheme described extensively in [12].
Leaders are chosen from a set of particles with the lowest
ranking values. These lowest ranked particles will also be
the least crowded. A distance measurement in [19] was used
to rank particles to obtain suitable leaders for the population
to follow in many-objective problems. This distance metric
differs from our proposed approach because it is used only
to rank particles, but not to guide the population towards
preferred regions of the objective-space.

Comparing with these approaches modifying the domi-
nance concept, the advantage of the proposed distance met-
ric is its simplicity and efficiency, as shown in the following
sections.

4. MDEPSO ALGORITHM WITH THE DIS-
TANCE METRIC

The distance metric obtained by user-preference methods
is integrated into the original MDEPSO [21] as:

• Step 1: Initialize the particles
A population of size N is first initialized. Here, a par-
ticle’s decision variables are obtained from (8).
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rand(0.0, 1.0) ∗ (UB − LB) + LB (8)

where, rand(0.0, 1.0) represents a random number gen-
erated uniformly between [0.0, 1.0]. LB and UB are
the lower-bounds and upper-bounds respectively of the
decision variables of a multi-objective problem instance.
The velocity is initialized to a random value in the in-
terval [0, UB−LB]. The personal best of an individual
is set to its current position. Half of the population’s
direction is reversed by setting the velocity to negative
according to a coin toss.

After initialization, each particle’s distance to the pre-
ferred regions are calculated. In the reference point
method, for any particle ~x, its distance to a reference
point ~z can be derived from (4) as:

dist(~x) = max
i=0,...,M−1

{wi(fi(~x)− zi)} (9)

Similarly in the light beam search for any particle ~x,
its distance to a middle point ~zc can be derived from
(5) as:

dist(~x) = max
i=0,...,M−1

{λi (fi(~x)− zr
i )}+ ρ

M−1∑
i=0

(fi(~x)− zr
i )

(10)

The particles are then evaluated with the objective
functions and fitness is assigned.

• Step 2: Obtain leaders to guide the population
Leaders are generated using the DE rule given by (3).
These leaders are sorted according to the distance met-
ric given by (9) or (10), depending on the preference
method.

The following strategies are used to control the spread
of solutions in the preferred regions. When sorting the
leaders for the reference point method we use a δ(> 0)
value to maintain a control over the spread of solutions.

For two leaders ~a and ~b we consider dist(~a) ≡ dist(~b)

if and only if
∣∣∣dist(~a)− dist(~b)

∣∣∣ < δ. This provides a

diverse set of potential leaders. A small value for δ rep-
resents a smaller spread, while a large value will give
a larger spread. A subset of the sorted leaders (for ex-
ample 10% of the population) closest to the preferred
regions is chosen to guide the population. For the light
beam search we used the set of leaders who outrank the
middle point, which are obtained by (7). The thresh-
old values in the outranking procedure will indicate an
amount of spread. Empirical results show that these
mechanisms provide some control over the spread of
solutions.

• Step 3: Move the particles
Each particle chooses its leader randomly from the
sorted set of potential leaders. Using this leader as
the global best the particle updates its velocity and
position according to the PSO update rules (1) and
(2).

Preferred region
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Figure 3: Move a particle and update its personal
best depending on the distance to the preferred re-
gion

• Step 4: Update the particles’ personal bests
Each particle updates its personal best according to
the distance metric given in (9) or (10), depending
on the preference method. For example, as shown in
figure 3, since ~xi(t + 1) is closer to the reference point
or the middle point it will become its new personal
best ~pi(t + 1). If ~xi(t + 1) is further away from the
reference point or the middle point then the personal
best is unchanged (~pi(t + 1) = ~pi(t)).

• Step 5: Obtain the particles to move to the
next iteration
The population of N particles at the beginning of the
iteration is combined with the N updated particles to
create a population of size 2N . This 2N population is
sorted according to (9) or (10) to obtain a population
of size N closest to the preferred region. These N
particles will survive to the next iteration.

The steps 2 to 5 are repeated until the maximum number
of iterations is reached.

The crux of this algorithm is seen in steps 4 and 5. In
previous multi-objective PSO algorithms [16, 17, 21, 22] the
updating of the personal bests and the selection of the next
iteration were done using dominance comparisons. In this
proposed algorithm these steps are done using the distance
metric utilizing the user-preference information. It is also
useful to realize that the many-objective problem is not con-
verted to a single-objective problem with the use of scalar-
izing functions as seen in traditional MCDM literature. Al-
though (9) and (10) provide a single dimension value, the
target is not to optimize that value but to use the value as a
metric to guide the population. This approach is especially
effective in moving particles towards the Pareto front of the
preferred regions for many-objective problems. We believe
that this approach can be adopted in a similar way for any
EMO algorithms incorporating user-preferences.

A dominance comparison based EMO algorithm normally
has a computational complexity of O(MN2) because of the
use of the non-dominated sorting procedure [2, 16]. How-
ever, the proposed distance metric approach only depends
on the sorting procedure. As a result, the computational
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complexity of using the distance metric (for the entire pop-
ulation) is O(NlogN).

5. EXPERIMENTS
We implemented two versions of MDEPSO, one with the

reference point method and one with the light beam search.
To evaluate the performance of the MDEPSO algorithms we
used following test problem suits; ZDT [23] and WFG [9] for
two-objective problems and DTLZ [6] for three and up to
ten objective problems. These test problem suites contain
many varieties of multi-objective problems including some
multi-modal problems.

To compare the performance of our approach to a tradi-
tional dominance based EMO, we used the user-preference
based NSPSO [16, 22] algorithm, implemented in two ver-
sions, one for the reference point method and the other for
light beam search. Results were obtained by averaging over
50 runs on each algorithm on each problem instance. All
the standard configurations of MDEPSO and NSPSO were
used without tweaking any parameters. A population of 200
individuals were used for a maximum of 750 iterations.

For the user-preference based EMO algorithms described
in [3, 4, 5, 22], the use of dominance comparisons may cause
them less effective in handling difficult multi-modal prob-
lems. In some difficult multi-modal problems like ZDT4 and
DTLZ3 the initial population can be generated in positions
very far from the Pareto optimal front. In such situations
the initial population can have objective values as large as
1000. The individuals have to navigate across many local
fronts towards the Pareto optimal front, where the objec-
tive values are in the interval of [0.0, 1.0]. Such problems
in higher number of objective-spaces become very difficult
for dominance based user-preference algorithms because the
individuals who move to the next iteration have to picked
from a large number of non-dominated individuals. These
chosen individuals may not necessarily be the best to guide
the population to the preferred regions. With the use of a
distance metric this scenario can be avoided.

In our initial experiments we observed that by restricting
the search-space using a preference mechanism has a down-
side reducing the diversity of the population. To avoid this
phenomenon particles will follow the leaders generated by
the DE step in the original MDEPSO algorithm from time
to time, rather than following a leaders closest to preferred
regions.

The user-preference based MDEPSO algorithms using the
distance metric is much more effective in handling problem
instance of many-objectives. Due to the limitation of space
we will only illustrate the results obtained on some of the
difficult multi-modal problem instances.

5.1 MDEPSO with the reference point method
Figure 4 shows the result obtained for a ten-objective

multi-modal DTLZ1 instance. Here, the reference point
was at 0.5 for all of the objectives in the objective-space.
δ = 0.01. The default is not to have any bias towards any
objective, which is given by setting the weights to equal 1.0
in (9).

The sum of the objective values of each particle was found
to be in the range [0.5012, 0.5109]. This suggests that the
particles are very close to the true Pareto front of DTLZ1,

since it holds the condition
M−1∑
i=0

fi(~x) = 0.5 for every ~x on

the true Pareto optimal front.
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Figure 4: Ten-objective DTLZ1 with 1 reference
point on MDEPSO (each line represents a solution
point, where the intersection at the objectives axis
represents the value for that objective)
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Figure 5: Ten-objective DTLZ1 with 1 reference
point on NSPSO

For comparison figure 5 shows the result for NSPSO (using
dominance comparisons) on DTLZ1 with the same parame-
ter setting. The sum of the objective values of each particle
was in [2.0293, 2.0807]. This shows that NSPSO had con-
verged to a local optimal front.

Figure 6 shows the solutions fronts obtained for the two-
objective multi-modal ZDT4 with two reference points on
MDEPSO. Here, the two reference points have spread values
of δ = 0.01 and δ = 0.05. Figures 7 and 8 illustrates the so-
lution fronts obtained for two-objective multi-modal WFG4
and three-objective DTLZ1 problem instances respectively
on MDEPSO. Here δ = 0.01 and no bias in any objective
was used.

In our experiments we observed that for simpler test func-
tions such as ZDT1–ZDT3 and DTLZ2 the population con-
verged to the preferred regions in about 200 iterations on
average. The results obtained for ZDT6 with two reference
points is given in figure 9. Here, spread values of δ = 0.01
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Figure 6: Two-objective ZDT4 with 2 reference
points
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Figure 7: Two-objective WFG4 with 2 reference
points

and δ = 0.1 were used for the two reference points sepa-
rately. It is also interesting to note that the reference point
at (0.2, 0.9) is outside the region bounded by the Pareto op-
timal front. However, MDEPSO successfully obtained the
solutions near the reference point that is at the extreme end
of the Pareto front.

5.2 MDEPSO with the light beam search
In our experiments for the light beam search we used a

veto threshold value of 0.05 in every objective to obtain the
preferred region. In the ten-objective DTLZ3 instances the
AP was set to be the nadir point having the value of 1.0
for all objectives and the RP to be the ideal point having
0.0 for all objectives. DTLZ3 is one of the more difficult
multi-modal problems having close to 310 number of local
Pareto fronts and one global Pareto front.

The solutions given in figure 10 show that for each particle

~x, the sum of its squared objective values (
M−1∑
i=0

(fi(~x))2)

gives values in [1.005, 1.0083]. This shows that the points are

0.0
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f1
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Figure 8: Three-objective DTLZ1 with 2 reference
points
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Figure 9: Two-objective ZDT6 with 2 reference
points

very close to the true Pareto front. This is deduced from the
property of DTLZ3 where each ~x on the true Pareto front

gives
M−1∑
i=0

(fi(~x))2 = 1.

For comparison figure 11 shows the result for NSPSO (us-
ing dominance comparisons) with the same parameter set-

tings. Here values obtained by
M−1∑
i=0

(fi(~x))2 for each of the

final solution points were in the range [5.8417, 5.9102]. This
indicates that NSPSO was unable to locate the global front
of the ten-objective multi-modal DTLZ3 problem.

Figure 12 shows the final solutions obtained for DTLZ3
with three-objectives. Here, two light beams having AP
(1.0, 1.0, 1.0) and RPs at (0.5, 0.0, 0.0) and (0.0, 0.0, 0.0) re-
spectively were used. Two veto thresholds were used one
with 0.1 and the other having 0.05, in all objectives.

A very interesting result can be seen for the two-objective
WFG4 in Figure 13. Here, the light beams are located in the
infeasible region of the objective-space. However, MDEPSO
using the light beam search still managed to guide the pop-
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Figure 10: Ten-objective DTLZ3 with 1 light beam
on MDEPSO
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Figure 11: Ten-objective DTLZ3 with 1 light beam
on NSPSO

ulation in the direction of the light beams until solutions are
located on the global Pareto front.

Figure 14 shows a two-objective WFG2 problem instance
with two light beams. It is interesting to note that though
the light beam (with AP (5.0, 5.0) and RP (0.0, 2.0)) goes
through the disjoint Pareto front, it was still able to locate
solutions on the region of the Pareto front which is closest
to this light beam. The distance metric guides particles
in the direction given by the vector from AP to RP. This
is possible because the algorithm concentrates its search in
the direction of this vector. With a population of particles
the algorithm has the ability to move in parallel along the
direction of this vector until a middle point is found on the
Pareto front.

6. CONCLUSION AND FUTURE WORK
In this paper we have proposed a distance metric for many-

objective PSO algorithms which does not rely on dominance
comparisons to find solutions. The proposed distance met-
ric obtained by utilizing user-preferences, either by the refer-
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Figure 12: Three-objective DTLZ3 with 2 light
beams
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Figure 13: Two-objective WFG4 with 2 light beams

ence point or light beam search method, has been integrated
into a previously developed MDEPSO algorithm. Compared
with a user-preference based EMO algorithm (NSPSO) that
uses only dominance comparisons for selection, the result-
ing user-preference based MDEPSO algorithm is shown to
provide better performances especially for problems charac-
terized by a high number of objectives and multiple local
Pareto-fronts,

Interesting results can be also observed in the behaviour
of the proposed EMO algorithms when the preferred regions
specified by the DM are in the infeasible regions. In such
cases the EMO algorithms are still able to converge to the
Pareto front near those specified preferred regions. This
property provides an advantage to the DM, since the DM
does not have to have the knowledge of where the actual
true Pareto optimal front is.

In future we will carry out more comprehensive studies
on the distance metric and variations of it. We are also in-
terested in applying EMO algorithms based on this distance
metric to solving real world problems.
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