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Abstract. This paper proposes a real-coded predator-prey GA for mul-
tiobjective optimization (RCPPGA). The model takes its inspiration
from the spatial predator-prey dynamics observed in nature. RCPPGA
differs itself from previous similar work by placing a specific emphasis
on introducing a dynamic spatial structure to the predator-prey pop-
ulation. RCPPGA allows dynamic changes of the prey population size
depending on available space and employs a BLX-« crossover operator
that encourages a more self-adaptive search. Experiments using two dif-
ferent fitness assignment methods have been carried out, and the results
are compared with previous related work. Although RCPPGA does not
employ elitism explicitly (such as using an external archive), it has been
demonstrated that given a sufficiently large lattice size, RCPPGA can
consistently produce and maintain a diverse distribution of nondomi-
nated optimal solutions along the Pareto-optimal front even after many
generations.

1 Introduction

In recent years, evolutionary algorithms have gained much attention for solv-
ing multiobjective optimization problems. In contrast to conventional multi-
criteria analysis models, evolutionary algorithms are population based, hence
they are capable of evolving multiple solutions simultaneously approaching the
non-dominated Pareto front in a single run [I]. In order to find a good set of
Pareto-optimal solutions, an efficient evolutionary algorithm for multiobjective
optimization must achieve two goals - to ensure a good convergence to Pareto-
optimal front, and to maintain a set of solutions as diverse as possible along the
Pareto front [1]. The benefit of such approach is that it gives the decision-maker
the freedom to choose from many alternative solutions.

This second goal of maintaining a diverse set of solutions is unique to mul-
tiobjective optimization. As only when we have a diverse set of solutions, we
can provide a good set of trade-off solutions for the decision-maker to choose
from. To preserve solution diversity, several niching and non-niching techniques
have been proposed [2]. For example fitness sharing has been adopted as a nich-
ing method in a number of multiobjective optimization EAs [3],[4]. Among the
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non-niching techniques, Laumanns et al. proposed a spatial Predator-Prey Evo-
lutionary Strategy (PPES) for multiobjective optimization [5]. Their preliminary
study demonstrated that their predator-prey approach is feasible for multiob-
jective optimization, though there are some serious drawbacks associated with
it. Deb also examined Laumanns’ model and introduced a modified predator-
prey model using different weighted vectors associated with each predator [IJ.
Deb showed that the modified model produced a better distribution of Pareto
optimal solution than the original PPES.

Along the same line of thought, in this paper a real-coded predator-prey
genetic algorithm for multiobjective optimization (RCPPGA) is developed. Al-
though RCPPGA share some of its similarity with PPES as proposed by Lau-
manns et al. [5], RCPPGA makes special emphasis on the use of a dynamic spa-
tial structure of the predator-prey populations (which is lacking in the original
PPES). By doing this, we can introduce to our model the kind of predator-prey
dynamics more analogous to nature. The main objective of this research is to
investigate RCPPGA’s ability to approximate Pareto-optimal front, and more
importantly to see if the model can produce well-distributed nondominated so-
lutions along the Pareto front. This is of particular interest to us because the
PPES proposed by Laumanns et al. seems to have difficulty in doing so when
it is applied to a more difficult two-objective optimization function [5], in which
case, after many iterations, PPES converges to solutions that are concentrated
only partially on the Pareto front.

2 Background and Related Work

Studies in ecology and in particular population dynamics have shown that pop-
ulations have unique spatial characteristics such as density and distribution [12].
Individuals that make up a population affect one another in various ways. For ex-
ample, interactions among individuals of a population are often confined within
an individual’s immediate neighbourhood. Individuals interact in space and time
not only with its own species, but also with competitors, predators, and the en-
vironment. These properties play a critical role in the evolutionary process of
the individuals in an evolving population.

Many evolutionary algorithms have been developed explicitly exploring the
use of spatial structure in a GA population. It has been found that the use of spa-
tial structure is especially effective in maintaining a better population diversity,
which is critical in improving the performance of many evolutionary algorithms
on difficult optimization problems [6], [7]. Cantu-Paz has provided a very good
survey in this area [7]. However, most of these algorithms have been developed
for single objective optimization, and they commonly use a static structure,
whether it is fine-grained or coarse-grained, that is the spatial structure of the
population remains unchanged throughout a GA run. A few exceptions are work
done by Kirley et al [§], Kirely [9], and Li and Kirley [10], where the authors ex-
amined the effects of introducing dynamic ecological features (e.g., disturbances
and varying population density) into a fine-grained parallel GA model. It was
found that such ecologically inspired parallel GA models using a dynamic spatial
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population structure are comparable or better in performance than those with-
out such features, especially when dealing with difficult multi-modal function
optimization tasks. Since multi-modal function optimization shares its similar-
ity with multiobjective optimization in many aspects, such observation led to our
current investigation of a recently proposed predator-prey GA [I1], more specifi-
cally its ability in handling multiobjective optimization problems. For definitions
and key concepts used in multiobjective optimization, the readers can refer to
m, [

Laumanns proposed a spatial predator-prey evolutionary strategy (PPES) for
multiobjective optimization [5]. In this model, prey representing potential solu-
tions are mapped onto the vertices of a 2-dimensional lattice. Predators are also
introduced to the 2d lattice. Each predator is associated with a particular ob-
jective function. Each predator performs random walk on the lattice, and chases
and kills the weak prey in its nearest neighbourhood according to its associated
objective. A detailed description of PPES can be found in [5]. Laumanns et al.
suggested that an adaptive step size for the EA is mandatory in order to obtain
a reasonably good distribution of solutions on the Pareto front. However, even
with this adaptive step size, in this case a decreasing step size ox+1 = 0.990%,
their model produced a rather disappointing result. Only some subsets of the
Pareto front were obtained. In fact, in Deb’s reproduction of the experiment, as
the model was run for more iterations, the nondominated solutions produced by
the PPES became less and less diverse, eventually even converging to a single
solution on the nondominated front [I]. To overcome this difficulty of maintain-
ing a diverse set of non-dominated solutions, Deb suggested a modified version
of PPES [I]. Instead of assigning one objective to each predator, a different
weighted vector is associated with each predator. Each predator evaluates its
neighbouring prey with respect to the weighted sum of the objectives. For in-
stance, for a two-objective optimization problem, each predator is assigned with
a weighted vector (w1, wa). If 9 predators are used, then the first predator takes
a weight vector (1, 0), the 2nd predator takes (0.875, 0.125), and so on, until
the 9th predator takes (0, 1). The least-fit (according to the weighted sum) prey
individual is eliminated at each iteration. By using a different weighted vector
for each predator, this method allows each predator to emphasize solutions on
different part of the Pareto-front. Deb’s result on the second function of the orig-
inal study of Lanmanns et al. gave a much improved performance. Even after
many iterations, the diversity of prey solutions was still well maintained in the
Pareto-front region.

In this study, a real-coded predator-prey GA (RCPPGA) is developed to
handle multiobjective optimization problems. The two above described fitness
assignment methods, used by Laumanns et al. [5] and Deb [I] respectively, are
adopted in RCPPGA. In the following sections, we will refer Laumanns’ method
as method 1, and Deb’s method as method 2. By employing these two fitness
assignment methods, we can then look at whether RCPPGA would have the
same kind of difficulty in obtaining well distributed optimal solutions, as de-
scribed by Laumanns et al., and verify whether Deb’s weighted vector approach
is effective in this model.



210 X. Li

3 A Real-Coded Predator-Prey GA for Multiobjective
Optimization — RCPPGA

We emphasize the spatial dynamics of predator-prey interaction by using a two-
dimensional lattice where the prey and predator populations reside and interact.
The 2d lattice has its boundaries wrapped around to the opposite edge, there-
fore eliminating any boundary conditions. The initial populations of prey and
predator individuals are randomly generated and distributed across the lattice.
As illustrated in Fig. 1, we often start with a large number of prey and a rela-
tively small number of predators in the initial populations. Each prey presents
a possible solution, whereas each predator does not represent a solution but is
able to roam around in order to keep the prey in check (ie., its task is to kill the
least-fit prey in its vicinity).

% , '

Yo | B

Fig. 1. Predators and prey are randomly distributed across the 2d lattice at the be-
ginning of a run

After the above initialization, the predator-prey model proceeds in the fol-
lowing steps:

1. Prey and predators are allowed to move from one cell to another on the
lattice according to a randomMoveProbability, which is normally set to 0.5,
so that half the prey would attempt to move one step on the lattice whereas
the other half would remain where they were. If the prey were allowed to
move, they could choose a random direction, i.e., one of the eight cells in
a 8-cell Moore neighbourhood (north, south, ast, west, and plus the four
diagonal neighbours), to move into. They then attempt to move. If the cells
they are attempting to move into are occupied by other prey or predators,
then they try again. Each prey is allowed to try 10 times. If the prey is still
unable to find a place to move, it remains where it is.

2. After the prey have moved they are then allowed to breed. Space plays a
critical role in this model as each prey can only breed with another prey
within its neighbourhood (excluding itself). If the prey has no neighbours it
is not allowed to breed. Otherwise the prey is allowed to breed with another
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randomly selected neighbour to produce an offspring using real crossover and
mutation operators (see Section 3.2). The offspring is randomly placed over
the entire lattice, which can be seen as migration among different clusters
of prey across the lattice. 10 attempts are made to place the child on the
lattice. If all the attempted cells are occupied, the child is not generated.
Note that in this step, the creation of a new child is essentially one function
evaluation.

3. The prey population is under constant threat from the predators, which are
initially allocated at random across the lattice. Selection pressure is exerted
upon the prey population through the predator-prey interaction, that is,
predators are given the task of killing the least-fit prey in their vicinity. The
predators first look around their neighbourhood to see if there are any prey.
If so, the predator selects the least-fit prey and kills it. The predator then
moves onto the cell held by that prey. If a predator has no neighbouring prey,
it moves in exactly the same way as prey. However it is possible to allow the
predators to move more than once per prey step (refer to equation (1)).

4. Go back to step 1), if the number of required evaluations is not reached.

In order to prevent predators from completely wiping out the entire prey
population, the following formula is adopted to keep the prey population at an
acceptable level:

numpreyactual - numPTeypreferred

iterations = | U edators | (1)

where iterations is the number of moves the predators may take before the
prey can make their moves. A predator can kill at most one prey per iteration.
Basically equation (1) is used to keep the actual number of prey (numPreyqactual)
to a number similar to the preferred number of prey (numPreypreferred). The
predators are encouraged to minimize the difference between these two values.
The floor operator ensures that the predators do not wipe out the prey popula-
tion entirely. For example, if there are 250 prey, the preferred number of prey is
120, and the number of predators is 20, then the predators would iterate 6 times
before the prey have a chance to move and breed again. This is also analogous
to the fact that predators are often faster than prey in speed. Another merit of
using equation (1) is that as the minimum number of prey (the floor value) is
reached, or in another word, the predators become ‘slower’ in speed, new born
prey would have a better chance of survival than otherwise. As a result, the
number of prey individuals would start to increase, rather than to continue its
decline. This trend would continue until it gets to a point, where the effect of
applying equation (1) is once again tipped to be in favour of predators. Using
equation (1) in a way provides a mechanism of varying the prey population size
dynamically.

One distinct feature of RCPPGA is its explicit implementation of a dynamic
spatial structure of the predator-prey populations. In addition to the mating
restriction feature as seen in PPES, the predators and prey in RCPPGA can
interact via dynamically changing population structure, as predators and prey
are capable of moving around on the 2d lattice. Over time, prey clusters of
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various sizes can be formed naturally by the roaming prey themselves in parallel
across the lattice. These different clusters tend to form niches of their own and
therefore help preserve prey population diversity over the successive generations.
By randomly placing new-born offspring over the entire lattice, we hope to stop
potential ‘inbreeding’ or ‘genetic drift’ from occurring [I2], and meanwhile help
continue to maintain a diverse set of solutions until the end of many iterations
of a simulation run.

3.1 Selection Mechanism

In RCPPGA, selection pressure is dynamically exerted upon the prey population
through the killing and removal of the least-fit prey by the roaming predators. We
do not use any direct replacement, for example, fitter offspring directly replacing
the less fit ones in the population, as often seen in a typical GA. RCPPGA
does not use any explicit elitist mechanism such as an external archive to keep
the best-fit prey at each generation. It only adopts a weak “mating” selection
method, that is, at each generation, a prey simply breeds with another prey
randomly chosen from its neighbourhood.

3.2 Real-Coded Crossover and Mutation Operators

In this real-coded predator-prey GA model, each prey individual represents a
chromosome that is a vector of genes, where each gene is a floating point number
[13]. For example, a parameter vector corresponding to a GA individual can be
represented as ¢ = (21, T2, ...,%,) (x; € [a;,b;] CR,i=1,...,n). The GA works
in exactly the same way as the binary counterpart except that the crossover and
mutation operations are slightly different.

We follow the suggestion of Wright that a mixed real-coded crossover seems
to give better results. This mixed real-coded crossover involves two operations
[13]. The first operation uses a real crossover operator, which behaves similarly to
a standard crossover. The difference is that instead of swapping binary values,
the values in the slots of floating point array (i.e., a chromosome consisting
of genes each representing a real-number variable) are swapped. For example,
if we have two parents, z = (x1,%2,...,%,) and y = (y1,¥Y2,.--,Yn), and the
crossover point is between x; and z;4;, then one child corresponds to ¢; =
(T1,%2, ..., TiyYit1,- .-, Yn) and the other o = (Y1, Y2y« -, Yi, Tit1s- .-, Tn). We
apply this operator to two parents to produce 50% of gene values of a prey
offspring. The second crossover operator is so called blend crossover operator
(BLX-a), first introduced by Eshelman and Schaffer [14]. BLX-« uses two parent
solutions z} and z} at generation ¢, to define a range [z} —a(zh —!), 25+ (2l —
z!)] (assuming z! < x%), within which a child solution can be randomly picked.
If p is a random number between 0 and 1, then a child can be generated as
follows:

2t = (1 —7)a} + 2l (2)

where v = (1 4 2a)r — . The above equation can be rewritten as:
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(a7t = 2}) = (2} — o). 3)

From equation (3) we can observe that if the difference between the two
parent solutions ! and z% is small, then the difference between the child zt+*
and parent x! is also small. This interesting property of BLX-a can be seen
as a self-adaptive mechanism for the real-coded GAs [I5], because the spread
of the population at generation t dictates the spread of the solutions in the
population at generation ¢ 4+ 1. Eshelman and Schaffer reported BLX-0.5 (with
a=0.5) gives better results than BLX with other « values. It seems that with
a=0.5, BLX provides a nice balance between exploration and exploitation (con-
vergence), therefore we choose to use @=0.5 in this model. We apply BLX-0.5
crossover to the two parents to produce the remaining 50% of the gene values of
the prey offspring.

Mutation is applied with a probability to the entire prey population. The
mutation operator simply replaces a gene (i.e., a real parameter value) in a
chromosome with another floating point number randomly chosen within the
bounds of the parameter values.

4 Experiments

We chose the same two test functions used in Laumanns’ PPES [5], and a test
function adopted by Deb in his modified PPES [I].
Test function F1:

minimize fi(z) = 22 + 23,
minimize fa(z) = (z1 +2)% + 23,
where —50 < 1 < 50, and — 50 < x5 < 50.

Test function F2:
minimize fi(x) = —10exp(—0.24/2% + 23),

minimize fo(x) = | 1 [*° + | 22 |Y° 4 5(sindzy + sindas),
where —50 < 21 <50, and — 50 < x5 < 50.
Test function F3:
minimize fi(z) = 23,
minimize fa(x) = %,

where V0.1 <x1 <1, and 0 < x5 < V5.

In order to compare RCPPGA with the PPES proposed by Laumanns et al
and the subsequently modified PPES by Deb [5], [1], experiments were conducted
on RCPPGA using the two fitness assignment methods as suggested by them -
method 1: A different type of predators associated with a different objective [5];
method 2: Each predator associated with a different weighted vector [I]. We are
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interested in finding out whether RCPPGA is able to approximate the Pareto
front using the above two fitness assignment methods. In particular, we would
like to verify if RCPPGA also has the difficulty in obtaining a good distribution
of the nondominated solutions, like the findings on PPES obtained by Laumanns
and Deb.

To study the effectiveness of using the dynamic spatial structure of the
predator-prey populations, we run RCPPGA in the following experiments using
different lattice sizes. A smaller lattice size would restrain the prey population
from increasing its size, because the new-born offspring are always competing
for the limited vacant space (see equation (1)). On the other hand, if we use the
same number of preys in the initial prey population on a larger lattice, the prey
population would enjoy a rapid increase in its size, until the lattice is occupied
to a threshold governed by equation (1).

RCPPGA is given the following parameter configurations: the lattice size
is varied in 3 different sizes, 20x20, 30x30, and 50x50; the number of prey in
the initial prey population is 240; the number of predators is 20 and it re-
mains constant throughout a simulation run, however for the fitness assignment
method 1, there are two objectives, hence we divide these 20 predators into two
types, 10 for each, optimizing according to the two objectives respectively; the
randomM ove Probability, which is a variable specifying the probability of a prey
moving to another cell or remaining stationary, is assigned with a value of 0.5;
mutation rate is 0.01; the number of evaluations required is set to 30000 (note
that each time a new born is created, it is essentially one function evaluation).

In the following figures, we use a filled circle ‘@’ to indicate the nondominated
solutions found at the end of 30000 evaluations, and the plus sign ‘+’ for the
dominated solutions. Note that we do not use an external archive to extract
the dominated solution in the course of a RCPPGA run. The nondominated
solutions shown in the figures are exactly those left in the final prey population
when the 30000 evaluations are completed.

5 Results and Analysis

5.1 Effects of Using Different Lattice Sizes

From Fig. 2 - 5, we can see that lattice size has a significant impact on the
number of different prey solutions obtained in the final iteration. For a lattice
size of 20x20, the RCPPGA converged to only very few nondominated solutions.
When the lattice size is increased to 30x30, method 1 gives a much improved
performance in terms of the number of different nondominated solutions found.
However, surprisingly, method 2, the weighted vector approach proposed by Deb
for the modified PPES, did not perform as well as method 1 for all the 3 test
functions. This suggests the inter-dependency of the model parameters, and the
fact that parameters have to be chosen carefully in order to obtain satisfactory
results.

When the lattice size is increased again to 50x50, both methods 1 and 2 give
very good distributions of nondominated solutions for all the 3 test functions.
Using a much larger lattice size such as 50x50 in RCPPGA means more prey
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individuals are allowed to survive. This is because there are more vacant cells
available, but the same constant number of predators has to cover a much larger
lattice (see Section 3).

One important observation from the above figures is that given a sufficiently
large lattice size, RCPPGA seems to be able to obtain a very good distribu-
tion of nondominated solutions, even without a direct use of adaptive variation
operators such as a decreasing step size suggested in PPES. However RCPPGA
does use a BLX-« crossover operator, which has the effect of self-adaptation (see
Section 3.2). This crossover operator, along with the use of a migration mecha-
nism (i.e., a random distribution of prey offspring over the entire lattice), seems
to be able to produce and maintain a diverse prey population. Implicit niching
is carried out via the natural formation of prey clusters of various sizes across
the lattice, which allows a diverse set of nondominated solutions obtained and
maintained until the last iteration.

Fig. 5 shows that even when a very large lattice of size 80x80 is used,
RCPPGA still managed to get a fairly good solution distribution on the Pareto
front for F3 within 30000 evaluations, especially for method 1. Note that this
time there are many more individuals that are not quite converged to the non-
dominated front, though there are already good approximation and distribution
of optimal solutions on the nondominated front. Another interesting observation
is that method 1 gives a much more uniform distribution of both nondominated
and dominated solutions in the final iteration than those of method 2. Fig. 5b)
shows that method 2 converged heavily towards one end of the Pareto front, but
missing out converging to some solutions on the other end. However, as shown
in Fig. 5 a), method 1 does not seem to have such a problem.

If we examine closely over Fig. 2 - 5, it can be noted that method 2 seems
to be more sensitive to different lattice sizes than method 1. As far as solution
distribution is concerned, method 2 performed particularly worse than method
1 on both of a smaller lattice size of 30x30 and a larger lattice size of 80x80 (for
F3).

5.2 Dynamic Changes of the Prey Population Size

Fig. 6 shows the dynamic changes of the prey population size when different
lattice sizes are used. The larger the lattice size is, the larger the prey population
would become. Since the maximum number of evaluations is fixed at 30000, a
larger prey population would run for fewer generations than a smaller one. For
example, for a lattice size of 50x50, only 67 generations are run as shown in Figure
6, whereas a lattice of size 30x30 needs 165, and a lattice of size 20x20 needs
225 generations. The lattice of size 50x50 gives the most diverse nondominated
solution set however. It can be observed that for the lattice size of 50x50, the
number of prey is increased very rapidly at the beginning of a run. Within only
a few generations, the prey population has gone from an initial 240 up to around
500, and then fluctuates around this number. It appears that this larger diverse
prey population in the early stage of the run provides a basis for RCPPGA to
obtain good diverse nondominated solutions towards the end of the run.



216 X. Li

Lattice size of 20x20 (F1, method 1)

6 T T

Lattice size of 20x20 (F1, method 2)

nondominated solutions
other individuals

6 T T

nondominated solutions
other individuals

:

st S
2 2
1E Wb '.
.
o . . . . . o . . . " .
0 1 2 3 4 5 ) 1 2 3 4 5
1 f
Lattce size of 30x30 (F1, method 1) Lattce size of 30x30 (F1, method 2)
6 T T T T T 6 T T T T T
nondominated salutions « nondominated salutions
other individuals ~ + other individuals  +
51 51
4t 4t
IS aal
-
2 2t
.
N . s \
. -~
Shend,
o . . i es o . . . . .
0 1 2 3 4 5 ) 1 2 3 4 5
[ [
Lattice size of 50x50 (F1, method 1) Lattce size of 50x50 (F1, method 2)
6 T T T T T 6 T T T T T
- nondominated salufions nondominated salutions
A other individuals  + other individuals  +
Y
.
5 1 4 sk + 4
e
w
4l R 4t 1
.
A .
e + b
kit K L
o3 b 4 o3 B
.
f}* P
e e M
.
oF Sy P | sl ]
N
o
ﬁf&ﬁ ., et
1 1T, + B 1k q
e
o -
s R, - +
. ‘ el Lo et | ‘ ‘

0 1 2 3 4 5 6 0 1 2 3 4 5 6
f "

)

Fig. 2. Prey solutions for F1 using method 1 (left) and method 2 (right) - a) for a
lattice of size 20x20, b) 30x30, and c) 50x50

5.3 Sensitivity of Predator-Prey Ratio

For method 2, Deb’s weighted vector approach, it may appear that by increasing
the number of predators, one would hope a better approximation and distribu-
tion of the nondominated solutions can be obtained along the Pareto front,
however selection pressure depends on the predator-prey ratio. Fig. 7 shows the
effects of changing the predator-prey ratio when we used the same set of pa-
rameter values as for Fig. 4 ¢), but doubled the number of predators. It can
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Fig. 3. Prey solutions for F2 using method 1 (left) and method 2 (right) - a) for a
lattice of size 20x20, b) 30x30, and c) 50x50

be noted that method 2 is more sensitive to the increased number of predators
than method 1. The dramatically increased selection pressure occurred when us-
ing method 2 resulted in a poor convergence, which in fact further reduced the
diversity of the nondominated solutions on the Pareto front. In contrast, method
1 still mananged to obtain well-distributed solutions consistently.



218 X. Li

Lattice size of 20x20 (F3, method 1) Lattice size of 20x20 (F3, method 2)
10 T T T T T T T T 10 T T T T T T T T
nondominated solutions & nondominated solutions &
other indiiduals  + other indiduals  +
8l 4 8l 4
6 q 6 4
o . o
4t ~ - 4t 4
2t 1 2t 1
. .
01 0.2 03 0.4 05 06 0.7 08 0.9 1 0.1 0.2 03 0.4 05 06 0.7 08 09 1
f f1
a)
Lattice size of 30x30 (F3, method 1) Lattice size of 30x30 (F3, method 2)
10— T T T T T T T y 10 T T T T T T T T
" nondominaled solutions ondominaled solutions
other indiiduals  + other induiduals  +
-+
&
L« 4 L 4
8 .H* $ + 8
.
s
[T
6 - 1 6 q
+ + +
ok
p
o uvas N o
IO
"
4 A i al 4
S -
¥
W os .
., R
20 A + 4 2k . 1
St . “ + - -
te . oo ead ¢ cometmm——.
01 02 03 04 05 06 0.7 08 0.9 1 0.1 02 03 04 05 06 0.7 08 09 1
f1 f1
Latice size of 50x50 (F3, method 1) Latice size of 50x50 (F3, method 2)
10 = T T T T T T y 10 T T T T T T T y
nondominated solutions Mondominated solutions
J . other indiduals  + otherndivicuals |+
:
1 sle ]
] ol ]
o o N
.
] As - . 4
.. N
.
L.
1 2r * % + 1
1 te- %
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1

Fig. 4. Prey solutions for F3 using method 1 (left) and method 2 (right) - a) for a
lattice of size 20x20, b) 30x30, and c) 50x50

6 Conclusion and Future Work

In this study a real-coded predator-prey GA (RCPPGA) for multiobjective opti-
mization has been developed as an extension of the original predator-prey model
proposed by Laumanns et al. [5]. From the experiments carried out over the 3
test functions, it has been shown that RCPPGA is able to produce a good set
of diverse nondominated solutions along the Pareto front. The RCPPGA’s per-
formance when using two different fitness assignment methods in conjunction
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Lattice size of 80x80 (F3, method 2)
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Fig. 5. Prey solutions for F3 when a very large lattice size of 80x80 is used - a) method
1, and b) method 2
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Fig. 6. The dynamic changes of the prey population size over generations - a) method
1, and b) method 2
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Fig. 7. The effects of changing the predator-prey ratio (doubling the number of preda-
tors in Fig. 4 ¢)) - a) method 1, and b) method 2
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with serval lattice sizes have been studied in detail. It has been found that when
using different types of predators associated with different objectives, given a
sufficiently large lattice size, RCPPGA can consistently produce and maintain
a diverse distribution of nondominated optimal solutions along the Pareto front
even after many generations. This method is also empirically shown to be less
sensitive to the predator-prey ratio than the weighted vector approach.

Many current evolutionary algorithms place emphasis on using an elitist
mechanism such as an external archive in order to keep a good optimal solu-
tion distribution [I]. By contrast, RCPPGA does not use any explicit elitist
mechanism, but still manages to obtain a diverse set of optimal solutions for
all the 3 test functions. There is no separate archive used in RCPPGA to store
nondominated solutions during a run. The nondominated and dominated solu-
tions are always in the same population until the last iteration step of a run.
One possible explanation for RCPPGA’s good performance is that using the self-
adaptive BLX-a crossover operator together with the random allocation migra-
tion method (see Section 3) is effective and rather non-detrimental as compared
with the mutation operators used in the previous studies [5], [1]. In future we
will test RCPPGA over more difficult multiobjective optimization problems, es-
pecially problems with more than just two objectives. We will also need to carry
out more formal performance measurements on the algorithm, for example using
the Mann-Whitney rank-sum test [L6].
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