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Abstract. The topic of multimodal function optimization, where the
aim is to locate more than one solution, has attracted a growing in-
terest especially in the evolutionary computing research community. To
experimentally evaluate the strengths and weaknesses of multimodal op-
timization algorithms, it is important to use test functions representing
different characteristics and of various levels of difficulty. However, the
available selection of multimodal test problems with multiple global op-
tima is rather limited at the moment and no general framework exists.
This paper describes our attempt in constructing a test function gen-
erator to allow the generation of easily tunable test functions. The aim
is to provide a general and easily expandable environment for testing
different methods of multimodal optimization. Several function families
with different characteristics are included. The generator implements new
parameterizable function families for generating desired landscapes and
a selection of well known test functions from literature, which can be
rotated and stretched. The module can be easily imported to any op-
timization algorithm implementation compatible with C programming
language.

Keywords: Multimodal optimization, test function generator, global
optimization.

1 Introduction

Real-world optimization problems often contain multiple global or local optima
(i.e. solutions). Multimodal optimization aims to locate all of the global op-
tima of a multimodal function. Evolutionary Algorithms (EAs) have become
a popular choice as optimization techniques for many applications and are an
interesting candidate for multimodal optimization due to their use of popula-
tion, which allows multiple solutions to be searched simultaneously. However,
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EAs in their original form are typically designed to locate a single global op-
timum. Many techniques for locating multiple solutions have been developed,
commonly referred as niching methods [1]. Two most well-known niching meth-
ods are probably crowding [2] and fitness sharing [3]. Apart from crowding and
fitness sharing and their variants, many other niching methods have also been
developed [4,5,6,7,8]. It is noticeable, that most of these methods were often
evaluated using only 1 or 2 dimensional multimodal test functions, i.e., the the
functions were not scalable to higher dimensions. Furthermore, these functions
are often defined in a specific way, not allowing the functions to be tunable in
terms of the characteristics of the multimodal landscapes. For example, for the
Shubert function used in [8], as the number of dimensions increases, the number
of global optima grows exponentially (D · 3D, where D is the number of dimen-
sions). There is no way to control the number of optima, neither how they are
distributed. Additionally, the problem is separable and the global optima are
positioned at regular intervals in the search space, both being easily exploitable
features. In short, using solely the currently available selection of test functions
is typically inadequate for properly analyzing the characteristics of different mul-
timodal optimization algorithms. Especially in the light of no free lunch theorem
[9], which states that no optimization algorithm can outperform another over the
set of all possible problems, it becomes increasingly important to differentiate
the characteristics of the subset of problems each algorithm excels in. For that,
a set of parameterizable functions is required, where their characteristics can be
changed independently to isolate the effects.

This paper describes an attempt to construct a multimodal test function gen-
erator, tailored specially for evaluating the performance of multimodal optimiza-
tion algorithms in locating multiple globally optimal solutions. Desirable features
of such a generator include the following, which have been used as guidelines for
designing the generator:

1. Easy to use and tunable.
2. Functions can be transformed from separable to non-separable by rotation.
3. Regular and irregular distributions of optima.
4. Controllable number of global and local optima.
5. Scalable to different dimensions.
6. Reproducible random functions.
7. The software easily expandable and freely available.
8. Facilitates performance measures.

Several function generators have been previously presented in literature: The
DF1 [10,11] and Moving Peaks [12] focus on generating dynamic multimodal
landscapes, that change over time. Gaviano et.al. [13] generate differentiable mul-
timodal functions by distorting convex functions by polynomials. Constrained
test cases generator [14] generates function landscapes by dividing the search
space to regions and constructing unimodal function for each, the main feature
being the ability to define constraint functions for these regions. The Max set
of Gaussians (MSG) landscape generator [15] and the family of generic hump
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functions [16] combine several independent peaks to form the function land-
scape. Among all of the above, only the hump functions have been designed and
analyzed in the context of multimodal optimization. The hump family has a
limited usability (see section 2.4) and thus a more versatile testing environment
is required, which is able to systematically generate a variety of highly tunable,
scalable, and controllable multimodal test functions with multiple global optima.

2 The Function Generator

The proposed generator can be used to generate multimodal test functions for
minimization, tunable with parameters to allow generation of landscape char-
acteristics that are specifically designed for evaluating multimodal optimization
algorithms by their ability to locate multiple optima. At the moment, three fam-
ilies of functions exist, but the generator is easily expandable and new families
may be added in future. The current families are cosine, quadratic and common
families.

2.1 Cosine Family

The cosine family samples two cosine curves together, of which one defines global
minima and another adds local minima. The basic internal structure is regular:
all minima are of similar size and shape and located in rows of similar distance
from each other. The function family is defined by

fcos(y) =
∑D

i=1 −cos((Gi − 1)2πyi) − α · cos((Gi − 1)2πLiyi)
2D

(1)

where yi ∈ [0, 1]D, the parameters G and L are vectors of positive integers which
define the number of global and local minima for each dimension and α defines
the amplitude of the sampling function (depth of the local minima).

The generator allows the function to be rotated to a random angle and use
Bezier curves to stretch each dimension independently to decrease the regularity.
To calculate the function value for input vector x, it must be mapped to y. The
first step is to calculate b, which is the rotated point corresponding to x:

b = Ox (2)

where the matrix O = [o1, . . . , oD] is a randomly generated angle preserving
orthogonal linear transformation as described in [17]. The domain of x (the
search space) is the D-dimensional unit hypercube rotated with O. Then b is
mapped to y by applying the following Bezier formula:

yi =
ni∑

j=0

(
ni

j

)

Pi,j(1 − bi)ni−jbi
j , i = 1, . . . , D (3)

where ni is the degree of the Bezier curve for dimension i and P i are the control
point vectors for Bezier stretching defined such that Pi,0 and Pi,ni correspond to
the lower and upper bound of yi and the values between are strictly increasing.
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The Bezier stretching will decrease the regularity of the function, but generally
not completely eliminate it. The degree of regularity can be roughly estimated
by considering the minimum amount of global minima points required to have a
set which contains all possible differentials to jump from a neighboring minimum
to the next in the axis directions. For completely regular functions, only D+1
points are required (as long as there are more than one minimum along each
dimension). For stretched functions the required amount is

∑D
i=1 (Gi − 1) + 1

out of the total amount of global minima
∏D

i=1 Gi. So the degree of regularity
increases along with the dimension. Bezier stretching also affects the shape and
size of the minima, increasing the differences in their areas of attraction (AOA).

The amount of minima increases exponentially along dimension and the
amount of local minima, which are not global is

∏D
i=1 Gi + (Gi − 1)(Li − 1).

For each dimension, two of the outermost minima will always be located on the
constraints. This means that if any of the values of G is less than 3, every min-
imum will be located on at least one constraint. In the unstretched case, each
constraint the minimum sits on, halves the area of attraction (AOA) for that
minimum compared to a minimum with one less constraint. The fraction of the
AOA from full possible area is thus 1/2D−l, where l = 0, 1, . . . , D describes the
amount of constraints the minimum sits on. l = 0 means a minimum located on
no constraint (full possible AOA) and l = D is a corner minimum with minimum
AOA for dimension D. For methods that rely heavily on the initial points, locat-
ing the minima on corners becomes harder with increasing dimensionality, unless
the information, that the minima are located on the constraints, is exploited.

Parameter α affects the depth of the local minima. Increasing the value makes
the minima deeper, also increasing their area of attraction and thus slightly
increasing the difficulty of the problem. Examples of cosine family functions are
presented in Figure 1.

2.2 Quadratic Family

The quadratic family can be used to generate completely irregular landscapes.
The function is created by combining several minima generated independently.
They are described as a D dimensional general quadratic form, where a sym-
metric matrix C defines the shape of each minimum. The functions in quadratic
family need not be stretched or rotated, because no additional benefit would
be gained by doing that to an already irregular function. However, axis-aligned
minima may be randomly rotated by rotating the matrix C as follows:

B = OCOT (4)

The functions are calculated by

fquad(x) = min
i=1,2,...,q

(
(x − pi)T B−1

i (x − pi) + vi

)
(5)

where xi ∈ [0, 1]D, pi defines the location, and vi the fitness value of a minimum
point for i’th minimum. q is the amount of minima.
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Fig. 1. Example figures of cosine family functions using parameter values α = 0.8, G =
[3, 3], L = [2, 2] (9 global and 16 local minima). Additionally P 1 = [0, 0.1, 0.2, 0.5, 1]
and P 2 = [0, 0.5, 0.8, 0.9, 1] are used for (b).

Unlike the other function families, the quadratic family allows the number of
minima to be defined independently of the dimension and the user may select any
number of global and local minima to be generated. The placement of minima is
chosen randomly, although the minimum euclidean distance between global min-
ima may be defined. The generator makes sure that no minimum is completely
engulfed by another, deeper minimum. The user may also define the minima
shape, which may be spherical, ellipsoidal or randomly rotated ellipsoidal. This
selection is used for all generated minima. The shape range for global and local
minima may be defined independently and the shapes are generated by using
uniform random numbers from this range for each dimension in creating matrix
C. User may also define the range for the fitness values of local minima points.
Figure 2 presents examples of functions from the quadratic family.

Because the locations of minima are random, and the minima will overlap,
the sizes of the areas of attraction for different minima will vary greatly. Using
fewer or shallower local minima will naturally leave more room for the global
minima. Also forcing longer minimum euclidean distance between the global
minima will leave more area for each minimum. As the dimensionality increases,
the differences in shape parameters will have exponentially increasing effect to
the AOAs. Thus the significance of shape range parameters will increase along
dimension in deciding the problem difficulty as rather small differences in shape
range can lead to large differences to the relative sizes of the AOAs in high
dimensions.

To demonstrate this, random start gradient descent (RSGD) algorithm was
run on 3 different sets of quadratic functions, with D = 1, 2, . . . , 10. The algo-
rithm generates random starting points and descends downhill by performing
line searches in numerically estimated gradient direction using bracketing [18,
p. 400] and Brent’s method [18, p. 404] until all minima have been found. The
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(b) Rotated ellipsoidal with local minima

Fig. 2. Examples of quadratic family functions. The minimum euclidean distance be-
tween global minima is set to 0.01, and shape range for all minima to [0.003,0.03]. The
figure a has 10 global spherical minima, while figure b has 10 global and 100 local ro-
tated ellipsoidal minima such that the local minima points have fitness value in range
[-0.95,-0.15]. Globally optimal value is always -1.

average performance of RSGD is a decent estimate of the relative sizes of AOAs,
because to locate a minimum, the random starting point must be located on the
AOA of that particular minimum. If the sizes differ significantly, the larger ones
will draw more points, slowing down the process of locating the minima with
smaller AOA. Figure 3 displays the results of the runs. The first set of functions
has spherical minima with identical shape. The second has also spherical and
third an ellipsoidal shape, both allowing the shape range to change by ±50%.
As can be seen, the required number function evaluations (NFE) as well as the
standard deviation increase notably slower along dimension for the first set com-
pared to the other two. This is expected, because the identical shape eliminates
the differences on AOA caused by shape. The ellipsoidal shape is hardest on low
dimension, but varying spherical shape claims the title on D > 8. This is logical,
because for spherical shape only one random value is generated, which is then
used in all dimensions. If the value is small, it will affect all dimensions. For
the ellipsoidal shape, each dimension will get a different random value and the
total AOA averages better as more values are generated on higher dimensions.
The slower performance on low dimensional ellipsoidal set can be explained by
the fact that gradient descent tends to oscillate on non-spherical shapes and
thus needs more line searches to find the minimum point compared to spherical
shapes, where the gradient points directly to the minimum point.

2.3 Common Family

The common family collects some well known test problems with multiple global
optima from literature and implements them inside the generator. The genera-
tor allows similar rotation and Bezier stretching, as used in cosine family, for all



A Generator for Multimodal Test Functions with Multiple Global Optima 245

2 4 6 8 10
0

2

4

6

8

10

12

14

16

x 10
4

Dimension

N
F

E

 

 

Spherical, shape fixed to 0.002
Spherical, shape range [0.0015,0.0025]
Ellipsoidal, shape range [0.0015,0.0025]

(a) Function evaluations required to find
all minima with accuracy 0.0001

2 4 6 8 10
0

2

4

6

8

10

12

14

16

x 10
4

Number of found optima

N
F

E

 

 

Spherical, shape fixed to 0.002
Spherical, shape range [0.0015,0.0025]
Ellipsoidal, shape range [0.0015,0.0025]

(b) Function evaluations required to find
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Fig. 3. Performance of RSGD on different quadratic functions with 10 global and no
local minima. The minimum euclidean distance between global minima is set to 0.1.
The function evaluations are averages from 100 independent runs and figures include
standard deviations. For each run, different random seed is used in generating the
function.

implemented functions in the common family (the x is mapped to y using equa-
tions 2 and 3). At the moment, eight different functions are included. One of the
functions is a 2 dimensional modification of the well known Rastrigin function
[19] to have 4 global and 96 local minima. The function is calculated by formula:

fras(y) = 20 +
2∑

i=1

(
y2

i + 10 cos(2πyi)
)

(6)

where yi ∈ [−5.12, 5.12]2. Other implemented two dimensional functions are:
Branin [20], Himmelblau [5], Shubert [8], and the Six-hump camel back [21,20].
Additionally Vincent [22] and Deb’s 1st and 3rd function [5] have been included
with the possibility to scale the dimensionality.

2.4 Comparison to Other Test Function Generators

Singh and Deb recently proposed a scalable multimodal test function family
called generic hump functions [16]. Like quadratic family, the hump functions
allow irregular landscapes to be generated and the amount of optima to be de-
fined independently of the dimensionality. However, the hump function is defined
such that each optimum peak has a fixed radius value and any values outside
that are set to 0 and no two peaks can intersect. So the function surface is
flat except the peaks. This kind of surface is problematic especially for methods
relying on gradient information, because depending on the size and amount of
the peaks, large portion of the search space is flat and gradient thus unusable.
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However, the problem does not only affect gradient reliant methods, because no
method can deduct meaningful direction information from a flat surface. In an
extreme case, with very small radius of the peaks, we end up with a needle in
a haystack problem, where the vast majority of the search space is flat, only
including some very thin peaks. For such a problem, an enumeration technique
would be the optimal strategy, because the only viable information available is
not to visit the same location twice. In contrast, for the quadratic family, there
are no flat areas in the search space and the peaks may freely intersect, making it
possible to have different peak inside another peak’s area of attraction. Also, for
any point, a meaningful numerical estimate for gradient can be calculated. Still,
when a reasonably large width for peaks is used, the hump family could provide
an interesting environment to test algorithm’s ability to handle flat surfaces. For
this reason, the hump family would be an interesting addition to the presented
generator in future.

The MSG proposed by Gallagher and Yuan [15], is another interesting test
function generator. They use a similar approach, as used in quadratic family, to
produce peaks independently and use the dominant one to define the function
value in point x. However, MSG uses Gaussian density function formula for
defining the peaks, which is an exponential function. In comparison, for quadratic
family, general quadratic form was selected (which is similar to the exponent part
of the Gaussian density function, when the constant is removed) to describe
the minima. As a result, the landscapes generated by MSG have much steeper
optima shapes compared to the ones generated by quadratic family. In theory,
both approaches allow landscapes with no flat areas to be generated. However,
a potential problem in using landscapes with steep optima is the numerical
accuracy: Because the values ascend towards zero very fast as we move away
from an optimum, it is possible that areas are left in the search space where
a numerical approximation of gradient rounds to zero, in practice making the
area flat from an algorithm’s perspective. When using the quadratic form, this
is usually not an issue. Of course, the MSG generator is primarily designed
for producing landscapes with only one global optimum, while the generator
presented here concentrates on cases having multiple global optima, and thus
the features included in the generators differ accordingly.

2.5 Implementation and Features

The generator includes an internal constraint handling method to keep the so-
lutions at a given range. The constraints are handled by mirroring the violating
value back from the violated boundary by the amount of violation. This makes
the function space look continuous for the optimization approach during the
run, because any minimum which is located on the boundary looks symmetri-
cal, although in reality the value is calculated in a mirrored point inside the
boundaries. The internal constraint handling can be ignored and the linear con-
straint functions (relevant in rotated cases) can be acquired in analytical form,
if required.
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Additionally the generator offers a method for deciding how many different
globally minimal solutions a given population includes, with a required accuracy.
Other useful features included are the possibility of initializing a population
with uniform random values in a proper range for the used function, an internal
counter for function evaluations and the ability to acquire the amount of minima
and the exact locations of global minima. For functions that include random
numbers, user may provide a seed for the internal random number generator.
With the same seed, the same function is always generated.

The software is written in C programming language obeying ANSI standard
and should be easy to import in most optimization algorithms written in C or
C++. The generator package is freely available from: http://www.ronkkonen.
com/generator/, and includes source codes, a simple plotter program written in
Matlab for visualizing the 2D functions generated, and detailed documentation.

3 Conclusion and Future Work

In this paper, a function generator module for multimodal problems including
several global optima was presented. The generator allows an easy way to con-
struct parameterizable functions and offers a standard environment for testing
multimodal optimization algorithms. To the author’s knowledge, no versatile
generator designed especially for producing problems with multiple global op-
tima exists and the proposed generator aims to mend this deficiency. In addition
to offering two novel families of parameterizable functions, the generator imple-
ments several well known test problems and allows an easy option to modify
them by rotating and stretching. The framework allows an easy addition of new
families to the module. We plan to add a variant of the hump family presented
by Deb [16] in near future. Also, a variant of the current cosine family, where the
global optima would not be located on the constraints, would offer a different
challenge for methods that rely on constraints and initial population. For the
quadratic family, an option could be added to give the global optima locations
as parameters, instead of always generating them randomly.
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