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ABSTRACT
In this paper differential evolution is extended by using
the notion of speciation for solving multimodal optimization
problems. The proposed species-based DE (SDE) is able to
locate multiple global optima simultaneously through adap-
tive formation of multiple species (or subpopulations) in an
DE population at each iteration step. Each species functions
as an DE by itself. Successive local improvements through
species formation can eventually transform into global im-
provements in identifying multiple global optima. In this
study the performance of SDE is compared with another
recently proposed DE variant CrowdingDE. The computa-
tional complexity of SDE, the effect of population size and
species radius on SDE are investigated. SDE is found to
be more computationally efficient than CrowdingDE over a
number of benchmark multimodal test functions.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: Optimization; F.2.1 [Analysis
of Algorithms and Problem Complexity]: Numerical
Algorithms and Problems

General Terms
Algorithms

Keywords
Evolutionary Computation, Differential Evolution, Multi-
modal Function Optimization

1. INTRODUCTION
Multimodal function optimization has been the subject of

intense study for many years within the Evolutionary Com-
putation research community. To achieve multimodal opti-
mization, an evolutionary algorithm is required to locate all
the global optima (or multiple optima including global and
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some second best optima) in the search space instead of just
a single global optimum. Some classical techniques that can
enhance an EA with this ability include crowding [7, 10], fit-
ness sharing [4], derating method [1], restricted tournament
selection [5], parallelization [2] and speciation [12, 8].

Differential evolution is a relatively new optimization tech-
nique compared with other more established EAs such as
Genetic Algorithms, Evolutionary Strategy, and Genetic Pro-
gramming. Similar to EAs, DE is population-based, but un-
like EAs, DE modifies individuals via the use of the differ-
ences of randomly sampled pairs of individual vectors from
the population. Since the distribution of the differences of
these randomly sampled individual pairs also reflects the
topographic feature of the fitness landscape of an objec-
tive function, DE is self-adaptive to the fitness landscape
in its search for the global optimum. DE has proven to
be a fast and effective global optimizer [13]. However the
basic DE algorithm first proposed by Storn and Price [14]
was primarily designed to search for a single global opti-
mum. It is not surprising this basic DE is not suitable for
multimodal optimization where multiple global optima must
all be located [8, 15]. Some recent works have been made
to extend DE to handle multimodal optimization problems.
For example, MMDE (Multiresolution multipopulation DE)
by Zaharie [16] and MultiDE by Hendershot [6] which both
adopted an ‘island model’ approach similar to that of a tradi-
tional coarse-grained parallel GA. An interesting work done
by Thomsen proposed to extend DE with a crowding scheme
(CrowdingDE) to allow it to tackle multimodal optimization
[15]. Thomsen showed that CrowdingDE (with the crowd-
ing factor set equal to the population size) outperformed a
DE variant with a fitness sharing scheme. In this paper, a
new DE algorithm based on the notion of speciation is pro-
posed to handle multimodal optimization problems. This
species-based DE (SDE) is shown to be more computation-
ally efficient than CrowdingDE, particularly when there is
a large number of global optima present hence requiring a
large population size.

The remainder of the paper is structured as follows. Sec-
tion 2 first describes the basics on Differential Evolution, the
concept of crowding and the recently proposed CrowdingDE.
Section 3 presents the proposed species-based DE, including
the definition of speciation, how to determine species seeds
and an analysis on the time complexity of the algorithm for
determining species seeds. Detail of the SDE algorithm is
also presented in Section 3. Section 4 proposes the perfor-
mance measurement used in this study. Section 5 provides

873



numerical results over some test functions. Finally Section
6 gives the conclusions.

2. BACKGROUND

2.1 Differential Evolution
The basic differential evolution algorithm was described

by Storn and Price in [14, 13]. Let’s consider a maximiza-
tion problem: for a function f : X → Y , we need to
find ~x∗ ∈ X such that ∀~x ∈ X, f( ~x∗) ≥ f(~x). We let

~x(i,t) = (x
(i,t)
1 , x

(i,t)
2 , . . . , x

(i,t)
d ) represent the i-th variable

vector (of d -dimensional) at the t-th iteration. Let’s de-

note P t = {x(1,t), x(2,t), . . . , x(n,t)} the current population
of size n (n ≥ 4), and the offspring population will be

P (t+1) = {x(1,t+1), x(2,t+1), . . . , x(n,t+1)}. In the DE initial
population, each vector ~x is generated by sampling along
each dimension of the variable vector a random value uni-
formly between the lower and upper bounds of the variable

range. An offspring ~x(i,t+1) = (x
(i,t+1)
1 , x

(i,t+1)
2 , . . . , x

(i,t+1)
d )

is then generated after initialization, according to the fol-
lowing procedure shown in Fig. 1.

Randomly select parents
r1, r2, r3 ∈ {1, 2, . . . , n|r1 6= r2 6= r3 6= i} ;
jrand = int(U [0, 1] · d) + 1 ;
for j=1 to d do

if U[0,1] < CR ∨ j=jrand then

x
(i,t+1)
j = x

(r3,t)
j + F · (x(r1,t)

j − x
(r2,t)
j );

else x
(i,t+1)
j = x

(i,t)
j

end

Figure 1: The procedure for generating an offspring
in DE.

The above procedure is applied to all individuals of the
current population P (t) to generate n new individuals in
P (t+1) for the next iteration. The population size n must
be greater than 3. CR and F are user-specified control pa-
rameters, ranging from [0,1) and (0, 1+) respectively. DE

uses a simple replacement scheme in which a parent ~x(i,t) is
only replaced by its offspring ~x(i,t+1) if ~x(i,t+1) is fitter than
~x(i,t). For more detailed information, refer to [13]. There
are a number of DE variants in the literature. In this pa-
per, we use DE/rand/1/exp which is the procedure shown
in Fig. 1. We set F to 0.5 and CR to 0.9 following the user
guidelines in[13], for all the experiments carried out in this
research.

2.2 Crowding
A crowding based EA is generally a steady state GA

(SSGA) [7], which differs from a simple genetic algorithm
(SGA) in its way of how to replace individuals from the
population (this is where its selection pressure originates
from). Crowding can be briefly described as follows - from
a GA population, we randomly pick two parent individu-
als to mate (and/or mutate) to produce two offspring. In
order to insert an offspring immediately back to the popu-
lation, we randomly select C individuals from the popula-
tion for potential replacement. The number C, referred to
as the crowding factor, commonly set to 2 or 3. We then

check to see which individual from these C individuals is
most similar to this offspring. The similarity is measured
by the Euclidean distance (for the real-coded GA) or Ham-
ming distance (for the binary GA) of the genotype of the
two individuals. Finally we replace the most similar indi-
vidual with the offspring. The same procedure is repeated
for the second individual as well. This process repeats for all
individuals in the population before proceeding to the next
generation. Crowding has shown to be effective in main-
taining better population diversity, therefore to some extent
alleviate the problem of premature convergence. One known
problem associated with the crowding method is that when
C is set to a small number, the offspring does not always
replace the most similar individual with respect to the pop-
ulation [10], which is what so called replacement error. This
problem can be overcome by setting C equal to the size of
the population. Obviously the number of comparisons will
be expensive if the population size is large.

2.3 Crowding DE
Thomsen in [15] extended DE to handle multimodal func-

tion optimization with De Jong’s crowding method [7]. Basi-
cally CrowdingDE is a steady state DE algorithm that makes
use of crowding information from the population. In Crowd-
ingDE, when an offspring ~x(i,t+1) is generated, its fitness is
only compared with that of the most similar individual from
the current population (in this case crowding factor C is set

equal to the population size n), rather than its parent ~x(i,t)

as in the standard DE algorithm. The similarity measure is
calculated based on the Euclidean distance between two in-
dividuals in genotype space. The offspring ~x(i,t+1) will only
replace the most similar individual if it is fitter. The se-
lection pressure driving the population to seek out multiple
optima comes from this replacement scheme that encour-
ages the population to remain diverse in the search space.
CrowdingDE uses the following steps:

1. Use standard DE to produce an offspring ~x(i,t+1) (see
Fig. 1).

2. Calculate the Euclidean distance values of the offspring
~x(i,t+1) to the other individuals in the DE population.

3. Sort all individuals according to their Euclidean dis-
tances to ~x(i,t+1).

4. Compare the fitness of ~x(i,t+1) and the fitness of the
individual that has the smallest Euclidean distance to
~x(i,t+1). ~x(i,t+1) will only replace this individual, if
~x(i,t+1) is fitter than this individual.

5. Go back to step 1) to generate a new offspring, if the
number of offspring is smaller than the population size;
Otherwise proceed to next iteration, or stop if some
termination criteria are met.

Thomsen showed that CrowdingDE outperforms a fitness
sharing DE variant over a set of multimodal test functions
[15]. The simplicity of CrowdingDE makes it easy to imple-
ment, however it suffers from a higher computational cost
since every offspring has to be compared with every other in-
dividual in the population for similarity measurement. This
procedure has a complexity of O(N2). This problem gets
significantly worse when a larger population size is used.
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Apart from its simplicity, an appealing attribute of Crowd-
ingDE is that it does not require any additional user-specified
parameters such as species radius rs, which must be pre-
specified for the proposed species-based DE. See the follow-
ing section.

3. SPECIES-BASED DE

3.1 Identifying species
Using speciation has shown to be an effective technique

for multimodal optimization [8, 9]. A niching method based
on speciation can be used to classify an EA population into
groups according to their similarity measured by Euclidean
distance. The smaller the Euclidean distance between two
individuals, the more similar they are:

dist(~x(i)
, ~x

(j)) =

v

u

u

t

d
X

k=1

(x
(i)
k − x

(j)
k )2, (1)

where ~x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
d ) and ~x(j) = (x

(j)
1 , x

(j)
2 , . . . , x

(j)
d )

are d-dimensional vectors of real numbers representing two
individuals i and j from the EA population.

The definition of a speciation also depends on another pa-
rameter rs, which denotes the radius measured in Euclidean
distance from the center of a species to its boundary. The
center of a species, the so-called species seed, is always the
fittest individual in the species. All individuals that fall
within the rs distance from the species seed are classified as
the same species.

input : Lsorted - a list of all individuals sorted in de-
creasing fitness values

output: S - a list of all dominating individuals identi-
fied as species seeds

begin
S = ∅;
while not reaching the end of Lsorted do

Get best unprocessed p ∈ Lsorted;
found← FALSE;
for all s ∈ S do

if d(s, p) ≤ rs then
found← TRUE;
break;

end
end
if not found then

let S ← S ∪ {p}

end
end

end

Figure 2: The algorithm for determining species
seeds.

3.2 Determining species seeds
The algorithm for determining species seeds, introduced

by Petrowski in [12] and also Li et al. in [8], is adopted
here. By applying this algorithm at each iteration step,

Figure 3: An example of how to determine the
species seeds from the population at each iteration
step. s1, s2 and s3 are chosen as the species seeds.
Note that p belongs to the species led by s2.

different species can be identified using species seeds. These
species can be then treated as subpopulations running DE
independently themselves. Fig.2 summarizes the steps for
determining the species seeds.

The algorithm (as given in Fig. 2) for determining the
species seeds is performed at each iteration step. The al-
gorithm takes as an input, Lsorted, a list containing all in-
dividuals sorted in decreasing order of fitness. The species
seed set S is initially set to ∅. All individuals are checked
in turn (from best to the least-fit) against the species seeds
found so far. If an individual does not fall within the radius
rs of all the seeds of S, then this individual will become
a new seed and be added to S. Fig. 3 provides an ex-
ample to illustrate the working of this algorithm. In this
case, applying the algorithm will identify s1, s2 and s3 as
the species seeds. The 3 species formed around the 3 species
seeds which are the fitter as well as different individuals from
the population. To locate multiple global optima, it seems
sensible to run an DE within each species group so that each
species will be able to improve locally, resulting in multiple
species groups improving simultaneously across the entire
DE population. More importantly, over future iterations,
new formations of species will help transform such local im-
provements into global improvements leading to identifying
multiple global optima.

Since species seeds in S are sorted in the order of decreas-
ing fitness, when deciding which individual belongs to which
species, the algorithm presented in Fig. 2 naturally allows
fitter seeds get allocated with individuals from the popu-
lation before the less fit seeds in S. This is an important
attribute as it helps the optimization algorithm to increase
its likelihood for finding the global optima before the local
ones.

3.2.1 Complexity
The complexity of the above procedure (Fig. 2) can be

estimated based on the number of calculations of Euclidean
distances between two individuals that are required. Assum-
ing there are N individuals sorted and stored on Lsorted, the
while loop steps through Lsorted to see if each individual
is within the radius rs of the seeds on S. If S currently
contains i number of seeds, then at best the for loop is ex-
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Figure 4: The number of species seeds identified at
each iteration over a simulation run.

ecuted only once when the individual considered is within
rs of the first seed compared; and at worst the for loop is
executed i times when the individual falls outside of rs of
all the seeds on S. Therefore the number of Euclidean dis-
tance calculations required for the above procedure T (N) is:

N ≤ T (N) ≤ N(N−1)
2

, which shows that the worst time com-

plexity of the procedure is O(N2) when there are N species
seeds. However it is important to note that a much tighter
upper bound, N̄s ·N , can be derived where N̄s is the upper
bound of the number of species that will be found at each
iteration. N̄s can be estimated according to the size of the
search space and rs. Typically N̄s � N . Fig. 4 shows that
the number of species seeds decreases very quickly in a typi-
cal run of the proposed SDE (see also Fig. 6). In such a case,
the procedure takes roughly N̄s ·N Euclidean distance cal-
culations at each iteration. Since N̄s is determined by rs but
not the population size N , This procedure in fact has a lin-
ear time complexity of O(N). In contrast, time complexity
of the procedure for similarity measurement in CrowdingDE
is O(N2), because each individual must be compared with
every other individual in the population at each iteration.
Especially when N becomes larger, the similarity measure-
ment procedure gets significantly more expensive.

3.2.2 The SDE algorithm
This paper describes a species-based DE (SDE) which

makes use of the algorithm for determining species in con-
junction with a basic DE, can be used effectively to solve
multimodal optimization problems. Following the steps in
determining species seeds in Fig. 2, SDE is able to identify
multiple species at each iteration step from the entire pop-
ulation. Each identified species by itself is an DE running
the algorithm described in Fig. 1. The procedure can be
summarized as follows:

1. Generate an initial population with randomly gener-
ated individuals.

2. Evaluate all individuals in the population.

3. Sort all individuals in descending order of their fitness
values (i.e., from the best-fit to least-fit ones).

4. Determine the species seeds for the current population
(see Fig. 2).

5. For each species as identified via its species seed, run
a basic DE as described in Fig. 1.

a. If a species has less than m individuals, then ran-
domly generate new individuals within the radius
of the species seed until there are m individuals
in the species (see section 3.2.2.1 below).

b. If a child’s fitness is the same as that of its species
seed, replace the ‘redundant’ child with a ran-
domly generated new individual (see section 3.2.2.2).

6. Keep only the N fitter individuals from the combined
population.

7. Go back to step 2), unless the termination criteria are
met.

3.2.2.1 Creating local random individuals.
Note that in step 5) it is possible that an identified species

has less than m individuals. Since to run a DE, we must have
at least 3 or more individuals in a species, m is usually set
to a number greater or equal to 3. If the number of individ-
uals is below the m threshold, a new individual is generated
randomly within the radius of the species seed and added to
that species. This process is repeated until the size of the
species is greater or equal to m. As a result of this, it is
also possible that the size of the final combined population
of all species (including these newly generated individuals)
is greater than the original size of the population N . This
problem can be resolved by the procedure for determining
species seeds (see Fig. 2). Basically all individuals of the
combined population are first sorted in decreasing fitness or-
der, and then only the first N fitter individuals (including
seeds and other individuals) are kept. The remaining indi-
viduals are simply removed so that the DE population size
is always kept constant at N at each iteration step. Our
experience tells us that m should be set to a number much
higher than 3, for example m is set to 10 in this paper. This
is because DE works well when it has a better sampling of
differences among individuals in its population. 10 seems to
be a reasonable number for a minimum species size.

3.2.2.2 Eliminating redundant individuals in a species.

Since multiple species may converge at different speeds,
some species may have converged while others are not. The
efficiency of SDE can be improved by replacing redundant
individuals in the converged species with randomly gener-
ated new individuals. Redundant individuals in a species
are those individuals having the same fitness as that of its
species seed. This procedure should follow the conventional
DE procedure for producing a child (see Fig. 1), and can
be carried out by checking if the fitness of each DE child
individual is the same as the fitness of its species seed; if
they are the same, then the child is replaced by a randomly
generated new individual; and if they are not (it means the
species is not yet converged), then the child is kept as usual.
This procedure should improve efficiency because it allows
SDE to more effectively sample differences among a popu-
lation of more diverse individuals, including these randomly
generated new individuals instead of the redundant individ-
uals in a species.
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4. PERFORMANCE MEASUREMENT
Since our main goal is to see if the SDE is more efficient

than the CrowdingDE, we adopt the following two perfor-
mance measurements:

1. accuracy: an algorithm is run for a fixed number of it-
eration steps, and accuracy, which measures the close-
ness of fittest solutions to all known global optima, is
recorded in the final iteration step (see equation (2));

2. convergence speed: in this mode, an expected ac-
curacy level is pre-specified and the number of eval-
uations required to achieve the expected accuracy is
recorded.

In addition, we also measure the performance in terms of
success rate, the percentage of runs in which all global
optima are successfully located.

4.1 Accuracy
Accuracy is calculated by taking the average of the fitness

differences between all known global optima to their closest
species seeds:

accuracy =
1

||opts||

||opts||
X

j=1

|fit(optj)− fit(seedj)|, (2)

where ||opts|| gives the number of known global optima.
A pair of optj and seedj represents that for each optimum
optj , there is correspondingly a closest species seed seedj to
optj . This seedj can be identified from S, the set of species
seeds. Since a species seed is always the fittest individual in
its species, equation (2) should give an accurate indication
of how closely the algorithm identifies all the global optima.
Note that suboptima of a test function are not taken into
consideration in computing accuracy. Since our goal is to
find a complete set of global optima, i.e., all the global op-
tima of interest in a function, we allow the algorithm to run
for a fixed number of iterations (e.g., 1000 iteration steps)
before termination to see if all known global optima are
found. When measuring convergence speed, we terminate
the algorithm only after a pre-specified accuracy (as given
in equation (2)) is reached for all known global optima (e.g.,
Table 3).

4.2 Convergence speed
To measure convergence speed at a required level of accu-

racy, we only need to check set S, which contains the species
seeds identified so far. These species seeds are dominating
individuals sufficiently different from each other, however
they could be individuals with high as well as low fitness
values (see Fig. 3). We can decide if a global optimum is
found by checking each species seed in S to see if it is close
enough to a known global optimum. An expected accuracy
acceptance threshold (0 < ε ≤ 1) is defined to detect if
the solution is close enough to a global optimum, and the
following condition must be satisfied:

∀x ∈ Sopt∃y ∈ Sseed : min{||x− y||} ∧ |fit(x) − fit(y)| ≤ ε, (3)

where Sopt is a set of all known global optima of a multi-
modal function, and Sseed is a set of identified species seeds
(each should correspond closely to an optimum towards the
end of a run). min{||x − y||} returns the closest pair of a

Table 2: Results on accuracy after 1000 iterations
with 100% success rate (averaged over 50 runs).

Function SDE CrowdingDE
(mean and std dev) (mean and std dev)

F1 1.71E − 09± 1.21E-08 0.00E+00 ± 0.00E+00
F2 2.62E − 09± 1.84E-08 4.20E-10 ± 6.79E-10
F3 1.55E − 06± 0.00E+00 1.55E-06 ± 0.00E+00
F4 3.58E − 07± 0.00E+00 3.67E-07 ± 1.32E-08

Table 3: Results on convergence speed with 100%
success rate (averaged over 50 runs).

Function SDE CrowdingDE
(mean and std dev) (mean and std dev)

F1 440± 268.97 2439 ± 721.77
F2 5286± 5166.22 20001 ± 2016.32
F3 723± 123.81 7272 ± 1481.01
F4 4360± 2799.38 18620 ± 3161.39

global optimum (from Sopt) and a species seed (from Sseed).
Equation (3) states that for each global optimum x there
must exist a species seed y such that the fitness difference
between x to its closest species seed y is not greater than ε.
This condition must be satisfied before a run can be termi-
nated.

5. NUMERICAL RESULTS
Table 1 shows the test functions used in this paper. Firstly,

to compare the accuracy and convergence speed of SDE and
CrowdingDE on some relatively simple multimodal func-
tions, F1, F2, F3 and F4 were used. These functions are
widely used and they are typical 2-dimensional multimodal
test functions with a limited number of global optima. After
this, a more challenging test function F5 was used. F5 the
2-dimensional Shubert function is different from F1 to F4
in the fact that it has a large number of global and local
optima (760 optima including 18 global optima); hence it
would pose greater difficulties to a multimodal optimization
method. In the second part of this section F5 was used with
various parameter setups to test SDE’s ability to handle the
situation when there are a large number of optima present.

5.1 Accuracy
Table 2 shows the results of accuracy for SDE and Crowd-

ingDE. In this experiment, the population size was set to 50,
and the SDE species radius rs was set to 0.05 for F1, and 0.5
for F2, F3 and F4. Both SDE and CrowdingDE were run
for 1000 iteration steps and their accuracies were recorded.
As can be seen from Table 2, SDE has obtained very similar
results as that of CrowdingDE. Both SDE and CrowdingDE
have achieved 100% success rate, which means both of them
have reached an accuracy smaller than the required accuracy
ε of 0.0001 within 1000 iterations.
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Table 1: Test functions.
Function Range Comments
Deb’s 1st function [3]: F1(x) = sin6(5πx) 0 ≤ x ≤ 1 5 equally spaced global optima

Himmelblau [1]: F2(x) = 200 − (x2 + y −
11)2 − (x + y2 − 7)2

−6 ≤ x, y ≤ 6 4 global optima

Six-Hump Camel Back [11]: F3(x) =

−4[(4−2.1x2+ x4

3
)·x2+xy+(−4+4y2)·y2]

−1.9 ≤ x ≤ 1.9;
−1.1 ≤ y ≤ 1.1

2 global optima and 4 local optima

Brainin RCOS [11]: F4(x, y) = (y − 5.1
4π2 ·

x2 + 5
π
· x− 6)2 + 10 · (1− 1

8π
) · cos(x) + 10

−5 ≤ x ≤ −10;
0 ≤ y ≤ 15

3 global optima

Shubert [8]: F5(x, y) =
P5

i=1 icos[(i +

1)x + i] ·
P5

i=1 icos[(i + 1)y + i]

−10 ≤ x, y ≤ 10 760 optima including 18 global op-
tima

5.2 Convergence speed
In this experiment, the same parameter setup was used

as for accuracy in the previous section. Table 3 compares
the convergence speed of SDE and Crowding DE over F1 -
F4, in terms of the number of evaluations. Both SDE and
CrowdingDE were run until it reached the required accuracy
ε of 0.0001 for all global optima over 50 runs (that is 100%
success rate). For this experimental setup, SDE used far
fewer evaluations to reach convergence than CrowdingDE
did. With consideration of time complexity on the number
of comparisons required for CrowdingDE and SDE, the next
section will show that CrowdingDE is even more costly when
a larger population size is used.

5.3 Effect of varying population size
The effect of using varying population sizes was tested on

F5 the 2-dimensional Shubert function. In this experiment,
SDE and CrowdingDE were both run until a required accu-
racy ε of 0.1 (to all known 18 global optima) or the 5000th
iteration step was reached.

It would be difficult to compare SDE’s efficiency with
CrowdingDE based purely on the number of evaluations,
because CrowdingDE has much higher time complexity in
identifying the similar individuals than SDE in determining
species seeds at each iteration step (see section 3.2.1). To
make a fair comparison, both CrowdingDE and SDE were
run 50 times on a Pentium 4 machine and the time for each
run was measured in milliseconds. The average over the 50
runs, the highest, and lowest amount of time were recorded.
It can be seen from Fig. 5, the amount of time taken by
CrowdingDE quickly went up, when the population size was
increased from 50 to 100. This would get much worse if
CrowdingDE uses a population size greater than 100, since
the number of similarity measurements in CrowdingDE has
the complexity of O(N2). In contrast, SDE used much less
time in finding all the global optima even when the pop-
ulation size was increased from 150 to 400. This is largely
attributed to SDE’s more efficient way of identifying species,
which has a linear time complexity of O(N).

Another observation from Fig. 5 is that overall Crowd-
ingDE has a different ‘optimal’ range of population sizes
than SDE. CrowdingDE works well on smaller population
sizes, while SDE favours relatively larger population sizes.
Similar results were also obtained for F1 - F4. As can be
seen from the plotted data points in Fig. 5, CrowdingDE
only managed to find all 18 global optima when a popula-
tion size of 80 or 100 was used, but not with a population
of 50 or 60. SDE managed to find all 18 global optima with
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Figure 5: The effect of varying population size
on time measured in milliseconds (on F5 the 2-
dimensional Shubert function). The average over 50
runs, the highest and lowest values were recorded.

a population size of 200, 300, and 400, but not 150. SDE is
much less sensitive to the increasing population sizes than
CrowdingDE. It is interesting to see that in Fig. 5 SDE
even used less time in average for the setup using a popula-
tion size of 400 than 300. On the other hand, CrowdingDE
is almost too costly to use when the population size is in-
creased to 100 or greater. SDE does not seem to have such
a limitation.

For CrowdingDE, it may be possible to reduce the crowd-
ing factor C to a smaller number than the population size,
however this may cause the problem of ‘replacement error’
as described in section 2.2.

Fig. 6 shows a simulation run of SDE on F5 the 2-
dimensional Shubert function. In this run, SDE found all 18
global optima in only 24 iteration steps with the expected
accuracy of 0.1.

5.4 Effect of varying species radius
In this experiment, population size was set to 300, and

expected accuracy ε was set to 0.1. SDE was run for 50
times with varying species radius values ranging from 0.1
to 14. The average number of solutions found over 50 runs
with one standard deviation was recorded (see Fig. 7). SDE
found most of 18 global optima when species radius rs was
set to 0.2 - 0.8 (Fig. 7 b)). This can be explained by the fact
that the closest distance between any two global optima in
the Shubert function is 1.6, therefore SDE using a rs value
of 0.8 or below still has the ability to distinguish any two
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Figure 6: A snapshot of a simulation run of SDE on F5 - step 1, 2, 8 and 24.

global optima, but if rs is increased to above 0.8, then any
two closest global optima would become indistinguishable
to SDE (regarded as the same species). As shown in Fig.
7 a), when rs is set to 0.8 or above, the number of found
solutions is reduced dramatically. Also noticeable is that
when rs is set to 1 - 5, SDE was still able to locate 9 different
clusters among the 18 global optima (see Fig. 6 step 24 for
an example), i.e., at least one global optimum from a global
optima pair in a cluster was located.

6. CONCLUSIONS
This paper proposes an extension to DE using speciation

for solving multimodal optimization problems. This species-
based DE (SDE) was compared with another recently pro-
posed CrowdingDE on some widely used test functions. It
has been shown in the experimental results that SDE is more
computationally efficient than CrowdingDE, especially when
a larger population size has to be used to deal with problems
having a large number of optima.

Although CrowdingDE has the advantage of not having to
specify additional user-specified parameters such as species
radius rs, it can be very computationally expensive. Our
results indicate that CrowdingDE performs well only over
a range of smaller population sizes. However when facing

problems having a large number of global optima thereby
requiring a larger population size, CrowdingDE becomes in-
efficient and too expensive to run. In contrast, the proposed
species-based DE (SDE) is much less sensitive to larger pop-
ulation sizes. Our results show the efficiency of SDE be-
comes significantly better than CrowdingDE when both al-
gorithms must use a large population size.

SDE also incorporates two mechanisms to further improve
its efficiency. By creating local random individuals, DE run-
ning within each species can be enhanced with better con-
vergence; by removing redundant individuals and replac-
ing them with randomly generated individuals, the search
space is better explored without any additional computa-
tional cost. These two mechanisms also help to alleviate the
sensitivity of SDE to different species radius values.

SDE proves to be an efficient multimodal optimization al-
gorithm for the problems tested in this paper. In future,
SDE’s ability in handling complex real-world multimodal
optimization problems and problems with higher dimension-
ality will be studied.
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Figure 7: The average number of solutions found over 50 runs when using different species radius values,
with one standard deviation error bars.
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