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Problems that are not aligned with the coordinate system can present difficulties to many15
optimization algorithms, including evolutionary algorithms, by trapping the search on a
ridge. The ridge problem in single-objective optimization is understood, but until now17
little work has been done on understanding this issue in the multi-objective domain. Multi-
objective problems withparameter interactions present difficulties to an optimization algo-19
rithm,which are not present in the single-objective domain. In this work,we have explained
the nature of these difficulties, and investigated the behavior of the NSGA-II, which has21
difficulties with problems not aligned with the principle coordinate system. This study
has investigated Simplex Crossover (SPX), Unimodal Normally Distributed Crossover23
(UNDX), Parent-Centric Crossover (PCX), and Differential Evolution (DE), as possible
alternatives to the Simulated Binary Crossover (SBX) operator within the NSGA-II, on25
problems exhibiting parameter interactions through a rotation of the coordinate system.
An analysis of these operators on three rotated bi-objective test problems, and a four-27
and eight-objective problem is provided. New observations on the behavior of rotationally
invariant crossover operators in the multi-objective problem domain have been reported.29

Keywords: Evolutionary computation; evolutionary multi-objective optimization;
parameter interactions.31

1. Introduction

Traditional genetic algorithms that use low mutation rates and fixed step sizes have33

significant trouble with problems that have interdependent relationships between
decision variables, but are perfectly suited to many of the test functions currently used35

in the evaluation of genetic algorithms.1 Test functions that are typically employed
are linearly separable and can be decomposed into simpler independent problems.37

Unfortunately, many real-world problems are not linearly separable, although linear
approximations may sometimes be possible between decision variables.39

This issue has previously been explored in the single-objective optimization
domain,1 where interactions between decision variables were introduced by rotating41
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the coordinate system of test functions. A rotated problem poses serious problems to1

the directionless step sizes and low mutation rates that genetic algorithms typically
use,1 and demonstrates a weakness in nonvector-wise approaches to optimization.3

Parameter interactions that hamper optimization algorithms are not only an
issue for single-objective optimization, but they also exist in multi-objective prob-5

lems. In a scenario where there may be two or more conflicting objectives, typically
there will exist a set of optimal solutions that are trade-offs against each objective.7

Evolutionary algorithms are particularly well suited to solving this type of problem
because they deal with a population of individuals. The issue of parameter interac-9

tions in such multi-objective problems has recently drawn increasing attention, as
the poor performance of the NSGA-II2 was reported on multi-objective problems11

exhibiting parameter interactions.2,40

Although the NSGA-II is a very robust multi-objective optimization algorithm13

it suffers from similar limitations as the canonical genetic algorithm does in the
single-objective problem domain. The reason for this limitation is the nature of the15

crossover technique employed. NSGA-II uses a crossover technique called Simulated
Binary Crossover (SBX),3 ,4 combined with a uniform crossover where half the time17

parameters of an offspring solution are replaced with parameters from a parent
solution. This crossover technique can only search effectively along the principle19

coordinate axes. As a result, finding optimal solutions becomes extremely diffi-
cult when the decision space dimension increases. This is because a simultaneous21

improvement on each decision space parameter is required in order to find a more
optimal solution. Problems that are rotated exhibit this characteristic and typi-23

cally require correlated self-adapting mutation step sizes in order to make timely
progress in searching for optimal solutions.125

There are of course a number of recombination techniques that are invariant under
a rotation of a coordinate system, such as Differential Evolution (DE), which has pre-27

viously demonstrated rotationally invariant behavior in the single-objective domain.6

Other rotationally invariant techniques for generating offspring include Simplex29

Crossover13 (SPX), Parent-Centric Crossover18 (PCX), and Unimodal Normal Dis-
tribution Crossover14,15,17 (UNDX-m) have also demonstrated rotationally invariant31

behavior on single-objective test problems.These crossover techniques have the neces-
sary characteristics to handle problems with interdependencies between decision vari-33

ables, without the computation cost of self-adaptive Evolutionary Strategies.6 This
provides the motivation to study the worth of these multi-parent crossover techniques35

on rotated multi-objective optimization problems.
This paper builds upon the work in Ref. 7, where a simple multi-objective DE37

scheme demonstrated dramatically improved performance on a rotated test prob-
lem. Further work proposed a number of rotated test problems,8 which were also39

subsequently tested on a DE technique which made use of directional information
in the multi-objective problem domain.10 Some preliminary work was also reported41

on rotated test problems.9 In the work presented here, we have investigated a
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number of simple alterations to the NSGA-II in order to study the behaviors of the1

aforementioned rotationally invariant crossover techniques.
In this paper, some of the important background concepts related to this study3

will be introduced first; Sec. 2 introduces multi-objective optimization, and how
multi-objective problems are specified. Following this, Sec. 3 details the effect of5

parameter interactions on single-objective and multi-objective genetic algorithms.
In Sec. 3, a unimodal multi-objective problem, which was originally proposed in7

Ref. 2, is used to facilitate an explanation of the difficulties associated with param-
eter interactions in multi-objective optimization. The construction of rotated multi-9

objective test problems is described in Sec. 4, where two new rotated multi-objective
problems are also introduced: a problem with a nonuniform mapping between the11

objective and decision spaces and a problem with a discontinuous Pareto-optimal
front. In Sec. 5, a new problem based on the hyper-ellipsoid function is introduced,13

which is rotatable in the decision space and scalable to multiple objectives. This
problem is used to study the effect of parameter interactions as the objective space15

dimension increases. Each of the recombination operators used in this study is
described in Sec. 6, as well as how they are used within the NSGA-II framework.17

The performance assessment criteria are introduced in Sec. 7, and the experiment
settings with a description of the methodology employed are described in Sec. 8.19

A discussion of the results of each algorithm variant on each test problem is pre-
sented in Sec. 9. Finally, some concluding remarks and new observations about the21

performance of multi-objective evolutionary algorithms are provided in Sec. 10.

2. Multi-objective Optimization23

Multi-objective optimization deals with optimization problems that are formu-
lated with some or possibly all of the objective functions in conflict with each25

other. Such problems can be formulated as a vector of objective functions
f(x) = (f1(x), f2(x), . . . , fM (x)) subject to a vector of input parameters x =27

(x1, x2, . . . , xN ), where M is the number of objectives, and N is the number of
parameters. Although an objective can be either a minimization or maximization29

objective, within this study all objectives are minimization objectives.
The solution to a multi-objective problem is typically a set of trade-off solutions,31

where the first solution may be better on objective f1 but worse on objective f2,
and the second solution may be worse on objective f1 but better on objective33

f2. Multi-objective evolutionary optimization is typically concerned with finding a
diverse range of solutions in such a set, close to the Pareto-optimal front, which is35

the globally nondominated region of the objective space.
The criteria for evaluating the performance of a multi-objective evolutionary37

algorithm are different from those for assessing the performance of single-objective
algorithms. Generally, a multi-objective optimization produces a set of solutions.39

For the purposes of this study these sets will be assessed with a metric described
in Sec. 7, which can be inversely applied to measure both the convergence to the41

Pareto-optimal front and the diversity of the nondominated solution set.
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3. Epistasis from Rotated Problems1

Although epistatic interactions can be introduced in other representations, such as
binary, for the purposes of this study, we are only considering real-valued represen-3

tations because all of the crossover operators being investigated, except for DE, are
designed to work with real-valued representations.5

In the following section, we explain the effect of rotation on a simple ellipsoid min-
imization problem, f(x1, x2) = x2

1 + a0x
2
2, with a global minimum located at x1 = 07

and x2 = 0 (Fig. 1). This function is linearly separable, aligned with the principle
coordinate axes, and can be solved as two independent problems by decomposing9

it into the function f1 = x2
1 and f2 = a0x

2
2. In other words, an optimization algo-

rithm needs only to perturb the variables x1 and x2 independently in order to find11

the global optimum. If a separable problem, like the ellipsoid problem, is rotated
away from the principal coordinate axes, the decision variables become dependent,13

and the function becomes linearly inseparable. After rotation, the ellipsoid function
becomes f1 = x2

1 + a1x1x2 + a0x
2
2, introducing parameter interactions through the15

term a1x1x2. With rotated problems, significant progress in the search can only pro-
ceed by making simultaneous progress across all parameters within a solution vector.17

Consider Fig. 1, where the elliptical contour represents a region of constant
fitness. The point v can be perturbed along both the x1 and x2 axes, and any19
location along the dashed line will be an improvement over any point along the
contour, assuming that the global optimum is centered on the coordinate axis. After21
rotation, progress from perturbing the same rotated point v′ will be lower. This is
because the interval of potential improvement for each of the decision variables is23
reduced, meaning that the search will progress more slowly when the parameters are
only perturbed independently of each other. Another aspect of rotated problems25
is that points can easily be trapped along a valley (or ridge) line in the search
space and can only make progress with simultaneous improvements over all input27

Fig. 1. Rotation can reduce the interval of possible improvement. When the function is aligned
with the coordinate axes, the improvement interval (dashed line) is larger than when the function is
rotated away from the coordinate axes. The ellipse represents the region of constant fitness. Vector
v and v′ represent the same point in the search space before and after rotation, respectively.
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Fig. 2. Rotation can trap points along the valley. If the point v′ moves anywhere along the
dashed lines it will be toward a point in the parameter space of worse fitness. Vector v and v′
represent the same point in the search space before and after rotation, respectively.

parameters (Fig. 2). The point v can easily be perturbed in the x1 axis to find the1

global minimum in the center of the coordinate system. The same point v′ after
rotation is still on the valley, but now it cannot progress to a point of improved3

fitness by only moving along the direction of the coordinate axes (dashed line)
because any such perturbation will be to a point of worse fitness in the search space.5

Typically the valley can be found easily, but the search often becomes trapped at
this location. Only a simultaneous improvement in all parameters will result in the7

discovery of fitter solutions. On these types of problems, the small mutation rates
frequently used in genetic algorithms are known to be even less efficient than a9

random search.1 Self-adaptation has been relatively successful at solving this sort
of problem using Evolutionary Strategies, but it requires the learning of appropriate11

correlated mutation step sizes and it can be rather computationally expensive when
the decision space dimension becomes large.613

The situation is not quite as simple with respect to the behavior resulting from
nonrotationally invariant crossover operators on a multi-objective rotated problem.15

The difference between rotated single-objective and multi-objective problems can
be demonstrated with Problem (1) in Fig. 3, which was first proposed in Ref. 2,17

and constructed using the framework in Ref. 42. The framework used to construct
this problem will be elaborated upon in Sec. 4:19

f(y)= y

f(y) = g(y)h(f(y), g(y))

h(f1(y), g(y)) = exp
(−f(y)

g(y)

)

g(y) = 1 + 10(N − 1) +
N∑

i=2

[
y2

i − 10 cos(4πyi)
]

y = Ox, −0.3 ≤ xi ≤ 0.3, for i = 1, 2, . . . , N




(1)
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Fig. 3. The effect of a 45◦ rotation on the x1x2 plane of Problem (1). Before rotation, the
functions are aligned with the coordinate system ((a) and (c)), and after rotation they are not
aligned with the coordinate system ((b) and (d)).

This problem will facilitate our understanding of the effect of rotation on multi-1

objective problems where nondominated solution sets are sought by an optimization
algorithm. The situation is analogous to the single-objective domain, where an3

optimization algorithm with independent perturbations on each decision variable
will have trouble finding more optimal solutions.5

Figure 3 shows Problem (1) with a two-dimensional decision space. This problem
is characterized by a slightly inclined valley in objective f2. Objective f1 is a plane7

with a sloping gradient in an opposing direction to the incline of objective f2. The
Pareto-optimal set is represented by a line segment bisecting the decision space in9

objective f2 and f1, respectively. The decision space vector x is subject to a rotation
matrix O, resulting in the rotated vector y.11
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(a) (b)

Fig. 4. The contour plot of nonrotated problem (1) in (a) represents function f1, and the contour
plot in (b) represents objective function f2. The dashed lines represent regions of constant value
with respect to the objective function evaluation. Smaller dash sizes represent lower evaluations
on the objective functions.

Consider the contour plot of a nonrotated version of this problem in Fig. 4,1

where a point, G, is a member of the Pareto-optimal set. If the point G is per-
turbed in the direction of GA, it is toward points that evaluate lower with respect3

to objective f1 (Fig. 4(a)) and higher with respect to objective f2 (Fig. 4(b)).
If it is perturbed in the direction of GD, it will be toward points that evaluate5

higher with respect to objective f1 and lower with respect to objective f2. Such
perturbations are with respect to the parameter x1 only, and this is the only such7

perturbation required in order to discover other Pareto-optimal solutions, which
are located on the line segment bisecting the contour plots for objectives f1 and f2.9

It is apparent that such a Pareto-optimal solution can easily be perturbed toward
other Pareto-optimal solutions when the problem is aligned with the principle coor-11

dinate axes. However, after the problem has been rotated, it becomes more difficult
to find Pareto-optimal solutions through independent perturbations of individuals.13

Consider Fig. 5, where point G′ represents the point G after rotation. Through
independent perturbations of decision space parameters, the point G can perturb15

to other nondominated solutions in the direction of G′A′,G′B′, G′C′, and G′D′.
A perturbation in the direction of G′A′ leads to points that evaluate lower on17

objective f1, but higher on objective f2. This is similarly true for perturbations
in the direction of G′B′. A perturbation in the direction of G′C′ leads to points19

that evaluate higher on objective f1, but lower on objective f2. This is also true for
perturbations in the direction of G′D′. Unfortunately, each of these perturbations21

leads to nondominated solutions that skew away from the Pareto-optimal set. The
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(a) (b)

Fig. 5. The contour plot of rotated problem (1) in (a) represents function f1, and the contour
plot in (b) represents objective function f2.

situation becomes even worse if the perturbation extends to C′E′ or D′F′, because1

individuals in this region evaluate higher with respect to objective f1 and objective
f2, and are dominated by the point at G′, as a result. In actuality, the problem in3

Fig. 3 that this analysis is based on has an extremely small region relative to the fea-
sible space, where nondominated solutions can be located in the direction of G′C′5

and G′D′. Nondominated solutions in these directions only become increasingly
likely as the orientation of the problem approaches alignment with the principle7

coordinate axes. As the orientation of the Pareto-optimal front aligns with the axis
y1, the line vector G′C′ extends further and more nondominated solutions can be9

discovered in this region more easily. Secondly, such nondominated solutions will
be close to the Pareto-optimal set. This is similarly true for the line vector G′D′,11

as the Pareto-optimal set aligns with the axis y2. In other words, a rotation of the
problem that results in the Pareto-optimal set not being aligned with any principle13

coordinate axis makes it difficult to discover other Pareto-optimal solutions when
only independent perturbations of decision variables can occur.15

In the presence of only independent perturbations, there is a tendency for points
to be discovered in the direction of lower f1 evaluations and higher f2 evaluations,17

pushing the nondominated solution set away from the Pareto-optimal set and degrad-
ing the search over time. As a result of this behavior, the search can become trapped in19

the Pareto-optimal region and fail to find more nondominated solutions in the Pareto-
optimal set. Progress in covering the Pareto-optimal front becomes extremely slow.21

This effect was also apparent in Refs. 7 and 2, where the NSGA-II produced poor
coverage of the Pareto-optimal front on the rotated unimodal multi-objective prob-23

lem. Any multi-objective optimization algorithm, which is not rotationally invariant,
will exhibit such behavior on a problem with similar characteristics.25
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Furthermore, the way that Problem (1) is structured causes clustering of ranked1

solutions, as a result of nondominated sorting if NSGA-II is used. This can exac-
erbate the problem, through the loss of coverage of the Pareto-optimal front early3

on in the search, making it difficult to regain a good coverage when the problem
is rotated for reasons stated above. Of course, there may be problems that may be5

more or less sensitive to rotation, depending on the location of the Pareto-optimal
front, the mapping between decision and objective space, the modalities present in7

the functions, and other aspects of the fitness landscape.

4. Constructing Problems with Parameter Interactions9

As demonstrated in Sec. 3, interdependencies between variables can be introduced
into a real-coded functional problem by rotating the coordinate system of a test11

problem. In order to construct a rotated problem, one must be careful that under
rotation the problem can still evaluate to a meaningful result. Secondly, in order to13

achieve a completely unbiased assessment of an algorithm on a problem which is
rotated, one must guarantee a uniformly distributed random rotation. This means15

that the orientation of a point resulting from a rotation is not biased toward any
particular orientation. In other words, if one pictures a point on the surface of a17

unit hypersphere, a uniformly distributed random rotation around the centroid of
the unit hypersphere shifts that point to another location on the surface of the unit19

hypersphere with uniform probability.
Figure 6 outlines the procedure for generating a random orthonormal basis,21

which is used to introduce parameter interdependencies into a problem by rotating
the parameter vector. As stated previously, this is a linear transformation that does23
not change the fitness landscape of the problem domain. A normal distribution is
used in this technique because it provides for the distribution of points centered25

Step 1. Generate a random unit vector o1 by taking N
independent normally distributed random variables with
mean 0 and variance 1.
Step 2. o1 = o1/ ‖ o1 ‖
FOR i =  TO N
Step 3. Generate a random unit vector oi by taking N
independent normally distributed random variables with
mean 0 and variance 1.
Step 4. Perform Gram-Schmidt Orthonormalization5 of oi

with preceding o1 to oi−1

Step 5. oi = oi/ ‖ oi ‖
END FOR

Fig. 6. Algorithm for generating a random rotation matrix, O = [o1, . . . , oN]T, which distributes
points uniformly on the surface of a hypersphere.
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around the origin with perfect rotational symmetry. The normally distributed ran-1

dom variables are normalized so that each component of the rotated point maintains
an equivalent distance from the axis of rotation. Therefore, a uniform distribution3

of points on the surface of a hypersphere is possible when the orthonormal basis5

o1, . . . ,oN ∈ R
N is used to rotate a point in N -dimensional space. This technique5

also makes it possible to randomly and uniformly rotate a decision space vector, so
that there is no bias for any particular coordinate axis.7

It deserves to be noted that rotating the decision space is not the only technique
for introducing parameter interactions to test problems. In Ref. 40, an approach9

was presented, which introduces parameter interactions between decision variables
in a test problem, using a transformation matrix that performs shearing, scaling,11

and rotation. One of the limitations of this approach is that a shearing or scaling
operator changes the fitness landscape; hence, the experimenter has to be partic-13

ularly careful to maintain the desired characteristics of the fitness landscape in
each objective. Care must be taken in any conclusions that are drawn, either as a15

result of parameter interactions introduced to the problem or as a result of a scal-
ing or shearing of the original fitness landscape. Furthermore, the elements of the17

transformation matrix are sampled uniformly from −1 to 1. This introduces degen-
erate behavior if the matrix element that is sampled for the transformation matrix19

approaches 0. Under such circumstances, the fitness landscape can be flattened on a
particular plane, removing any modalities that were present in the original problem.21

This approach can be contrasted with the approach presented in this work,
where we are only concerned with rotation, which is a linear transformation where23

only the orientation of the fitness landscape changes. The advantage of our approach
is that parameter interactions can be introduced to a problem without altering the25

fitness landscape.40 This enables one to clearly identify the effect of introducing
parameter interactions to a problem, because the fitness landscape is unaltered.27

Based on the approach described in Fig. 6 and the framework in Ref. 42, two
test problems will be proposed. Before the problems are detailed, some points asso-29

ciated with the construction of test problems will be discussed. In the test problem
framework used in this study, the g function is responsible for affecting conver-31

gence to the Pareto-optimal front, and the h function specifies the shape of the
Pareto-optimal front. The Pareto-optimal set can be determined by setting the g33

function to 1.0, and evaluating f1 over the range of feasible solutions. Diversity is
also affected by the f1 function.35

In order to construct a problem with parameter interactions, the problem must
have at least one nonlinear function. With this consideration, the rotatable test37

problems we have proposed in this paper will have at least one nonlinear function
in at least one of the objective functions. Each of the test problems also sets f1 and39

f2 to large values if f1 is outside the ranges specified in the problem descriptions.
This is important because rotation may push a function evaluation outside the41

range desired by the experimenter.42



1st Reading

December 2, 2008 11:7 WSPC/157-IJCIA 00222

Rotated Problems and Rotationally Invariant Crossover 11

-6 -4 -2 0 2 4 6x1
-6
-4
-2

0
2
4
6

x2

0
2
4
6
8

10
12
14
16
18

f1(x1,x2)

-6 -4 -2 0 2 4 6 -6
-4
-2

0
2
4
60

2
4
6
8

10
12
14
16
18

f1(y1,y2)

(a) (b)

-6 -4 -2 0 2 4 6x1
-6
-4
-2

0
2
4
6

x2

0
50

100
150
200
250

f2(x1,x2)

-6 -4 -2 0 2 4 6 -6
-4
-2

0
2
4
60

50
100
150
200
250

f2(y1,y2)

(c) (d)

Fig. 7. The effect of a 45◦ rotation on the x1x2 plane on function f1 and f2 of Problem (2).
Before rotation, the functions are aligned with the coordinate system ((a) and (c)), and after
rotation they are not aligned with the coordinate system ((b) and (d)).

One must also be careful that under rotation the problem can still evaluate to1

a meaningful result. One should avoid situations where a rotation transformation
results in decision variables, which take negative values and are then subjected to3

a square root function for instance. This can be achieved by avoiding functions,
which would result in such a situation, or by offsetting the variable value within5

the function so a negative value never results. It should also be noted that the
methodology for performing a rotation can be applied to other problems from the7

literature and is not limited to this framework. The only considerations that need to
be addressed are related to making sure the evaluation of the rotated vector yields9

a result that can still be evaluated, and that the fitness landscape of the problem is
unchanged as a result of a rotation transformation. In the test problems proposed11
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Fig. 8. The effect of a 45◦ rotation on the x1x2 plane on function f1 and f2 of Problem (3).
Before rotation, the functions are aligned with the coordinate system ((a) and (c)), and after
rotation they are not aligned with the coordinate system ((b) and (d)).

here, the decision space x is subjected to a rotation matrix O in order to generate1

a rotated vector y from y = Ox, and the fitness landscape is rotated as a result

f(y) = y + .

f(y) = g(y)h(f(y), g(y))

h(f1(y), g(y)) = 1 +
f1(y)
g(y)

+
(

f1(y)
g(y)

)
cos(0.8πf(y))

g(y) = 1 +
9

N − 1

[
N∑

i=2

y2

]

y = Ox, −5 ≤ xi ≤ 5 for i = 1, 2, . . . , N




(2)

3

Based on the described approach, we have proposed two rotated problems, in addi-
tion to Problem (1), which was introduced in Sec. 3. Problem (2), which is plotted in5

a two-dimensional decision space in Fig. 7, has a Pareto-optimal front, which is not
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continuous, as specified by the h function. f1 is bounded to the range, 6 < f1 < 16,1

in order to guarantee that the values of f1 do not go out of range during rotation.
This problem presents a difficulty to an optimization algorithm, because such an3

algorithm has to locate a number of discontinuous Pareto-optimal fronts:

f(y) =  − exp (−.y) sin (π (y)) + .

f(y) = g(y)h(f(y), g(y))

h(f1(y), g(y)) = 1 −
(

f(y)
g(y)

)2

g(y) = 1 +
9

N − 1

[
N∑

i=2

y2

]

y = Ox, −1 ≤ xi ≤ 1 for i = 1, 2, . . . , N




(3)

5

Problem (3) is also plotted in a two-dimensional decision space in Fig. 8. In
this problem, the decision space variables, which increment at a regular interval,7

evaluate with nonregular intervals in the objective space, making it hard to find
a uniform distribution of points along the Pareto-optimal front. The density of9

solutions is lower toward lower f1 values, making it difficult to find solutions in this
region. f1 is bounded to the range, 9.5 < f1 < 10.5, to guarantee that the values11

of f1 do not go out of range during rotation. Plots of the objective space are not
shown as the objective space is unchanged under a rotation of the decision space.13

5. Rotated Problems with More Than Two Objectives

As described in Ref. 41, NSGA-II experiences difficulties when trying to optimize15

a large number of objectives because as the number of objectives increases, the
number of nondominated solutions that are generated increases dramatically. Fur-17

thermore, the number of individuals in a population that are required to represent
a Pareto-optimal front grows exponentially with respect to increasing objective19

space dimensions. NSGA-II has been found to optimize particular test problems in
less than four dimensions, but when the objective space dimension was increased,21

NSGA-II could only find solutions far from the true Pareto-optimal front23:

f(y)= .(y + .)(y + .) · · · (yM− + .)( + g(yM ))

f(y)= .(y + .)(y + .) · · · (. − yM−)( + g(yM ))
...

...

fM−(y)= .(y + .)(. − y)( + g(yM ))

fM−(y)= .(. − y)( + g(yM ))

g(yM ) =
N∑

i=M

2(i−M)
(
y2

i

)
y = Ox, −0.5 ≤ xi ≤ 0.5 for i = 1, 2, . . . , N




(4)

23
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These issues can further be compounded in the presence of parameter inter-1

actions between decision space variables. In order to study the effect of parameter
interactions in problems with a large number of objectives, Problem (4) is proposed.3

This problem is similar to Problem DTLZ1,21 the Pareto-optimal objective function
values of Problem (4) lie on the linear hyperplane specified by

∑M
m=1 f∗m = 0.5.5

The total number of variables is N = M + k − 1. A value of k = 5 is used, which
is the same k value used with DTLZ1. The g function specifies a hyper-ellipsoid7

function.37 The coefficient term 2(i−M) varies the eccentricity of the ellipsoid. This
can make it difficult for an optimizer to adapt appropriate step sizes for each deci-9

sion space dimension. When this function is rotated, it introduces the valley prob-
lem to an algorithm that can only perturb parameters independently. Interestingly,11

Problem (4) is unimodal and in that respect is simpler than the multimodal DTLZ1
problem, but can present significant challenges to an optimization procedure when13

rotated.

6. NSGA-II and Rotationally Invariant Crossover Operators15

The NSGA-II is the multi-objective optimization algorithm used in this study. In
this section, we will describe the procedure of this algorithm. Furthermore, each of17

the crossover variants used in this study, namely, SBX, UNDX-m, SPX, and PCX,
will be described in detail.19

In each of the variants of the NSGA-II, we have replaced the SBX crossover
operation within the algorithm, with one of these crossover variants. In this study,21

the same polynomial mutation operator11 that is employed in the NSGA-II is used
with all variants, except for DE.23

The NSGA-II algorithm uses elitism and a diversity preserving mechanism.
popsize offspring are created from a parent population of popsize. The combined25

population of 2 ∗ popsize is sorted into separate nondomination levels. Individuals
are selected from this combined population to be inserted into the new population,27

based on their nondomination level. If there are more individuals in the last front
than there are slots remaining in the new population of popsize, a diversity pre-29

serving mechanism is used. Individuals from this last front are placed in the new
population based on their contribution to diversity in the population. The algorithm31

then iterates until some termination condition is met.
In the NSGA-II we do not know which individual is better until all candidates33

are sorted together and assigned to a nondomination level. Therefore, new indi-
viduals are added to the new candidate offspring population. New candidates are35

generated using a rotationally invariant crossover operator until the candidate off-
spring population is filled up to popsize. The new individuals are then evaluated37

on the objective functions and then subjected to the combined nondominated sort-
ing mentioned previously. For further details regarding the implementation of the39

NSGA-II, the reader is referred to Ref. 2.
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6.1. SBX with uniform crossover1

The NSGA-II uses a SBX operator4,11 with uniform crossover to generate offspring
parameter values. The SBX operator takes two parents and produces two offspring,3

but does not have the property of rotational invariance because the correlation
between the location of parents, and the location of offspring, which are generated,5

is lost under a rotation. The discrete crossover of variables also results in nonro-
tationally invariant behavior. For example, if an offspring vector has a parameter7

replaced by a parent parameter, as it might under some uniform crossover scheme,
rotational invariance is destroyed.69

It has been shown that the SBX has a zero probability of generating some
points in the space between two parents,12 although in the new version of SBX11

implemented in the latest revision of NSGA-II (Sec. 10), this problem has been
rectified somewhat by generating offspring in quadrants adjacent to the location of13

the parents, as well as around the parents (Fig. 9).
The new version of SBX, with a uniform crossover, uses the following procedure15

to generate offspring. µi is a uniform random number between 0 and 1, generated
for each decision space parameter i. ηc is a nonnegative real number responsible17

for controlling the distribution of offspring that are created from the parents. A
large value for ηc provides a higher probability of generating children near the19

parents, while a small value will generate offspring further from the parents. In
step 1, if a uniform random number, r

(1)
i , between 0 and 1 is less than or equal to21

0.5 we perform the crossover, else we copy the parents xi to the children yi. If the
crossover is performed, the children are calculated from the parents and assigned23

to each parent according to the value of the uniform random number r
(2)
i .

Step 1 : For each variable i, if 0 < r
(1)
i ≤ 0.5 do the following

βi =




(2µi)
1

ηc+1 , 0 < µi ≤ 0.5,(
1

2(1 − µi)

) 1
ηc+1

, 0.5 < µi ≤ 1,

y
(1)
i = 0.5((1 − βi)x

(1)
i + (1 + βi)x

(2)
i )

y
(2)
i = 0.5((1 + βi)x

(1)
i + (1 − βi)x

(2)
i )

}
if 0 < r

(2)
i ≤ 0.5,

y
(1)
i = 0.5((1 + βi)x

(1)
i + (1 − βi)x

(2)
i )

y
(2)
i = 0.5((1 − βi)x

(1)
i + (1 + βi)x

(2)
i )

}
if 0.5 < r

(2)
i ≤ 1,

else if 0.5 < r
(1)
i ≤ 1,

y
(1)
i = x

(1)
i ,

y
(2)
i = x

(2)
i .

Step 2 : Select two new parents, and repeat from step 1 until the desired number25

of offspring are generated.
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Fig. 9. Offspring resulting from parents x1 = (−0.5, 0.5) and x2 = (0.5,−0.5) for the new SBX
operator with uniform crossover.

Fig. 10. In simplex crossover, new offspring are uniformly randomly generated within the
expanded simplex.

6.2. Simplex crossover (SPX)1

The SPX (Fig. 10), originally proposed in Ref. 13 has the primary feature of being
independent of the coordinate system. In this approach, typically three parent indi-3

viduals are chosen from the population. The simplex formed by these parents is
expanded by a small degree specified by ε. Within this expanded simplex, one or more5

new individuals are sampled. One feature of this approach is that the majority of
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sampling occurs uniformly within the region between the parents. Sampling outside1

this region is determined by the ε value. In a single-objective optimization procedure,
as the population converges, the relative size of the expanded simplex will shrink as3

well. In a multi-objective evolutionary algorithm, a number of individuals are main-
tained in the population. As a result of this, as the population converges toward the5

Pareto-optimal set, one can expect the expanded simplex to select parents from the
full range of nondominated individuals in the population. The following procedure7

occurs at each generation to generate the offspring.

Step 1 : The simplex is first constructed by choosing (N + 1) parents xi, where9

i ∈ {0, . . . , N}, by randomly sampling from the population.
Step 2 : Calculate the centroid of the simplex, G =

∑N
i=0(

xi

N+1 ).11

Step 3 : Generate the expanded simplex points, yk = G + ε(xk − G), where
k ∈ {0, 1, . . . , N}. The control parameter, ε, is responsible for the rate13

of expansion.
Step 4 : Generate uniformly distributed random numbers, rk = rand(0, 1)(

1
k+1 ),15

where k ∈ {0, . . . , N}.
Step 5 : Ck = 0 where k = 0. Ck = rk−1(yk−1 −yk +Ck−1) where k ∈ {0, . . . , N}.17

Step 6 : An offspring, C, is generated by yN + CN.
Step 7 : The offspring is mutated. (In our implementation, the mutation occurs by19

the polynomial mutation operator in the NSGA-II. Mutation is required
by the SPX because otherwise there is insufficient exploration of the search21

space. A Gaussian mutation operator was also reportedly used in previous
studies of the SPX13.)23

Step 8 : Repeat from step 4 until the desired number of offspring is generated.

6.3. Unimodal Normal Distribution Crossover (UNDX-m)25

The UNDX crossover14 (Fig. 11) has demonstrated excellent performance in opti-
mizing highly epistatic functions.15 It has been applied to some difficult real-world27
problems such as design of optical lens systems.16 A multi-parent variant of the
UNDX was proposed, called UNDX-m.14,17 The UNDX-m covers the search space29
more effectively by having a greater diversity of offspring generated, and it is this

Fig. 11. In the UNDX, new offspring cluster around the centroid of the first m + 1 parents.



1st Reading

December 2, 2008 11:7 WSPC/157-IJCIA 00222

18 A. Iorio & X. Li

variant that we will be considering. In some respects, this approach is similar to1

the SPX, but unlike the simplex approach, offspring are sampled around a centroid
of a number of parents. Offspring are generated around a centroid of the first m+13

parents, where m is a user specified variable. In the UNDX-m approach, the size of
this sampled region and the extent of the region are controlled by two controlled5

parameters, namely ση and σξ. The procedure for generating offspring using the
UNDX-m approach is outlined as follows.7

Step 1 : Choose (m+2) parents xi, where i ∈ {1, . . . , m+2}, by randomly sampling
from the population.9

Step 2 : Calculate the centroid of the first m + 1parents, G = 1
m+1

∑m+1
i=1 xi.

Step 3 : Create the direction vectors, di = xi − G, where i ∈ {1, . . . , m + 2}.11

Step 4 : Let D be the length of the component of dm+2, which is orthogonal to
d1, . . . , dm.13

Step 5 : Let e1, . . . , eN−m be the orthonormal bases of the subspace orthogonal to
the subspace spanned by d1, . . . , dm.15

Step 6 : An offspring, C, is generated by C = G +
∑m

k=1 wkdk +
∑N−m

k=1 vkDek,
where wk and vk are normally distributed random variables N(0, σ2

ξ ) and17

N(0, σ2
η), respectively.

Step 7 : The offspring is mutated using the NSGA-II mutation operator.19

Step 8 : Repeat from step 6 until the desired number of offspring is generated.

6.4. Parent-Centric Crossover (PCX)21

The PCX18,22 (Fig. 12) is similar to the UNDX-m, but instead of distributing the
offspring around the centroid of a number of parents, the offspring distribute in23
hyper-ellipsoids around the parents themselves. This contrasts with the UNDX-m
and SPX approaches, which sample the majority of offspring between the parents.25

Fig. 12. In the PCX, new offspring cluster around a parent, xp, which is selected with equal
probability from the m chosen parents.
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One potential advantage of parent-centric over centroid-centric is that sampling1

near parents can result in fitter offspring with similarities to the parents. Offspring
are calculated from the PCX approach as follows.3

Step 1 : Choose m parents xi, where i ∈ {1, . . . , m}, by randomly sampling from
the population.5

Step 2 : Calculate the centroid of the parents from step 1, G = 1
m

∑m
i=1 xi.

Step 3 : Choose one of the parents selected in step 1 with equal uniform probability,7

and assign to xp. The offspring will be centered around this parent.
Step 4 : Create the direction vectors, dp = xp − G.9

Step 5 : For the remaining m − 1 parents, the perpendicular distances Di to the
line dp are calculated and the average distance is assigned to D̄.11

Step 6 : An offspring, C, is generated by C = xp +wξ|dp|+
∑m

k=1
k �=p

wηD̄ek, where wξ

and wη are normally distributed random variables N(0, σ2
ξ ) and N(0, σ2

η),13

respectively. Let each ek be an orthonormal basis vector of the subspace
orthogonal to the subspace spanned by dp.15

Step 7 : The offspring is mutated using the NSGA-II mutation operator.
Step 8 : Repeat from step 3 until the desired number of offspring are generated.17

6.5. Differential Evolution (DE)

DE is a population-based direct-search algorithm for global optimization.24 It has19

demonstrated its robustness and power in a variety of applications, such as neu-
ral network learning,25 IIR-filter design,26 and the optimization of aerodynamic21

shapes.27 It has a number of important characteristics, which make it attractive as
a global optimization technique, and the reader is referred to Ref. 6 for an excellent23

introduction to DE, which covers this in more detail. Some of these characteristics
include the ability to self-adapt the step size; in other words as the population25

converges, the magnitude of the vector difference resulting from the DE calcula-
tion becomes smaller. This is a desirable characteristic because in any evolution-27

ary algorithm exploration should occur earlier on, followed by a greater degree of
exploitation of individuals. DE achieves this through its self-regulation of step size.29

Furthermore, the vector-wise sampling of DE allows the algorithm to be rotational
invariant. The primary property of DE that is the topic of study in this paper is31

rotational invariance.
DE differs from other EAs in the mutation and recombination phase. Unlike33

stochastic techniques such as genetic algorithms and Evolutionary Strategies, where
perturbation occurs in accordance with a random quantity, DE uses weighted dif-35

ferences between solution vectors to perturb the population. At each generation,
the following procedure is used to generate the offspring:37

Step 1 : i = 0.
Step 2 : Randomly select r1, r2, r3 ∈ {1, 2, . . . , popsize} such that r1 �= r2 �= r3 �= i39

where i is the index of the currently selected individual in the population.
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Fig. 13. Differential evolution.

Step 3 : Generate an offspring from the selected parents and current individual,1

C = xi+K(xr3−xi)+F (xr1−xr2), where K and F are control parameters.
Step 4 : i = i + 1.3

Step 5 : Repeat from step 2 if the desired number of offspring has not been reached
and i �= popsize.5

The population of a differential evolutionary algorithm is typically randomly
initialized within the initial parameter bounds. At each generation, the population7

undergoes perturbation. Three unique individuals, or solution vectors denoted by
x, are randomly selected from the population. The coefficient K is responsible for9

the level of combination that occurs between xr3 and the current individual xi.
The coefficient F is responsible for scaling the step size resulting from the vector11

difference xr1−xr2. Figure 13 details the relationship between the vectors responsi-
ble for the generation of a new candidate solution. Typically in the single-objective13

case, if the new individual C evaluates better than the currently selected individual
xi, then the current individual is replaced with the new one. The algorithm iterates15

over i from 1 to popsize.
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DE has also been applied to multi-objective problems. One of the first exam-1

ples of this was to tune a fuzzy controller for the automatic operation of a train,
although the cost function transformed the objectives of punctuality, comfort, and3

energy usage into the degenerate case of a single-objective.28 The Pareto-differential
evolutionary (PDE) algorithm uses nondominated solutions for reproduction and5

places offspring back into the population if they dominate the current parent.29,30

This PDE was extended into a variant with self-adaptive crossover and mutation.317

Multi-objective DE has been used to minimize the error and the number of hid-
den units in neural network training. The resulting Pareto-optimal front is the9

trade-off between these two objectives.32 The nondominated sorting, ranking, and
elitism techniques utilized in the NSGA-II have also been incorporated into a DE11

method.33 Another approach involving Pareto-based evaluation was applied to an
Enterprise Planning problem with the two objectives of cycle time and cost,3413

and compared with the Strength-Pareto Evolutionary Algorithm.35 Some prelimi-
nary work has also reported on the behavior of a nondominated sorting DE multi-15

objective algorithm,7 demonstrating its potential worth as a rotationally invariant
optimizer for multi-objective problems. For the purposes of this study, we have17

employed the same approach to integrating DE with NSGA-II.7 popsize individu-
als are generated from the DE operator and evaluated on the test problem. Sorting19

and selection occurs using the NSGA-II procedure.

7. Performance Assessment21

The set of solutions generated by a multi-objective evolutionary algorithm cannot
be evaluated with respect to a single measure of performance. For instance, one23

algorithm may generate a set, which covers the Pareto-optimal front very well but
has poor convergence. In contrast, another algorithm may produce a set with worse25

coverage, but better convergence toward the Pareto-optimal front. A large number
of performance metrics have been proposed in the literature for dealing with this27

issue and the reader is referred to a recent comparative survey.36

The situation for performance assessment is made more difficult as the objec-29

tive space dimension increases, where a formal proof has demonstrated that for M

objectives, at least M performance metrics are required in order to compare two31

solution sets.20 Although this is correct, it has also been argued that it is still pos-
sible to compare two approximation sets with two performance metrics in order to33

draw useful conclusions about an algorithm’s performance.19 We have followed this
observation in our performance assessment criteria and employed the generational35

distance metric,38 which was also used in Ref. 19.
This metric allows us say something useful about the coverage of the approxi-

mation set and its convergence to the Pareto-optimal set. The generational distance
metric is described in Eq. (5). It measures the average distance of the solutions in
the nondominated solution set Q, to a Pareto-optimal solution set P ∗ (Fig. 14(a)).
The solution set P ∗ is a large sample of uniformly spaced Pareto-optimal solutions
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(a) (b)

Fig. 14. (a) GD(Q, P ∗) measures the minimum distance from each point in Q to a point in P ∗,
and averages over all minimum distances. This is a measure of convergence of set Q toward set
P ∗. (b) GD(P ∗, Q) measures the minimum distance from each point in P ∗ to a point in Q, and
averages over all minimum distances. This will give a larger value than GD(Q, P ∗) because it
considers the coverage of the set Q over the set P ∗.

in the objective space. f
∗(k)
m is the mth objective function value of the kth member

of the Pareto-optimal solution set, P ∗:

GD(Q, P ∗) =

|Q|∑
i=1

di

|Q| , (5)

where

di =
|P∗|
min
k=1

√√√√ M∑
m=1

(f (i)
m − f

∗(k)
m )2.

The metric in Eq. (5) is used to measure convergence to the Pareto-optimal
solution set. It also has the elegant property that the inverse of this metric in Eq. (6)
can be used in order to emphasize a measure of the coverage of a nondominated
solution set Q over the Pareto-optimal solution set P ∗.39

GD(P ∗, Q) =

|P∗|∑
i=1

di

|P ∗| , (6)

where

di =
|Q|
min
k=1

√√√√ M∑
m=1

(f∗(i)
m − f

(k)
m )2.
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The inverse measure is achieved by simply swapping the order in which one mea-1

sures distances between the two sets. In Eq. (6), we measure the average distance
of the solutions in the Pareto-optimal solution set P ∗, to a nondominated solution3

solution set Q. f
(k)
m is the mth objective function value of the kth member of the

nondominated set, Q. From Fig. 14(a), the GD(Q, P ∗) measure results in smaller di5

measures. In other words, the focus of the metric is to measure convergence because
only the closest Pareto-optimal solution to a nondominated solution is chosen for7

di. It is apparent from Fig. 14(b) that the GD(P ∗, Q) measure assigns the closest
nondominated solution from Q, to a Pareto-optimal solution in P ∗ for the di mea-9

sure. As can be seen from the figure, this inverse measure places emphasis on the
poor coverage of set Q on set P ∗. If both measures approach 0, the implication is11

that the nondominated solution set has both a good coverage and convergence to
the Pareto-optimal front.13

8. Experiments

A population size of 100 individuals was used for each of the algorithms on each15

of the test problems. A number of the crossover techniques investigated here have
not previously been studied within the NSGA-II framework, and we expect that17

some of the choices of our parameter settings might be sub-optimal for the prob-
lems explored. It is not our intention to perform a comparative study in order to19

find the best parameter settings of these crossover techniques, but we do expect
nonspecifically tuned settings to demonstrate improvements in the performance of21

the NSGA-II with the rotationally invariant behavior of the DE, SPX, UNDX-m,
and PCX operators. A number of appropriate parameter settings have been23

reported for these operators and we have utilized these reported settings where
possible. We leave a more detailed comparative study of these operators on rotated25

multi-objective problems, as an area of future study.
For the DE variant of NSGA-II, F was set to 0.8 and K was set to 0.4. Sugges-27

tions from the literature helped guide our choice of parameter values for the NSDE.6

In the SPX operator, the simplex size, ε, determines the size of the expanded29

simplex, and we have used
√

N + 1, which was used in previous studies in the
single-objective domain. A mutation rate of 1/N was also used with the NSGA-II31

incorporating the new SBX with uniform crossover, and the SPX, UNDX-m, and
PCX variants. SBX employed a crossover rate of 0.8. For the UNDX-m operator,33

the parameters σξ = 1√
m

and ση= 0.35√
N−m

were recommended in Ref. 17 and we
have used these values in this study. For the PCX, the σξ and ση parameters were35

set to 0.7 and 0.2, respectively. The PCX variant is sensitive to the σξ parameter.
If σξ is too small the offspring generated do not spread across the Pareto-optimal37

front. In the UNDX-m and PCX version of NSGA-II, m was assigned a value of 3.
Experiments were conducted on the unimodal function described in Sec. 3,39

the discontinuous and nonuniform mapped problems described in Sec. 4, and the
41
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scalable problem described in Sec. 5. Each of these problems incorporates a multi-1

objective valley, which is designed to trap points from progressing along the Pareto-
optimal front. The bi-objective problems are 10-dimensional in the decision space.3

The scalable problem with four objectives has eight decision space parameters, and
the eight-objective version has 12 decision space variables. Rotations for each of5

these test problems were performed in the decision space, on each plane, using a
random uniform rotation matrix generated using the technique described in Sec. 4,7

which introduces parameter interactions between all parameters. In N -dimensions,
there are (N−1)N/2 planes of rotation, introducing parameter interactions between9

each parameter with every other. Each algorithm was run 50 times on each test bi-
objective problem, for a total of 800 generations (80,000 problem evaluations) for11

each run. The scalable test problems with more than two objectives were run for 300
generations (30,000 problem evaluations). A new random uniform rotation matrix13

was generated for each run of each algorithm.

9. Discussion and Results15

9.1. Problem (1)

In Figs. 15 and 16, two parents are located on the Pareto-optimal front, and off-17

spring are generated around these parents. In the nonrotated case of Fig. 15, the
NSGA-II with SBX crossover operation generates only nondominated solutions,19

which are located on the Pareto-optimal front. Unfortunately, when the problem is
rotated (Fig. 16), many of the solutions generated are far from the Pareto-optimal21

front.
Fig. 17, it is apparent that in the presence of a multi-objective ridge, nondom-23

inated solutions are generated away from the Pareto-optimal front. This clearly
demonstrates the degraded performance of the NSGA-II with SBX crossover accord-25

ing to the analysis presented in Sec. 3. A representative run of the NSGA-II with
SBX on Problem (1) also demonstrates this effect in Fig. 18.27

Furthermore, in Fig. 18, each of the rotationally invariant crossover operators
yields superior performance over the SBX on this problem, with respect to both29

convergence to the Pareto-optimal front and coverage across the front. Figure 19
also demonstrates that the variation in both the convergence and the coverage is31

relatively low on each of the rotationally invariant crossover operators.

9.2. Problem (2)33

The discontinuous problem introduces similar difficulties to the NSGA-II, as the
unimodal problem. When the front is discontinuous, there is a tendency for NSGA-II35

with SBX to generate degraded nondominated solutions, in a similar manner to the
search for nondominated solutions on Problem (1). This behavior is exacerbated37

because the discontinuities do not allow a collapse of the degraded region toward a
more ideal solution, thereby enabling the degraded region to be extended further.39
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Fig. 15. Parents are located at [−0.2, 0] and [0.2, 0] in the nonrotated case. In the nonrotated
case, all solutions generated using SBX by the parents are nondominated and Pareto-optimal.

We can see the effect of this in a representative run of NSGA-II with SBX in Fig. 20.1

In Fig. 21, it is apparent that there is a high variation in the convergence of the runs
of NSGA-II with SBX on this problem, and convergence is generally worse than3

the other variants. NSGA-II with SBX fails to cover the left most front in many
cases (Fig. 20). It typically misses the left most front because of the degradation5

in performance caused by generating many nondominated solutions away from the
Pareto-optimal front (Sec. 3).7

From Fig. 21, it is apparent that the variant incorporating DE has the lowest
variation in both convergence to the Pareto-optimal fronts and coverage of the9

Pareto-optimal fronts, as well as the best coverage and convergence overall.
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Fig. 16. Parents are located on the Pareto-optimal front in the decision space in the rotated-case
at [−0.2, 0.2] and [0.2, −0.2]. In the rotated case, far fewer nondominated solutions are generated.

9.3. Problem (3)1

The results from Figs. 22 and 23 suggest that rotation does not introduce significant
difficulties for the NSGA-II with SBX on Problem (3) with respect to convergence3

toward the Pareto-optimal front. SPX, UNDX-m, and PCX seem to struggle with
respect to finding a good coverage of the Pareto-optimal front. The NSGA-II with5

SBX actually has a comparable variation in the coverage of the fronts with the
PCX variant and has a larger variation in coverage with respect to the UNDX and7

SPX variants. In this problem, the density of solutions toward higher f1 values is
greater and toward lower f1 values it becomes less. If one considers how offspring9

are actually generated by SPX, UNDX-m, and PCX, it becomes clearer why these
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Fig. 17. NSGA-II finds solutions that are nondominated but skew away from the Pareto-optimal
front on Problem (1). This figure demonstrates the degradation in performance of NSGA-II over
successive generations when a ridge is encountered in a multi-objective problem.

operators struggle to produce offspring toward the lower f1 region. In the situa-1

tion where the majority of parents come from the Pareto-optimal front, there is
a smaller likelihood of selecting parents, which are in the low density region. Sec-3

ondly, offspring have a small chance of being generated at the extremes using the
centroid-centric approaches.5

From Fig. 22, one can see that the DE variant performed well on this problem,
with a low variation for convergence to the Pareto-optimal front, and a low variation7

for coverage of the Pareto-optimal front, with the majority of runs typically covering
the front better than the other variants. Because DE uses vector addition, and the9
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Fig. 18. Nondominated solutions found on Problem (1) after 800 generations.

front is situated on a hyperplane through the decision space, vector differential on1

this line can easily generate solutions that cover the low density region as well.

9.4. Problem (4)3

Figure 24 describes the result on Problem (4) with four-objectives when the prob-
lem is unrotated. It is apparent that SBX results in the best performance on this5

problem with respect to the finding a good convergence toward and coverage the
Pareto-optimal front using the GD(Q, P ∗) and GD(P ∗, Q) metrics. Furthermore,7
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SBX DE SPX UNDX PCX

Fig. 19. Boxplots of the GD(Q, P ∗) and GD(P ∗, Q) measures of the 50 runs of each algorithm
variant on Problem (1). The boxplot of the GD(Q, P ∗) measures are on the left and the GD(P ∗, Q)
measures are on the right for each labeled variant.

the variation in both these measures is low on the SBX according to the boxplots.1

This result is to be expected, as a problem aligned with the principle coordinate
axes favors any reproduction operator which generates the majority of its offspring3

along the principle coordinate axes. When the four-objective problem is rotated
the result is quite different, as is apparent from Fig. 25. The performance of the5

DE operator demonstrates it is now competitive with SBX with respect to both
performance metrics. Furthermore, the variation in both these measures increases7

for the SBX operator. This demonstrates that SBX has difficulties dealing with the
introduction of the valley associated with the hyper-ellipsoid, as well as the various9

optimal step sizes required in each plane.
In the eight-objective problem that has not been rotated, it is apparent that SBX11

and DE have comparable performance from Fig. 26, with respect to both measures.
Interestingly, the GD(P ∗, Q), which measures the coverage of the approximation13

set, produces a similar result for the SPX, UNDX, and PCX operators. This indi-
cates that each of these operators can produce nondominated solutions with similar15

effectiveness. Figure 27 displays the boxplots for the GD(Q, P ∗) and GD(P ∗, Q)
on the rotated eight-objective problem. It is apparent from this figure that the17

performance of SBX and DE becomes comparable with SPX, UNDX, and PCX. It
cannot be conclusively stated that any of these operators are better than others19

from this result.
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Fig. 20. Nondominated solutions found on Problem (2) after 800 generations.

10. Conclusion1

This paper has described an empirical study of the effects that rotation of problems
has on the NSGA-II with SBX, in the presence of valleys which can trap the search,3

on three problems with the properties of unimodality, discontinuous Pareto-optimal
fronts, and a nonuniform mapping between the objective and decision space. We5

have demonstrated that on these three problems that the UNDX-m, SPX, and
DE were relatively as good or better than the SBX, taking into consideration the7

performance metrics for convergence to the Pareto-optimal front and distribution
of solutions across the front.9
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PCXUNDXSPXDESBX

Fig. 21. Boxplots of the GD(Q, P ∗) and GD(P ∗, Q) measures of the 50 runs of each algorithm
variant on Problem (2). The boxplot of the GD(Q, P ∗) measures are on the left and the GD(P ∗, Q)
measures are on the right for each labeled variant.

PCXUNDXSPXDESBX

Fig. 22. Boxplots of the GD(Q, P ∗) and GD(P ∗, Q) measures of the 50 runs of each algorithm
variant on Problem (3). The boxplot of the GD(Q, P ∗) measures are on the left and the GD(P ∗, Q)
measures are on the right for each labeled variant.
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Fig. 23. Nondominated solutions found on Problem (3) after 800 generations.

Multi-objective optimization problems, which are not aligned with the principal1

coordinate axes, introduce some new issues to multi-objective optimization algo-
rithms, which do not use rotationally invariant reproduction operators. Although it3

may be possible to discover nondominated solutions using a nonrotationally invari-
ant approach, the nondominated solutions that are generated are less likely to be5

Pareto-optimal. We have discussed one type of problem exhibiting such behavior in
Sec. 3, but one could also consider many other kinds, which will exhibit different7

characteristics, and a study of such problems may be worthwhile to practitioners
working with real-world multi-objective problems, which are typically not aligned9

with any coordinate system.
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Fig. 24. Boxplots of the GD(Q, P ∗) and GD(P ∗, Q) measures of the 50 runs of each algorithm
variant on unrotated Problem (4) with four objectives. The boxplot of the GD(Q, P ∗) measures
are on the left and the GD(P ∗, Q) measures are on the right for each labeled variant.
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Fig. 25. Boxplots of the GD(Q, P ∗) and GD(P ∗, Q) measures of the 50 runs of each algorithm
variant on rotated Problem (4) with four objectives. The boxplot of the GD(Q, P ∗) measures are
on the left and the GD(P ∗, Q) measures are on the right for each labeled variant.
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Fig. 26. Boxplots of the GD(Q, P ∗) and GD(P ∗, Q) measures of the 50 runs of each algorithm
variant on unrotated Problem (4) with eight objectives. The boxplot of the GD(Q, P ∗) measures
are on the left and the GD(P ∗, Q) measures are on the right for each labeled variant.
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Fig. 27. Boxplots of the GD(Q, P ∗) and GD(P ∗, Q) measures of the 50 runs of each algorithm
variant on rotated Problem (4) with eight objectives. The boxplot of the GD(Q, P ∗) measures are
on the left and the GD(P ∗, Q) measures are on the right for each labeled variant.
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The PCX variant seemed not to perform as well as the SPX, UNDX-m, and DE1

variants on the bi-objective problems. This is understandable when one considers
the distribution of children generated from parents located on the Pareto-optimal3

front. Once the majority of potential parents have converged toward the Pareto-
optimal front, the control parameters, which determine the extent of the distribu-5

tion of children, are no longer suitable for efficiently generating solutions along the
Pareto-optimal front on the bi-objective problems investigated in this study. This7

is also true for the SPX and UNDX-m variants but less so because these operators
generate children more efficiently along the Pareto-optimal front on the bi-objective9

problems because of the elongated shape of the distribution of children generated
around parents located on the Pareto-optimal fronts of these problems.11

The nature of the Pareto-optimal fronts of the described bi-objective test prob-
lems may have favored the performance of DE. The vector-wise property of DE13

will generate new children on the Pareto-optimal front easily, because the Pareto-
optimal set is piece-wise linear in the decision space. In the case of UNDX-m, SPX,15

and PCX, offspring generated from parents (that are located on the Pareto-optimal
front) are less likely to be located on the Pareto-optimal front. This consequently17

explains the good performance of Differential Evolution even over 50 runs, which
consistently outperformed the other recombination operators on each of the three19

bi-objective problems, providing a low variation in both the convergence and cov-
erage of the Pareto-optimal fronts, as well as relatively high quality solution sets21

for both of these features. Obviously, a future avenue of work would be introducing
nonlinearities to the Pareto-optimal set, as suggested in Ref. 40.23

On the scalable test Problem (4), it is apparent that in four objectives SBX is
the best performer on the unrotated problem, but the advantage associated with25

SBX disappears when the problem is rotated. As the objective space dimension
is increased to eight objectives the difference in performance between the variants27

becomes negligible with respect to the performance metrics and whether the prob-
lem is rotated or unrotated.29

As the objective space dimension increases it is obvious that a rotationally
invariant recombination operator will have little impact on the performance of31

EMO algorithms incorporating nondominated sorting, as such algorithms tend to
find an exponentially increasing number of nondominated solutions. This results in33

an inability of the algorithm to differentiate between solutions. It is possible that
alternative selection schemes that are not based on domination principles might be35

more effective when used with the recombination operators suggested in this study
for problems with large numbers of objectives.37
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