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Abstract—Several population initialization methods for evo-
lutionary algorithms (EAs) have been proposed previously. This
paper categorizes the most well-known initialization methods and
studies the effect of them on large scale global optimization
problems. Experimental results indicate that the optimization
of large scale problems using EAs is more sensitive to the
initial population than optimizing lower dimensional problems.
Statistical analysis of results show that basic random number
generators, which are the most commonly used method for
population initialization in EAs, lead to the inferior performance.
Furthermore, our study shows, regardless of the size of the initial
population, choosing a proper initialization method is vital for
solving large scale problems.

I. INTRODUCTION

Evolutionary algorithms (EAs), like other population-based
optimization algorithms, rely on the initial population consist-
ing of potential solutions. Traditionally, basic random number
generators (RNGs) are widely used to initialize the population
of EAs. For years, researchers did not pay much attention
to the potential influence of population initialization on the
performance of EAs. Recent studies suggest that it is possible
to significantly improve the performance of EAs just by using
different initialization methods [1]. Moreover, a large and
growing body of literatures has proposed new ways of gener-
ating better initial populations [2], [3]. Some of these methods
are known to be more random [4], [5], [6], more uniform [3],
[7], [8] or to some extent more informed than RNGs [2], [9],
[10], [11]. Several published studies have revealed that the
more advanced methods can increase the probability of finding
the optimum solution, decrease the computational cost [12],
reduce the variance of the results [13] and improve the solution
quality of EAs [14].

According to the aforementioned literature, advanced ini-
tialization methods for EAs have been widely used to solve
low and medium dimensional problems. They are, however,
not widely used to deal with large scale global optimization
(LSGO) problems which usually have more than 100 decision
variables. As a fact, all participants of previous competi-
tions on LSGO held at the IEEE Congress on Evolutionary
Computation (CEC-2008, CEC-2010 and CEC-2012), except
[15], simply used RNGs as initialization methods. Considering
the growing demands on solving LSGO problems [16], [17],
it is important to investigate whether advanced initialization
methods are able to improve the performance of state-of-the-
art EAs in comparison to basic RNGs.

Up to now, a few comparative studies have been carried
out on the effect of different initialization methods on the opti-

mization performance [1], [12], [14]. Although previously pub-
lished comparative studies are scientifically informative, they
suffer from several problems. Firstly, to our best knowledge,
they are limited to investigate just a few methods mostly from
the same category. In fact, no one compared more than four
initialization methods or studied several different categories of
methods for generating initial populations. Another limitation
of the previous works is that all of them only studied low
dimensional problems. As a matter of fact, less existing works
addressed the problems of the dimension size larger than 60.
It is also important to mention that previous studies rarely
investigated the relation between the population size and the
initialization method. Last but not least, a number of works
studied the effect of initialization methods on very specific
problems. These studies and the corresponding conclusions
cannot be generalized well to problems of the very different
nature. This paper, however, aims to fill these gaps and provide
a more comprehensive comparative study on the influence of
population initialization on LSGO problems.

In this paper, we specifically aim to highlight the impor-
tance of choosing proper initialization methods when dealing
with LSGO problems using the state-of-the-art EAs. We want
to demonstrate that there exist some initialization methods,
which can perform consistently better than RNGs regardless
of the problem dimension size or the size of initial population.
In order to conduct a comprehensive comparative study, we
categorize existing methods into several groups and select a
few methods from each group as representatives to compare.
This categorization can help researchers to perform deeper
analysis.

In the next section, we review and categorize the literature
of initialization methods for EAs. In Section III, two state-
of-the-art representatives from each category are introduced
in more details. The experimental setup and results are dis-
cussed in Section IV and V, respectively. Finally, Section VI
concludes the paper.

II. LITERATURE REVIEW

Regardless of the type of the EA method under consid-
eration, at least one stage is always in common: population
initialization. Every population-based optimizer demands an
initial population at the early step of the algorithm. Besides
Random Number Generators (RNGs), as the most common
initialization method, many promising alternatives have re-
cently been proposed. So far, however, there has been little
agreement on the possible effect of these advanced methods
on high dimensional problems. For example, study in [18]
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found that uniformity of the initial population plays a more
important role in higher dimensional problems (up to 50
dimensions) while [13], in contrast, claim that uniform ini-
tialization methods lose their effectiveness in problems with
dimensionality larger than 12. The contradiction and confusion
such as this and other limitations of previous comparative
studies (described in Section I), motivate us to systematically
examine the influences of advanced initialization methods on
LSGO problems under different population size conditions.

Since the recently proposed methods are of very different
forms and vary in characteristics, we group them into five
major categories:

1) Stochastic methods
2) Deterministic methods
3) Two-step methods
4) Hybrid methods
5) Application specific methods

Each category may also comprise several minor subcategories.
Although other types of grouping were possible, we find above
classification more comprehensive and consistent.

Generally speaking, the main aim of methods in the first
group (i.e. Stochastic methods) is to produce random num-
bers [19], [20]. In the designers’ point of view, more random
sequence (and hence less predictable and reproducible set)
makes better initial population for stochastic algorithms like
EAs. Accordingly, the most important attribute of stochastic
methods is cycle time (i.e. period length) and the degree of
unpredictability [21]. Although these methods cannot produce
“true random” numbers, they are the most used initialization
methods in EAs.

Recently, a subcategory of stochastic methods which is
called Chaotic number generators attracts more interest among
researchers [20]. Chaotic methods mimic the behaviour of
dynamical systems which yields generally unpredictable point
sequences [4].

In contrast to the first group, Deterministic methods focus
more on the uniformity rather than randomness [13]. Many
researchers believe, in absence of prior knowledge about the
problem, a more uniform initial population enhances EA’s
exploration ability in the early iterations [12]. In other words,
increasing the uniformity of the initial population reduces the
probability of missing a large part of search space and saves
lots of computational budget.

In theory, a wide range of methods can be classified in the
group of deterministic methods. Some of these methods have
unique features such as orthogonality [7] or regularity [22]
while the others only differ in the way of generating uniform
points [23]. A few types of deterministic methods like quasi
sequence generators [24] and low-discrepancy sequences [1],
[12], [25] have the support of theoretical upper-bounds on
discrepancy (i.e. non-uniformity). Most of these methods need
very large prime numbers to work properly in high dimensions.
Other types of deterministic uniform number generators are
mainly borrowed from Experimental Design concepts [3], [7],
[8]. These methods are generally iterative and demand a large
amount of memory and long time to compute on very high
dimensions.

TABLE I. SURVEY OF PREVIOUS COMPARATIVE STUDIES
S, D, T, H AND A STAND FOR STOCHASTIC, DETERMINISTIC, TWO-STEP,

HYBRID AND APPLICATION SPECIFIC, RESPECTIVELY.

Author(s) Ref. Dim. Year Alg. S D T H A

Clerc [1] 30 2008 PSO *

Peng et al [8] 50 2012 DE * * *

Wang et al [10] 30 2009 PSO * *

de Melo et al [11] 60 2012 DE * *

Kimura et al [12] 20 2005 GA * *

Richards et al [18] 50 2004 PSO * *

Maaranen et al [24] 50 2004 GA * *

Uy et al [25] 40 2007 PSO * *

Gutierrez et al [28] 30 2011 PSO * * * *

Chou et al [29] 50 2000 GA * *

Khanum et al [30] 30 2011 DE * *

Pant et al [31] 30 2009 DE * *

Maaranen et al [32] 50 2007 GA * *

In recent years, there has been an increasing amount of lit-
erature on Two-step initialization methods [2], [9], [11]. These
methods basically generate initial points (first phase) and then
try to enhance them according to some criteria (second phase).
Most of two-step methods exploit fitness function to estimate
search space characteristics. These methods tend to generate
points in promising regions and do not care about randomness
or uniformity of the population. All variations of Opposition
Based Learning [2], [9], [10] and Smart Sampling [11] belong
to this category. These methods consume a portion of compu-
tational budget to guide the algorithm to better regions. The
performance of two-step methods also depends on the original
population generated in the first phase [26], [27]. In fact, they
are almost like greedy searches which are only applied to the
first iteration of EAs.

Hybrid methods, in general, are those methods which are
combinations of several basic methods [20], [26], [27]. They
may inherit the pros and cons of the basic methods which they
are made from. We believe studying basic methods can shed
more light on hybrid methods as well. If our knowledge about
basic methods is insufficient, studying hybrid methods would
provide little benefit and interest.

Finally, the application specific group comprises methods
which are designed to be specifically applied to a few particular
real-world problems [4], [14], [28]. These methods may be
very promising in some cases, however, they are not applicable
in other areas. Consequently, study on these group of methods
must be done by researchers who are expert on those specific
domains.

Besides that part of the literature which introduced original
initialization methods, a few comparative studies on existing
methods have also been published. As mentioned earlier, these
studies are largely focussed on low dimensional problems
and limited to a few methods mostly selected from the same
category. Table I surveys these previously published studies
where S, D, T, H and A stand for Stochastic, Deterministic,
Two-step, Hybrid and Application specific, respectively.

III. INITIALIZATION METHODS

As mentioned in former sections, the research goal of this
study is to investigate relationship between initial population

2751



and final outcome of EAs specifically on LSGO problems.
To do so, we categorized existing methods into five major
categories (see Section II). In this section, the most common
methods from each category are selected and discussed in more
details. Nonetheless, extra details and unpopular, discrete,
application specific and hybrid methods are excluded to avoid
obscuration. This exclusion results to better concentration on
the basic real-valued methods which are more general and
well-known. Interested readers are highly encouraged to follow
the cited references and references therein.

A. Stochastic Methods

Pseudo-Random Number Generators or simply RNGs are
the most commonly used methods for initialization of EAs for
many years. These methods attempt to generate statistically
uniform random numbers within the given range [14]. In
reality, however, RNGs cannot produce a perfect uniform
distribution of points [24]. This shortcoming gets worse when
the dimensionality of the search space grows or the number of
points diminishes. Therefore, we expect on LSGO problems
RNGs lose their effectiveness because the dimension of the
search space is very high and the population size is not
large enough to sample all areas. Generally speaking, different
algorithms and implementations of RNG methods may affect
the quality of the generated points [21], [14]. In this study we
simply use the default rand function [19] of Octave version
3.6.2.

Beside RNG, chaotic methods are also employed as random
population generators [5], [6]. Theoretically, chaotic motion
can traverse every state in a certain region by its own reg-
ularity. Hence, chaotic initialization methods can form better
distributions in the search space due to the randomness and
non-repetitive ergodicity of chaos [4].

To produce an initial population which mimics a chaotic
system, a proper map is required. Previous studies exploited
Tent, Logistic and Sinusoidal maps [4], [5], [6]. Tent map
(TNT), for example, works as follows:

x
(k+1)
i,j = µ(1− 2|x(k)i,j − 0.5|), 0 ≤ x(0)i,j ≤ 1. (1)

where x(k)i,j is jth variable of ith individual in kth iteration and
µ is the bifurcation factor [4].

As is shown in Equation 1, chaotic methods are determin-
istic. Nevertheless, the resulting chaotic sequences are highly
sensitive to the initial condition and their outputs are not
predictable. Here, we follow the implementation of Tent map
presented in [4].

B. Deterministic Methods

Generally speaking, deterministic methods aim to produce
a uniform population using geometrical techniques. In theory,
a wide range of population initialization methods can be clas-
sified as deterministic methods. We divide this category into
two subcategories: Low Discrepancy (LD) and Experimental
Design (ED) methods. The main difference between these
two subcategories is that LD methods have the support of
theoretical upper-bounds on discrepancy (i.e. non-uniformity)
while ED methods are not supported by such mathematical
bounds. Technically, upper-bound on non-uniformity shows

how good (or bad) a method can perform in extreme cases [24].
In practice, these theoretical limits are not valid on LSGO
problems due to the unsatisfied basic assumptions (i.e. The
population size must be very large in order for those upper-
bounds to be valid.). These two subcategories are discussed
below.

Low Discrepancy Methods: As mentioned previously, dis-
crepancy is a measure of non-uniformity. According to theoret-
ical studies, LD points are more uniform than points generated
by RNGs [25]. Therefore, LD methods are mainly employed to
generate sets of evenly distributed points (rather than randomly
distributed).

A very popular type of LD point generator is Quasi
Random Sequence (QRS) which has great applications in
Quasi-Monte Carlo integrations [24]. Nevertheless these meth-
ods are called quasi-random or sub-random sequences, they
are deterministic by nature which means no randomness is
involved in their algorithms. Hence, QRSs always produce the
same sequences from a given dimension and population size.
Some researchers, however, have used random start QRSs to
add some randomness to the resulting sequences [12]. In EA
literature, several QRS sets such as Halton, Sobol, Niederreiter
and Faure sets have been widely used. In this study we use
Matlab (version 7.11) official implementation of Sobol (SBL)
set [23].

Another LD method which is known to produce very
regular distribution is Good Lattice Point (GLP). The GLP
set is also deterministic and uniform; and has been widely
used in Monte Carlo integrations. In this study, we follow the
implementation of GLP introduced in [22].

Experimental Design Methods: Experimental design (ED)
methods are another types of deterministic uniform point gen-
erators. Since ED methods mostly produce discrete numbers,
some post-processing must be done before it can be applied to
real-value problems. A very common ED method is Uniform
Design (UD) which as a space-filling method seeks points
uniformly scattered on the domain [8]. According to [3], UD
initialization method can accelerate convergence speed and
improve the stability of EAs.

Suppose we want to generate a uniform initial population
of size M in D dimensional hypercube using UD. Let P =
(p1, p2, ...pD) be D prime numbers smaller than M which
are selected randomly, then Xi,j = (i × pj) mod M is the
jth variable of ith initial individual. Note that the number of
prime numbers fewer than M should be larger than or equal
to D. Otherwise, we have to increase the population size.

Orthogonal Design (OD) is another experimental design
method which has been applied to produce evenly scattered
points over the search space [7], [8]. Technically, OD produces
an orthogonal 2D array like LM (QN ) where M is the number
of rows (i.e. population size), N is the number of columns (i.e.
factors), Q is the levels and L denotes Latin square. According
to [7], Q should be an even integer and M = QJ while J is
a positive integer satisfying N = QJ−1

Q−1 . The main attributes
of an orthogonal array are as follows:

1) For the factor in any column, every level occurs
exactly M

Q times. This attribute make the resulting
population very uniform.
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2) Orthogonality of the array is not sensitive to the
number or the order of columns. Therefore, one can
reorder the columns or remove a number of them and
the resulting array is still orthogonal.

This study follows the implementation of OD presented in [7].

C. Two-step Methods

Two-step methods are those algorithms which generate an
initial population in the first step and then try to improve them
using some guidelines (e.g., fitness function) in the second
step. These methods can be seen as greedy methods which are
applied only in the first iteration.

Undoubtedly, the Opposition Based Learning (OBL) ini-
tialization is the most well-known two-step method in EA
literature [33], [34]. The definition of the opposite point is
as follows:

Let Xi(xi,1, xi,2, ..., xi,D) be the ith individual of the
population and each variable xi,j be bounded by (ai, bj). The
opposition point is defined as X̃i(x̃i,1, x̃i,2, ..., x̃i,D) while:

x̃i,j = aj + bj − xi,j , j = 1, ..., D. (2)

To produce a promising population, OBL method first
generates a random population (let’s call it original population)
and then the opposition points of the original population are
calculated based on Equation 2. Now, both populations are
merged and the best individuals according to fitness function
are selected to form the initial population for the EA (second
step).

Another well-known two-step population initialization
method is Quasi-opposition Based Learning (QBL). The QBL
is not a hybrid version of QRS and OBL. Indeed, QBL
is a modified version of OBL which tries to increase the
population uniformity. Considering the definition of opposition
points in Equation 2, the quasi-opposition point of Xi is
X̆i(x̆i,1, x̆i,2, ..., x̆i,D) where:

x̆i,j =

{
rand(mj , x̃i,j) if xi,j ≤ mj

rand(x̃i,j ,mj) if xi,j > mj
(3)

where mj =
bj−aj

2 and rand(α, β) is a random number
drawn uniformly from (α, β) range. Similar to OBL, after the
calculation of quasi-opposition points, both original and quasi-
opposition populations are merged into one big population.
Then, fittest solutions are selected according to fitness function.

As described in [2], according to probability theory, in 50%
of cases the distance between the opposition point and the
unknown solution is less than the distance between the original
point and the unknown solution. In [9], Rahnamayan et al.
proved that points generated using QBL have more chances to
be closer to unknown solutions than points produced by OBL.

Although OBL and QBL initialization methods achieved
good results, they suffer from two problems; Firstly, both
algorithms consume a part of computation budget to evaluate
the fitness function. Secondly, since these methods calculate
opposition and quasi-opposition points based on the original
population, their performances to some extent depends on the
quality of the original population.

TABLE II. CEC 2008 LSGO BENCHMARK FUNCTIONS

Name of Function Type of Function Separability
f1 Shifted Sphere Function Unimodal Separable
f2 Shifted Schwefel’s Problem 2.21 Unimodal Nonseparable
f3 Shifted Rosenbrock’s Function Multimodal Nonseparable
f4 Shifted Rastrigin’s Function Multimodal Separable
f5 Griewank’s Function Multimodal Nonseparable
f6 Shifted Ackley’s Function Multimodal Separable

TABLE III. DE PARAMETER SETTINGS

Parameter Value Parameter Value
Strategy local to best/1/bin Bound Constraints None
Crossover Rate 0.90 Termination Criteria Func. Eval.
F Weight 0.85 Max. Func. Eval. 5000 times Dim.

IV. EXPERIMENTAL SETUP

This study comprises two experimental parts. The first
part is done on problems with 100, 500 and 1000 dimension
sizes. We choose three different dimension sizes to assess the
consequence of the initialization step on the final results of
EAs in medium and large dimension sizes. In fact, we want to
investigate whether a promising initialization method on 100
dimensional problems (as the medium dimension size) can also
improve the EA outcomes in higher dimensions. In this part,
population size is kept constant (i.e., 50) for all methods and
problems.

In the second part, we examine problems with 500 dimen-
sion size using different population sizes. The aim of this part
is to investigate whether increasing the population size can
or cannot compensate the shortcomings of weak initialization
methods. In other words, a promising initialization method
should outperform RNG regardless of the chosen population
size. Therefore in this part we compare advanced initialization
methods with six different population sizes. Note that, apart
from population size, other parameters are kept the same as
the first part of the experiments.

To determine the effect of different initialization methods
on LSGO problems, the CEC’2008 benchmarks are selected.
The benchmark functions and their properties are presented in
Table II. More detailed description of CEC’2008 benchmarks
can be found in [35].

For experiments, a standard implementation of Differential
Evolution (DE/local to best/1/bin) is used [36]. Among many
EA models, DE is selected due to its simplicity and popularity
in solving LSGO problems [16]. To keep it simple and the
results reproducible by other researchers, common values for
DE parameters are chosen. The input parameters and their
values are presented in Table III. Note that since we only
focus on initialization step, advanced DE variations such as
those using self-adaptive parameter tuning [37] or cooperative
coevolution versions [38] are avoided.

V. RESULTS AND DISCUSSIONS

The results of running the eight aforementioned initializa-
tion methods on CEC’2008 benchmark functions are presented
in Tables IV, V and VI. These tables are obtained from the
average values of 50 independent runs of DE on 100, 500
and 1000 dimensions. In all of these tables, methods which
significantly outperformed RNG are shown with bold. Methods
which their results are statistically similar to RNG are written
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in italic. The best method for each function is also emphasized
with an asterisk symbol (i.e, ∗) only if that method significantly
enhanced RNG. Here, “significant” means Wilcoxon rank-sum
test rejects the null hypothesis with at least 95% confidence.
On the other hand, “statistically similar” means Wilcoxon
rank-sum test do not rejects the null hypothesis. The null
hypothesis in this test is that RNG results and its competitors’
results represent the same statistical distribution.

Since this study aims to highlight the importance of con-
sidering more advanced population initialization methods as
better alternatives to RNGs, in all statistical tests RNG is
selected as the baseline method. Consequently, all initialization
methods are only compared with RNG. Note that while other
nonparametric statistical tests were available [39], Wilcoxon
rank-sum test is selected due to its popularity in this context.

From Table IV, it is apparent that except OD, all other
methods enhanced RNG in several cases. The results pre-
sented in this table indicates that all methods can solve f5
successfully and the performances of all methods on f6 are
also statistically similar. In these cases, employing alternative
methods has no considerable advantages. In the other cases
(i.e. f1, f2, f3 and f4), however, using the advanced methods
is notably advantageous. This table also shows that most of
the methods (e.g., TNT, SBL, GLP, OD, QBL) can be used
as the risk-free alternatives of RNG because their results are
significantly better or statistically similar to RNG.

Situations in Table V and VI are more or less similar to
Table IV. Although there are no significant improvements for
f3 in 500 and 1000 dimensions and f4 in 500 dimension,
advanced methods considerably boost DE final results of re-
maining functions (i.e., f1, f2, f5 and f6). These three tables
confirm that even in very hard LSGO problems (i.e., non-
separable, multi-modal and large scale), initialization methods
can significantly influence EA performance. Indeed, these
results reveal RNG should not be considered as the first choice
of population initialization when dealing with LSGO problems.

Table VII is presented for a more clear comparison be-
tween the performance of advanced initialization methods on
problems with different dimension sizes. For each advanced
method and dimension size, a triple like α-β-γ is given. Here,
α denotes the number of functions which are significantly
improved by the advanced method. β represents the number of
functions which their results are statistically similar to RNG
results and γ shows how many times that advanced method
significantly worse than RNG (according to aforementioned
Wilcoxon rank-sum statistical test). To shed more light on this
matter, consider OBL in 100 dimension. In this case the triple
is 3 - 2 - 1. From this triple we know that OBL significantly
surpassed RNG on three functions, statistically similar to RNG
on two functions, and in one function, OBL produces results
which are significantly worse than RNG results.

Table VII is quite revealing in several ways. First, compar-
ing each method’s performance in different dimension sizes
indicates that the rank of advanced methods (except OD) are
very consistent. For instance, TNT significantly outperforms
RNG in at least 50% of functions in every dimension sizes
while GLP is never significantly surpassed by RNG in any
dimension size. Another striking observation is that, regardless
of dimension size, TNT, SBL, OBL and QBL can significantly

enhance RNG in at least 50% of functions. QBL is also found
to be the best method among these eight initialization methods
while both GLP and QBL can be considered as the risk-
free substitute of RNG on LSGO problems (i.e., never be
significantly worse than RNG).

Having discussed the effects of advanced initialization
methods on LSGO problems with different dimension sizes,
now we want to analyse the performance of these methods
when population sizes are varied. Figure 1 illustrates the
median values of 50 independent runs of all eight initialization
methods with six different population sizes (i.e., from 50 to
300 with 50 step size).

It can be seen in Figure 1 that, except for GLP, the perfor-
mance of DE decreases when population size is increased. This
result is expected because computational budget is kept fixed
for all population sizes. This means when population size is
increased, the number of iterations (i.e. maximum generation
number) is reduced and DE may not fully converge.

Apart from adverse consequence of population size incre-
ment, Figure 1 reveals that the ranks of methods are strongly
consistent when population size is changed. UD and OD, for
example, are almost always the worst methods while TNT
and QBL are always one of the best methods. Among all
initialization methods, GLP performance fluctuates the most.
This unique behaviour of GLP demands more experimental
and analytical studies.

Table VIII is also presented to support the findings of
Figure 1. The triples in this table are produced in the same
way as triples in Table VII. As it is apparent in Table VIII, a
number of advanced methods (e.g. TNT, SBL, OBL and QBL)
considerably outperform RNG in the most cases (in at least
83% of cases). This means that regardless of population size,
RNG is far from the best choice for population initialization
when dealing with LSGO problems.

Another valuable observation from Table VIII and Figure 1
is that there is no improvement (i.e. fitness value decrement)
for RNG associated with population size increment. In other
words, increasing population size cannot remedy RNG weak-
ness. Increasing population size, indeed, not only adversely
affect RNG performance in all cases, it amplifies the gap
between RNG and other promising initialization methods.
For a clear evidence, consider how many times each method
surpasses RNG when population size is 50 (see the first
numbers of each triple in the first row after the header in
Table VIII). Then, compare these values with the numbers
when population size is 300 (see sixth row after the header of
the table). It is obvious that RNG is beaten more times when
the population size is 300 (in comparison with population size
of 50).

This part of our experiment concludes that RNG, even with
very large population size, is not a proper choice for population
initialization when dealing with LSGO problems. TNT, QBL,
SBL and GLP, however, can be seen as the better alternatives
among all methods that have been examined in this study.

Another observation from both parts of the experiments is
that none of the initialization categories is significantly better
than the others. Whilst RNG, for example, do not perform
well on LSGO, TNT which is from the same category as
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TABLE IV. MEAN OF 50 INDEPENDENT RUNS (DIMENSION SIZE = 100, POPULATION SIZE = 50)
STARED*, BOLD OR italic NUMBERS DENOTE BEST METHODS, SIGNIFICANTLY BETTER RESULTS OR STATISTICALLY SIMILAR RESULTS, RESPECTIVELY

RNG TNT SBL GLP UD OD OBL QBL
f1 7.492270e-21 4.265986e-21 6.803830e-21 6.148537e-21 7.415238e-21 5.295613e-21 5.972895e-21 4.041908e-21*

f2 7.737881e+00 4.543428e+00* 6.682139e+00 6.347901e+00 7.776422e+00 5.575648e+00 7.578740e+00 6.318157e+00
f3 1.031083e+02 9.638965e+01 9.949269e+01 9.950065e+01 1.039764e+02 9.778514e+01 1.050150e+02 9.731273e+01
f4 2.553259e+02 2.564297e+02 2.598275e+02 2.587925e+02 2.565291e+02 2.589391e+02 2.607131e+02 2.584029e+02

f5 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

f6 1.697432e+01 1.709277e-09 2.780043e-11 4.727463e-11 1.985263e+01 1.112577e-11 1.139093e-10 9.184209e-12*

TABLE V. MEAN OF 50 INDEPENDENT RUNS (DIMENSION SIZE = 500, POPULATION SIZE = 50)
STARED*, BOLD OR italic NUMBERS DENOTE BEST METHODS, SIGNIFICANTLY BETTER RESULTS OR STATISTICALLY SIMILAR RESULTS, RESPECTIVELY

RNG TNT SBL GLP UD OD OBL QBL
f1 2.602724e-08 1.096963e-08* 2.335575e-08 2.363324e-08 2.875633e-08 3.700760e-08 2.547586e-08 1.567035e-08
f2 8.283352e+01 7.570587e+01 8.079759e+01 8.002004e+01 7.989864e+01 7.368558e+01 7.974286e+01 7.834218e+01
f3 6.635788e+02 6.531711e+02 6.525941e+02 6.732033e+02 6.823002e+02 6.550677e+02 6.952809e+02 6.692513e+02

f4 2.535056e+03 2.632127e+03 2.548903e+03 2.558774e+03 2.573831e+03 2.559681e+03 2.549602e+03 2.556631e+03

f5 3.223598e-09 1.253168e-09* 2.857621e-09 2.751713e-09 3.573696e-09 4.651590e-09 3.031251e-09 1.844874e-09
f6 9.651435e+00 9.154128e-06 1.023049e+00 2.762930e+00 1.333887e+01 2.108006e+01 5.804797e+00 7.428489e-06*

TABLE VI. MEAN OF 50 INDEPENDENT RUNS (DIMENSION SIZE = 1000, POPULATION SIZE = 50)
STARED*, BOLD OR italic NUMBERS DENOTE BEST METHODS, SIGNIFICANTLY BETTER RESULTS OR STATISTICALLY SIMILAR RESULTS, RESPECTIVELY

RNG TNT SBL GLP UD OD OBL QBL
f1 1.786221e-09 1.088676e-09* 1.572158e-09 1.586478e-09 2.767689e-09 2.365400e-09 1.750659e-09 1.238254e-09
f2 1.175865e+02 9.502366e+01 9.482039e+01* 9.489372e+01 1.217340e+02 1.014329e+02 1.158858e+02 1.148139e+02
f3 2.286005e+03 2.329177e+03 2.256663e+03 2.370488e+03 2.313513e+03 2.223574e+03 2.289505e+03 2.316646e+03

f4 7.179364e+02 1.235047e+03 7.587876e+02 7.460613e+02 1.064208e+03 7.168448e+02* 7.291611e+02 7.919397e+02

f5 1.176424e-10 8.338685e-11 1.123224e-10 1.101994e-10 1.809505e-10 1.604613e-10 1.184557e-10 8.113715e-11*

f6 7.407606e-01 2.804952e-06 3.747755e-05 1.300744e-05 3.814163e+00 2.116551e+01 1.543886e-05 1.971337e-06*

TABLE VII. PERFORMANCE COMPARISON OF ADVANCED INITIALIZATION METHODS ON PROBLEMS WITH DIFFERENT DIMENSION SIZES (POPULATION
SIZE = 50)

NUMBERS IN EACH TRIPLE DENOTE THAT METHOD ON HOW MANY FUNCTIONS IS SIGNIFICANTLY BETTER THAN RNG, STATISTICALLY SIMILAR TO RNG
OR SIGNIFICANTLY WORSE THAN RNG, RESPECTIVELY

Dimension TNT SBL GLP UD OD OBL QBL
100 3 - 3 - 0 3 - 3 - 0 2 - 4 - 0 1 - 2 - 3 0 - 6 - 0 3 - 2 - 1 4 - 2 - 0

500 4 - 2 - 0 3 - 3 - 0 1 - 5 - 0 1 - 2 - 3 0 - 2 - 4 4 - 1 - 1 4 - 2 - 0

1000 3 - 2 - 1 3 - 2 - 1 1 - 5 - 0 0 - 1 - 5 2 - 1 - 3 3 - 1 - 2 4 - 2 - 0

Summation 10 - 7 - 1 9 - 8 - 1 4 - 14 - 0 2 - 5 - 11 2- 9 - 7 10 - 4 - 4 12 - 6 - 0
Percentage 56% - 38% - 6% 50% - 44% - 6% 22% - 78% - 0 11% - 28% - 61% 11%- 50% - 39% 56% - 22% - 22% 67% - 33% - 0%

RNG, is ranked as one of the best alternatives (for more
evidence compare OBL and QBL in the last rows of Tables VII
and VIII). This fact suggests further investigation about the
reason behind the good/bad performance of these methods is
needed.

VI. CONCLUSION

This study investigated the effect of advanced popula-
tion initialization methods for EAs when dealing with high-
dimensional problems. One of the major findings is that basic
random number generators should not be advocated for popu-
lation initialization in EAs. In fact, there exist other advanced
methods, which, regardless of the dimension size, can signifi-
cantly improve the performance of EAs. It is also shown that
increasing the population size while fixing the computational
budget cannot improve the performance of using basic random
number generators. Indeed, some methods such as chaotic
numbers, low-discrepancy sequences and quasi opposition-
based methods can improve the performance of EAs no matter

how large the population size is. Another observation from this
study is that in all categories of initialization methods, we can
observe both promising and weak methods. In other words,
all categories of initialization methods are worth being further
investigated.

The findings from this study contribute to the research
community. First, it recommends to employ more advanced ini-
tialization methods when dealing with large-scale optimization
problems using EAs. Secondly, instead of blindly increasing
the population size, it is better to considere using more
promising initialization methods. In fact, further investigation
still needs to be done to discover why some initialization
methods perform significantly better than the others.
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Fig. 1. Comparison between advanced initialization methods with different population sizes on CEC’2008 LSGO benchmark functions(dimension size = 500)

TABLE VIII. PERFORMANCE COMPARISON OF ADVANCED INITIALIZATION METHODS WITH DIFFERENT POPULATION SIZES (DIMENSION SIZE = 500)
NUMBERS IN EACH TRIPLE DENOTE THAT METHOD ON HOW MANY FUNCTIONS IS SIGNIFICANTLY BETTER THAN RNG, STATISTICALLY SIMILAR TO RNG

OR SIGNIFICANTLY WORSE THAN RNG, RESPECTIVELY

Population TNT SBL GLP UD OD OBL QBL
50 4 - 2 - 0 3 - 3 - 0 1 - 5 - 0 1 - 2 - 3 0 - 2 - 4 4 - 1 - 1 4 - 2 - 0

100 6 - 0 - 0 5 - 1 - 0 4 - 2 - 0 0 - 0 - 6 0 - 4 - 2 6 - 0 - 0 6 - 0 - 0

150 6 - 0 - 0 6 - 0 - 0 4 - 2 - 0 3 - 0 - 3 0 - 5 - 1 5 - 0 - 1 5 - 1 - 0

200 6 - 0 - 0 6 - 0 - 0 4 - 2 - 0 2 - 0 - 4 0 - 6 - 0 5 - 0 - 1 5 - 1 - 0

250 6 - 0 - 0 5 - 1 - 0 5 - 1 - 0 2 - 0 - 4 0 - 6 - 0 6 - 0 - 0 5 - 1 - 0

300 6 - 0 - 0 5 - 1 - 0 5 - 1 - 0 3 - 0 - 3 0 - 5 - 1 6 - 0 - 0 6 - 0 - 0

Summation 34 - 2 - 0 30 - 6 - 0 23 - 13 - 0 11 - 2 - 23 0 - 28 - 8 32 - 1 - 2 31 - 5 - 0

Percentage 94% - 6% - 0% 83% - 17% - 0% 64% - 36% - 0% 30% - 6% - 64% 0%- 78% - 22% 89% - 3% - 8% 86% - 14% - 0%
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