
A Hybrid Imperialist Competitive Algorithm
for the Flexible Job Shop Problem

Behrooz Ghasemishabankareh1(&), Nasser Shahsavari-Pour2,
Mohammad-Ali Basiri3, and Xiaodong Li1

1 School of Computer Science and IT, RMIT University, Melbourne, Australia
{behrooz.ghasemishabankareh,xiaodong.li}@rmit.edu.au

2 Department of Industrial Management, Vali-e-Asr University, Rafsanjan, Iran
shahsavari_n@alum.sharif.edu

3 Department of Industrial Engineering, Science and Research Branch,
Islamic Azad University, Kerman, Iran

mohammadali.basiri@yahoo.com

Abstract. Flexible job shop scheduling problem (FJSP) is one of the hardest
combinatorial optimization problems known to be NP-hard. This paper proposes
a novel hybrid imperialist competitive algorithm with simulated annealing
(HICASA) for solving the FJSP. HICASA explores the search space by using
imperial competitive algorithm (ICA) and use a simulated annealing (SA)
algorithm for exploitation in the search space. In order to obtain reliable results
from HICASA algorithm, a robust parameter design is applied. HICASA is
compared with the widely-used genetic algorithm (GA) and the relatively new
imperialist competitive algorithm (ICA). Experimental results suggest that
HICASA algorithm is superior to GA and ICA on the FJSP.

Keywords: Flexible job shop scheduling problem � Imperialist competitive
algorithm � Genetic algorithm � Simulated annealing algorithm � Taguchi
parameter design

1 Introduction

The classical job shop problem (CJSP) deals with scheduling n jobs on m machines,
which is known as a NP-hard Problem [1]. Each job involves a set of operations with
their pre-specified sequences as well as processing times. However, in today’s com-
petitive businesses, companies often need to apply more flexible and efficient pro-
duction systems in order to satisfy their requirements. More specifically, not only
automation and flexible machines need to be used, but also a flexible scheduling should
be designed as well.

Flexible job shop scheduling problem (FJSP) extendsCJSPwhich does not restrict the
operations to be processed on pre-specified machines [2, 3]. Flexibility allows the
problem to be modeled in a more realistic manner, however, exact methods are unable to
solve the problem efficiently. The FJSP scheduling encompasses two sub-problems:
assigning an operation to a machine through existing machines and specifying the
sequence of the jobs’ operations. Brucker and Schlie [4] studied the FJSP for thefirst time.

© Springer International Publishing Switzerland 2016
T. Ray et al. (Eds.): ACALCI 2016, LNAI 9592, pp. 221–233, 2016.
DOI: 10.1007/978-3-319-28270-1_19

They introduced a polynomial algorithm for the problemwith two jobs. Although in some
cases the exact methods can in theory find the optimal solution for the problems, com-
putational time is so long that it is not practical to use them. Researchers have been trying
to find ways in which optimal or near optimal solutions can be obtained in reasonable
computational time. In recent years, some heuristic and meta-heuristic methods have
shown to be promising in achieving this goal, including tabu search (TS), simulated
annealing (SA), ant colony optimization (ACO), genetic algorithm (GA) [5–8].

A new evolutionary algorithm named imperialist competitive algorithm (ICA), has
been proposed recently by Atashpaz and Lucas [9]. This meta-heuristic algorithm has
shown promising results on several engineering problems and industrial engineering
field [10–15]. Combining two or more meta-heuristic methods seem to help achieve
good efficiency that is not possible by applying each one alone. Here, TS, SA and
variable neighborhood search (VNS) play an important role. Tavakkoli-Moghaddam
et al. [16] and Naderi et al. [17] presented a hybridization of electromagnetic-like
mechanism and SA. Some other hybrid meta-heuristics for solving the abovementioned
problem are also available [18–22]. Furthermore, Shahsavari-pour and Ghasemisha-
bankareh [23] presented a novel hybrid GA and SA algorithm to solve the FJSP, where
for the first time, an efficient hybrid ICA and SA has been applied for solving the FJSP.

As mentioned earlier, since the FJSP is well-known to be NP-hard, meta-heuristic
algorithms have significant advantages to solve the problem over exact methods.
Hybridization of meta-heuristic methods has attracted much attention of many
researchers. This paper proposes a new hybridized algorithm named as hybrid impe-
rialist competitive algorithm with Simulated Annealing (HICASA), where SA is
applied as a local search algorithm, while ICA does global search in the solution space.
In this study the FJSP is considered as a single-objective problem and the proposed
algorithm is applied to minimize the makespan. The robust parameter setting procedure
is applied to set all parameters for HICASA, GA and ICA. By solving the same
benchmarks, our results show that HICASA is superior to GA and ICA.

The remaining sections of the paper are organized as follow: Sect. 2 gives problem
representation. Section 3 describes solution methodologies for solving the FJSP. The
experimental design and computational results are provided in Sect. 4. Finally the
conclusions are presented in Sect. 5.

2 Problem Representation

The FJSP includes n jobs which are scheduled on m machines. The jobs are represented
by the set J = {1, 2, …, n} and the set M = {1, 2, …, m} indicates the machines. The
purpose of the optimization task is to generate a feasible schedule consistent with
minimization of the objective function and satisfying problem constraints at the same
time. In this FJSP problem, all machines are assumed to be available at time zero, all
jobs can be processed at time zero, each machine can have only one operation at a time,
each job can be processed by only one machine at a time and transportation times are
not considered. Notations and variables of the FJSP are presented as follows:

222 B. Ghasemishabankareh et al.

J Indices of jobs, j = 1, 2, …,n
i, p Indices of machines, i, p = 1, 2, …, m
e Indices of jobs which operate exactly before job j on the same machine, e = 1, 2, …, n
K The set of numbers of each job’s operations. For example K(j) = L means that the jth

job has L operations.
l, q Indices of numbers of operations, l,q = 1, 2, …, K(j)
Clji Completion time of the lth operation of job j on machine i
Plji Processing time of the lth operation of job j on machine i

The mathematical model of the FJSP is given as follows:

Z ¼ MinfmaxfCKðjÞjigg;KðjÞ 2 K; j 2 J; i 2 M ð1Þ

s.t:

Clji � Plji �Cl�1jp l ¼ 1; 2; . . .;KðjÞ j ¼ 1; 2; . . .; n i; p ¼ 1; 2; ::;m ð2Þ

Clji � Plji �Cqei q; l ¼ 1; 2; . . .;KðjÞ e; j ¼ 1; 2; . . .; n i ¼ 1; 2; . . .;m ð3Þ

Clji � 0 l ¼ 1; 2; . . .;KðjÞ j ¼ 1; 2; . . .; n i ¼ 1; 2; . . .;m; ð4Þ

where Eq. (1) implies the objective function (makespan), which should be minimized.
As noted above, the problem contains two basic restrictions: the first one is precedence
constraint belonging to the operations of a job. It means that the operation l of job j,
cannot be started until the whole previous operations (operation 1 to l − 1) to be
completed (Eq. (2)). The second restriction is non-overlapping constraint of the
operations on a machine which is specified by Eq. (3). It means that the machine does
not start to process the next operation until the current operation is finished completely.

3 Solution Procedure

3.1 Proposed HICASA Algorithm

The imperialist competitive algorithm is one of the efficient evolutionary algorithms in
solving discrete optimization problems [9]. In this algorithm, there are some countries
(or colonies) which are divided into two categories, imperialists and colonies. The
imperialist with its colonies, is called an empire. Competition among imperialists
continues and the most powerful imperialist has a higher chance to take the weakest
colony of the weakest imperialist. This process continues until just one imperialist
remains. Finally all the imperialists and colonies become the same.

HICASA is a novel meta-heuristic algorithm that integrates ICA with the SA
algorithm. SA has functions as a neighborhood search process and improves the
convergence of the solutions. During this process, some colonies are chosen randomly
from each empire and the SA algorithm is used as neighborhood search to alter chosen
colonies. The altered colonies replace the previous ones in each empire and the
algorithm goes on. The structure of HICASA is as follows (all equations of ICA are
captured from Atashpaz and Lucas [9]):

A Hybrid Imperialist Competitive Algorithm 223

Establishing Initial Empires. In ICA the initial population, which is generated ran-
domly, as colonies, is located in the form of array. Each individual in the population is
equivalent to the chromosomes in GA. Each array in the FJSP consists of two strings
[24]. The first ordered string represents the number of machines and the second string
represents the order of the job operations. Figure 1 shows an example of an array for
our experiments in Sect. 4. Note that the fifth element in the first string is 2 and the
counterpart element in the second one is 3. It means the second operation of job 3
should be performed on machine 2 (Oij: operation j from job i). The number of initial
population is considered as NC (number of countries) in this paper.

Calculating Objective Function and Generating Colonies. In order to evaluate the
colonies’ power, a cost function should be calculated. In the FJSP, the cost function is
equivalent to the value of makespan (Cmax). For each colony the value ofCmax is equal to:

Cmax ¼ maxfCKðjÞjig; K 2 KðjÞ; j ¼ 1; 2; . . .; n; i ¼ 1; 2; . . .;m ð5Þ

Then Nimp (number of empires) of the best members are chosen as imperialists. Ncol

is the number of remaining countries which should be distributed between the impe-
rialists. The number of colonies for each imperialist depends on the imperialists’ power.
In order to calculate their power, first the normalized cost should be computed
according to Eq. (6) (i.e., normalized makespan):

CO ¼ cO � max
i¼1;2;...;Nimp

fcig; 8O ¼ 1; 2; . . .;Nimp; ð6Þ

where cO is the makespan of the Oth imperialist and CO is its normalized value. Now
the relative power of each imperialist (PO) is calculated through the following:

pO ¼ CO

PNimp

i¼1
Ci

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

; 8O ¼ 1; 2; . . .;Nimp ð7Þ

Obviously, each imperialist’s power is the portion of colonies that should be
possessed by that imperialist. Hence the number of colonies of each imperialist is
computed by Eq. (8):

N:C:O ¼ roundfpO � Ncolg; 8O ¼ 1; 2; . . .;Nimp; ð8Þ

3 4 2 1 2 1 4 1 5 3 4 2

3 1 1 2 3 4 1 3 2 2 3 4

O31 O32 O33 O34

 String A (Machines)

String B (Operations)

Fig. 1. Array structure of a country (colony).

224 B. Ghasemishabankareh et al.

where N.C.O is the initial number of Oth imperialist’s colonies. round is a function
which rounds a decimal number into the nearest integers. So each imperialist in an
empire, has N.C.O colonies, which are chosen from the remained initial countries
randomly.

Assimilating. The empires attempt to increase their power by improving their colo-
nies. In other words, they propel their colonies to become similar to their imperialist
through making constructive changes in their structures. This changing process is
similar to the crossover process in GA. The assimilating process in the FJSP is shown
as a designed algorithm in Fig. 2.

3 4 2 1 2 1 4 1 5 3 4 2

Rand=Generate random number in [0,1]
Rand [0.1]AndCount=Count+1

Rand<Pc

Select two colonies randomly from the
current impire

Select two positions from 1 to L-1
randomly(L is the length of colony)

Change the values that located between
two positions in string A

2 1 3 2 4 5 3 1 2 2 1 5

3 4 2 2 4 5 3 1 2 3 4 2

2 1 3 1 2 1 4 1 5 2 1 5

String A. Colony 1:

String A. Colony 2 :

String A. New colony 1:

String A. New colony 2:

Assimilating in string A

Count<(Number of colonies of each
Imperialist)/2?

Count=0
Go to another

empire

Assimilating in string B

In colony 1, Each value of the genes that is equal to a and
b, then transfer that value to the first new colony

In colony 2, Each value of the genes that is not equal to a
and b, then transfer that value to the first new colony

3 1 1 2 3 4 1 3 2 2 3 4String B. Colony1:

String B. New colony 1:

String B. Colony 2: 4 2 1 3 2 1 4 2 1 3 3 3

2 1 1 3 2 4 1 2 3 3 3 4

Considered that a=1 and b=4

3 1 1 2 3 4 1 3 2 2 3 4

4 2 1 3 2 1 4 2 1 3 3 3

1 2 1 3 2 4 1 2 4 3 3 3

No

yes

Yes

No

String B. Colony 1:

String B. Colony 2:

String B. New colony 2:

Fig. 2. Assimilating process.

A Hybrid Imperialist Competitive Algorithm 225

Now the cost function (makespan) for the colonies resulting from assimilating
process is calculated by Eq. (1).

Neighborhood Search Through SA Algorithm. As mentioned before, neighborhood
search is suitable for further fine-tuning solutions produced by global optimization
methods. In this paper, SA is integrated with ICA to deal with the FJSP problem. The
algorithm works as follows: NSA colonies are chosen randomly from each empire and
SA is carried out for each chosen colony. At first the neighborhood search algorithm
works with the second string of each array, if it does not get improved after NI
iterations, it goes to the first string (machines string) of that array. The ultimate array
replaces the current solution. The function of SA algorithm in this neighborhood search
is shown in Fig. 3.

The Replacement of Colony and Imperialist. During the movement of colonies
towards the imperialist and the neighborhood search, some colonies have better
objective values than their imperialist. In this case, in each empire, the imperialist is
replaced by the colony that has the smallest cost.

The total power of an imperialist is the summation of the power related to the
imperialist and a percentage of its all colonies’ power and calculated by the following:

Fig. 3. Pseudo code of neighborhood search using SA.

226 B. Ghasemishabankareh et al.

T :C:n ¼ CnðimperialistnÞþ n � meanfCnð colonies of impiren Þg; ð9Þ

where T.C.n is the total cost of the nth empire and ζ is a positive value, which shows the
level of influence of colonies’ power in calculating the total power of the empire.

During an algorithm run, each empire that cannot increase its power loses its
competition power gradually. There is always competition among empires and the
stronger empires have the higher chance to seize the colony, and for this purpose the
chance of possession is defined by possession probability. Total normalized cost of
each empire (N.T.C.o) is calculated by Eq. (10) and the possession probability of each
empire is calculated by Eq. (11):

N:T:CO ¼ T :C:O � max
i¼1;2;...;Nimp

fT :C:ig; 8O ¼ 1; 2; . . .;Nimp ð10Þ

ppO ¼ N:T :C:O
PNimp

i¼1
N:T :C:i

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

; 8O ¼ 1; 2; . . .;Nimp ð11Þ

The colonies are divided among empires randomly andwith regards to the probability
of acquiring each empire. To do this, first P vector is formed as follows: P ¼
½pp1 ; pp2 ; pp3 ; . . .; ppNimp �: Then vector R should be generated randomly in the closed
interval [0,1] with the same size as P (R ¼ ½r1; r2; r3; . . .; rNimp �). Finally we calculate
vectorD (D ¼ P� R ¼ ½D1;D2;D3; . . .;DNimp �¼ ½pp1 � r1; pp2 � r2; pp3 � r3; . . .; ppNimp

�rNimp �) and a colony belongs to the empire which has the maximum index in D vector.
In each iteration, the algorithm eliminates the empire which has no colonies. In the

algorithm’s each iteration, all the empires collapse gradually except for the strongest
one. The algorithm stops when just one empire is remained. Notations of parameters for
HICASA are as follows: NC is the number of countries, Nimp is the number of empires,
Pc is assimilation rate, ζ is constant value, S and R are the number of internal and
external loop in SA respectively, NSA is the number of local search performed by SA
algorithm and α is decreasing rate for temperature.

3.2 Genetic Algorithm

GA is one of the most widely-used population-based stochastic search algorithms
proposed by Holland [25]. GA begins with an initial population and improves the
solutions based on the evolutionary process. In this regard, GA utilizes two important
operators to modify solutions and produce offspring. A selection procedure is used to
generate offspring in the next generation. In the selection procedure better solutions
have higher probability to be chosen. This process continues until the termination
condition is satisfied. The crossover and mutation are captured from [23, 24].

A Hybrid Imperialist Competitive Algorithm 227

4 Design of Experiments

In this paper, to evaluate the proposed algorithm, the FJSP has been considered. The
problem includes 4 jobs and 5 machines. Data containing processing times have been
extracted from [26] and shown here in Table 1. The objective function of the above-
mentioned FJSP problem has been treated as a single-objective through minimizing the
makespan. The results of HICASA, ICA and GA have been compared.

4.1 Taguchi Parameter Design

Since the three algorithms are population-based and their parameters’ values affect the
final solution qualities significantly. There are different methods to calibrate the
parameters of algorithms [14]. In this paper Taguchi method is used. Taguchi method
has been utilized for optimization [27, 28] including evolutionary algorithms [29, 30].
Taguchi method has three phases: system design, parameter design and tolerance
design. In this paper, Taguchi method is used as a robust parameter design. In this
approach parameters’ design is used to define factors which provide the best perfor-
mance of processes/products.

In Taguchi method, instead of doing full factorial trails, an orthogonal array is used
to carry out fewer experiments which examine the effect of noise. The orthogonal array
suggests a definite number of combinations of factor levels which have the same results
as full factorial trails. A robust parameter design tries to minimize the effect of noise
factor through achieving a higher ratio of signal-to-noise (S/N). In other words, a
higher value of S/N causes less effect of uncontrollable and noise factors in the per-
formance of the algorithm. The value of the S/N is calculated as [28]:

Table 1. Processing time of 4 × 5 problem.

Job Operation Processing time for
machine MI
M1 M2 M3 M4 M5

J1 1 2 5 4 1 2
2 5 4 5 7 5
3 4 5 5 4 5

J2 1 2 5 4 7 8
2 5 6 9 8 5
3 4 5 4 54 5

J3 1 9 8 6 7 9
2 6 1 2 5 4
3 2 5 4 2 4

J4 4 4 5 2 1 5
1 1 5 2 4 12
2 5 1 2 1 2

228 B. Ghasemishabankareh et al.

S=N ¼ �10� log10ðobjectivefunctionÞ2 ð12Þ

In this study, we select crucial factors of the algorithms (GA, ICA) according to the
previous researches. Three factors of HICASA are the same as ICA but we add NSA
parameter to show the effect of neighborhood search in the proposed algorithm.
Interested readers can refer to [14, 30, 31]. By using the Taguchi method the best
combination of the factors and their levels can be obtained for each algorithm. This
process is used to compare the performance of the algorithms. The factors and their
levels for the algorithms are shown in Table 2. Notations for GA algorithm are as
follows: GN is the number of generation, Pop_size is the number of individuals, Pc and
Pm are the probabilities of crossover and mutation respectively.

As shown in Table 2 for GA there are four 3-level factors, for ICA three 3-level
factors and for HICASA four 3-level factors. In order to facilitate and decrease the
number of the experiments, the orthogonal array is used. Appropriate orthogonal arrays
assigned for GA and HICASA is L9 and for ICA is L9 [14]. Table 3 shows the
orthogonal arrays.

Table 2. Factors and their level in GA, HICASA and ICA.

Factors in GA

Levels
A(GN) B(Pop_size) C(Pc) D(Pm)
A1:100 B1:50 C1:0.9 D1:0.1
A2:150 B2:100 C2:0.95 D2:0.15
A3:200 B3:200 C3:.98 D3:0.2

Factors in HICASA

Levels
A(NSA) B(NC) C(Pc) D()
A1:4 B1:40 C1:0.9 D1:1.4
A2:5 B2:50 C2:0.94 D2:1.5
A3:8 B3:35 C3:0.91 D3:1.6

Factors ICA
A(NC) B(Pc) C()

Levels
A1:40 B1:0.9 C1:1.4
A2:50 B2:0.94 C2:1.5
A3:35 B3:0.91 C3:1.6

Table 3. Orthogonal array L9 for GA and HICASA.

L9 for GA
and
HICASA

L9 for
ICA

Trail A B C D A B C

1 1 1 1 1 1 1 1
2 1 2 2 2 1 2 2
3 1 3 3 3 1 3 3

(Continued)

A Hybrid Imperialist Competitive Algorithm 229

The mean value of S/N is calculated and shown in Figs. 4, 5 and 6 for all
algorithms.

Table 3. (Continued)

L9 for GA
and
HICASA

L9 for
ICA

Trail A B C D A B C

4 2 1 2 3 2 1 2
5 2 2 3 1 2 2 3
6 2 3 1 2 2 3 1
7 3 1 3 2 3 1 3
8 3 2 1 3 3 2 1
9 3 3 2 1 3 3 2

Fig. 4. Mean S/N ratio for each level of factors in GA.

Fig. 5. Mean S/N ratio for each level of factors in ICA.

Fig. 6. Mean S/N ratio for each level of factors in HICASA.

230 B. Ghasemishabankareh et al.

According to the Figs. 4, 5 and 6 the optimal levels of the factors are the set {A3,
B3, C1 and D2}, the set {A2, B1 and C2} and the set {A2, B2, C1 and D3} for GA,
ICA and HICASA respectively.

4.2 Experimental Results

The algorithms are implemented in Visual Basic Application (VBA) and run on PC
2 GHz with 512 MB RAM. According to the parameters set in the previous section, the
problem presented in Table 1 is solved by the proposed HICASA, ICA and GA. Each
algorithm has been run 50 times and the averaged value was recorded as the final
results. As shown in Fig. 7, the objective function values (makespan) for HICASA in
all 50 runs converged to the optimal value of 11 but for GA and ICA the objective
function values (makespan) did not converge to the optimal makespan in most of the
runs. Clearly, the proposed algorithm (HICASA) obtains better solution in solving the
same benchmark. Figure 8 illustrates the solution obtained by HICASA for the problem
presented in Table 1. The numbers in the Gantt chart (Fig. 8) illustrate jobs’ number.

Fig. 7. Results of GA, ICA and HICASA.

Fig. 8. Gantt chart of the obtained solution by HICASA for 4 × 5 Problem.

A Hybrid Imperialist Competitive Algorithm 231

5 Conclusions

In this paper a novel hybrid meta-heuristic method (HICASA) has been developed to
solve the FJSP. The proposed algorithm is a hybridization of ICA and SA algorithm
which attempts to minimize makespan as the objective function. HICASA algorithm is
compared with ICA and GA. Results from calculating and comparing between these
three algorithms demonstrate that HICASA algorithm performs better than GA and
ICA. By using the neighborhood search in the procedure of HICASA algorithm, it is
able to solve the FJSP optimization problems effectively. HICASA can be used for
solving different scheduling problems. It is also possible to integrating this algorithm
with other meta-heuristic algorithms.

References

1. Gary, M.R., Johnson, D.S., Sethi, R.: The complexity of flow shop and job shop scheduling.
Math. Oper. Res. 1(2), 117–129 (1976)

2. Rossi, A., Dini, G.: Flexible job-shop scheduling with routing flexibility and separable setup
times using ant colony optimization method. Robot. Comput. Integr. Manuf. 23(5), 503–516
(2007)

3. Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu search. Ann. Oper.
Res. 41(3), 157–183 (1993)

4. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Computing
45(4), 369–375 (1990)

5. Thamilselvan, R., Balasubramanie, P.: Integrating genetic algorithm, tabu search approach
for job shop scheduling. Int. J. Comput. Sci. Inf. Secur. 2(1), 1–6 (2009)

6. Najid, N.M., Dauzere-Peres, S., Zaidat, A.: A modified simulated annealing method for
flexible job shop scheduling problem. In: 2002 IEEE International Conference on Systems,
Man and Cybernetics, vol. 5 (2002)

7. Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant system for job-shop scheduling.
Belg. J. Oper. Res. Statist. Comput. Sci. 34, 39–54 (1994)

8. Chen, H., Ihlow, J., Lehmann, C.: A genetic algorithm for flexible job-shop scheduling. In:
Proceeding of IEEE International Conference on Robotics, pp. 1120–1125 (1999)

9. Atashpaz-Garagari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for
optimization inspired by imperialistic competition. In: IEEE Congress on Evolutionary
Computation, pp. 4661–4667 (2007)

10. Khabbazi, A., Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm for
minimum bit error rate beam forming. Int. J. Bio-Inspired Comput. 1(1–2), 125–133 (2009)

11. Nazari-Shirkouhi, S., Eivazy, H., Ghods, R., Rezaie, K., Atashpaz-Gargari, E.: Solving the
integrated product mix-outsourcing problem using the imperialist competitive algorithm.
Expert Syst. Appl. 37(12), 7615–7626 (2010)

12. Lucas, C., Nasiri-Gheidari, Z., Tootoonchian, F.: Application of an imperialist competitive
algorithm to the design of a linear induction motor. Energy Convers. Manag. 51(7), 1407–
1411 (2010)

13. Kaveh, A., Talatahari, S.: Optimum design of skeletal structures using imperialist
competitive algorithm. Comput. Struct. 88(21–22), 1220–1229 (2010)

232 B. Ghasemishabankareh et al.

14. Shokrollahpour, E., Zandieh, M., Dorri, B.: A novel imperialist competitive algorithm for
bi-criteria scheduling of the assembly flow shop problem. Int. J. Prod. Res. 49(11), 3087–
3103 (2011)

15. Attar, S.F., Mohammadi, M., Tavakkoli-moghaddam, R.: A novel imperialist competitive
algorithm to solve flexible flow shop scheduling problem in order to minimize maximum
completion time. Int. J. Comput. Appl. 28(10), 27–32 (2011)

16. Tavakkoli-Moghaddam, R., Khalili, M., Naderi, B.: A hybridization of simulated annealing
and electromagnetic-like mechanism for job shop problems with machine availability and
sequence-dependent setup times to minimize total weighted tardiness. Soft. Comput. 13(10),
995–1006 (2009)

17. Naderi, B., Tavakkoli-Moghaddam, R., Khalili, M.: Electromagnetism-like mechanism and
simulated annealing algorithms for flow shop scheduling problems minimizing the total
weighted tardiness and makespan. Knowl. Based Syst. 23(2), 77–85 (2010)

18. Soke, A., Bingul, Z.: Hybrid genetic algorithm and simulated annealing for two-dimensional
non-guillotine rectangular packing problems. Eng. Appl. Artif. Intel. 19(5), 557–567 (2006)

19. Li, W.D., Ong, S.K., Nee, A.Y.C.: Hybrid genetic algorithm and simulated annealing
approach for the optimization of process plans for prismatic parts. Int. J. Prod. Res. 40(8),
1899–1922 (2002)

20. Osman, I.H., Christofides, N.: Capacitated clustering problems by hybrid simulated
annealing and tabu search. Int. Trans. Oper. Res. 1(3), 317–336 (1994)

21. Swarnkar, R., Tiwari, M.K.: Modeling machine loading problem of FMSs and its solution
methodology using a hybrid tabu search and simulated annealing-based heuristic approach.
Robot. Comput. Integr. Manuf. 20(3), 199–209 (2004)

22. Behnamian, J., Zandieh, M., Fatemi Ghomi, S.M.T.: Parallel-machine scheduling problems
with sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert.
Syst. Appl. 36(6), 9637–9644 (2009)

23. Shahsavari-pour, N., Ghasemishabankareh, B.: A novel hybrid meta-heuristic algorithm for
solving multi objective flexible job shop scheduling. J. Manuf. syst. 32(4), 771–780 (2013)

24. Zhang, G.H., Shao, X.Y., Li, P.G., Gao, L.: An effective hybrid particle swarm optimization
algorithm for multi-objective flexible job shop scheduling problem. Comput. Ind. Eng.
56(4), 1309–1318 (2009)

25. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor (1975)

26. Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible job-shop
scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Math.
Comput. Simul. 60(3–5), 245–276 (2002)

27. Taguchi, G.: Introduction to Quality Engineering. Asian Productivity Organization/
UNIPUB, White Plains (1986)

28. Phadke, M.S.: Quality Engineering Using Robust Design. Prentice-Hall, New Jersey (1986)
29. Molla-Alizadeh-Zavardehi, S., Hajiaghaei-Keshteli, M., Tavakoli-Moghaddam, R.: Solving

a capacitated fixed-charge transportation problem by artificial immune and genetic
algorithms with a Prüfer number representation. Expert Syst. Appl. 38(8), 10462–10474
(2011)

30. Hajiaghaei-Keshteli, M., Molla-Alizadeh-Zavardehi, S., Tavakoli-Mogaddam, R.:
Addressing a nonlinear fixed-charge transportation problem using a spanning tree-based
genetic algorithm. Comput. Ind. Eng. 59(2), 259–271 (2010)

31. Behnamian, J., Zandieh, M.: A discrete colonial competitive algorithm for hybrid flowshop
scheduling to minimize earliness and quadratic tardiness penalties. Expert Syst. Appl.
38(13), 14490–14498 (2011)

A Hybrid Imperialist Competitive Algorithm 233

	A Hybrid Imperialist Competitive Algorithm for the Flexible Job Shop Problem
	Abstract
	1 Introduction
	2 Problem Representation
	3 Solution Procedure
	3.1 Proposed HICASA Algorithm
	3.2 Genetic Algorithm

	4 Design of Experiments
	4.1 Taguchi Parameter Design
	4.2 Experimental Results

	5 Conclusions
	References

