
CONT. DEV. OF NEURAL COMPT. & APPLN.

Time series forecasting by evolving artificial neural networks
with genetic algorithms, differential evolution and estimation
of distribution algorithm

Juan Peralta Donate • Xiaodong Li •

Germán Gutiérrez Sánchez • Araceli Sanchis de Miguel

Received: 14 February 2011 / Accepted: 9 September 2011 / Published online: 14 October 2011

� Springer-Verlag London Limited 2011

Abstract Time series forecasting is an important tool to

support both individual and organizational decisions (e.g.

planning production resources). In recent years, a large liter-

ature has evolved on the use of evolutionary artificial neural

networks (EANN) in many forecasting applications. Evolving

neural networks are particularly appealing because of their

ability to model an unspecified nonlinear relationship between

time series variables. In this work, two new approaches of a

previous system, automatic design of artificial neural net-

works (ADANN) applied to forecast time series, are tackled.

In ADANN, the automatic process to design artificial neural

networks was carried out by a genetic algorithm (GA). This

paper evaluates three methods to evolve neural networks

architectures, one carried out with genetic algorithm, a second

one carried out with differential evolution algorithm (DE) and

the last one using estimation of distribution algorithms (EDA).

A comparative study among these three methods with a set of

referenced time series will be shown. In this paper, we also

compare ADANN forecasting ability against a forecasting

tool called Forecast Pro� (FP) software, using five benchmark

time series. The object of this study is to try to improve the

final forecasting getting an accurate system.

Keywords Evolutionary computation � Genetic

algorithms � Differential evolution � Estimation of

distribution algorithm � Artificial neural networks �
Time series � Forecasting

1 Introduction

Forecasting the future based on the observed past is an

important tool to support individual and organizational

decision making. Time series forecasting (TSF), which

predicts the behavior of a given phenomenon based solely

on the past values of the same event, has become

increasingly used in areas such as agriculture, finance,

management, production or sales.

Several TSF methods have been proposed, such as Holt-

Winters (in the sixties) or the ARIMA methodology [1] (in

the seventies). More recently, several computational

intelligence (CI) methods have been applied to TSF such as

immune systems [2], support vector machines (SVM) [3],

artificial neural networks (ANN) [4], fuzzy techniques [5]

or hybrid systems combining any of the previous ones with

evolutionary search [6, 7].

In this paper, we focus on ANN [11] which are flexible

models that do not require a priori knowledge, are capable

of nonlinear modeling and also often robust to noisy data.

These properties of ANN make them a natural solution for

TSF. In effect, ANN have been applied in real-world

forecasting tasks, such as market predictions [8], meteo-

rological [9] and network traffic forecasting [10].

A crucial issue is the design of an appropriate ANN

model for a particular time series [4]. It will be necessary to
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set the type of ANN that will solve the forecasting task

(Multilayer Perceptron), the learning algorithm used

(Backpropagation) and which specific architecture (topol-

ogy and connection weights values) will be better to

forecast this specific time series. So, it has to be established

the suitable value for each degree of freedom in the ANN

[11] (number of input nodes, number of outputs neurons,

number of hidden layers, number of hidden neurons in each

layer, the connections from one node to another, connec-

tion weights, etc.).

The goals of this paper are to develop an accurate

automatic method, to design ANN and to forecast time

series based on evolutionary computation (EC). This

automatic process consists of an evolutionary search

technique such as a GA that uses its exploitation and

exploration properties to find a good solution. The chro-

mosome codifies the set of parameters previously com-

mented, and the fitness function will be minimum

validation error obtained during the training process. On

the other hand, two more EC methods will be used to carry

out the evolutionary search, DE and EDA.

The paper is organized as follows. Section 2 reviews the

related work about forecast task with ANN. Section 3

explains how our system designs ANN with GA, DE and

EDA to forecast time series. In Sect. 4, experimental setup

and results are shown. And finally, conclusions and future

works are described in Sect. 5.

2 Related work

Several authors have addressed forecasting tasks using

ANN [4, 7, 12, 13]. This reveals the full consideration of

ANN (as a data driven learning machine) into forecasting

theory [14, 15].

Often, the process of designing the correct ANN model

for TSF is based on trial and error heuristics. If manual

design of ANN is carried out, several topologies (i.e. dif-

ferent number of inputs nodes and different number of

hidden neurons) with different learning rates are trained.

For each of them, training and validation errors are

obtained, and one with better generalization capability is

selected to forecast the future values. A better alternative is

to use an automatic ANN design, where EC plays an

important role, in what is known as evolutionary ANN

(EANN). Several works have proposed EANN, such as

[16–20].

Some of them use direct encoding schemes (DES) [16,

17], and the others use Indirect Encoding Scheme (IES)

[18–20]. For DES, the chromosome contains information

about parameters of the topology, architecture, learning

parameters, etc. of the artificial neural network. In IES the

chromosome contains the necessary information, so that a

constructive method gives rise to an artificial neural

network topology (or architecture).

Abraham [21] shows an automatic framework for opti-

mization ANN in an adaptive way, and Yao et al. [22] try

to spell out the future trends of the field. About the use of

EANN in time series forecasting, many works have been

carried out [23–25]. In [14], Patuwo and Hu present a

‘‘state of the art’’ of ANN into forecasting task, and in [13],

Crone proposes a stepwise selection of ANN models for

time series forecasting.

Chen et al. [26] propose local linear wavelet neural

network to forecast time series. Rivas et al. [27] use

evolving RBF neural networks for time series forecasting.

Few studies have been done using ANN and DE to gen-

erate a hybrid system to forecast time series [28, 29]. Since

EDA is a more recent technique, its use for EANN in TSF

is scarce and within our knowledge, has only appeared very

recently. Therefore, the main motivation of this paper is to

obtain ANN models through a fully automatic process, due

to not all users who need to deal with forecasting are ANN

experts. They are usually people from industry or eco-

nomics, not computer scientists.

3 Evolutionary design of artificial neural networks

3.1 Time series and ANN

The problem of forecasting time series with ANN [7] is

considered as obtaining the relationship from the value at

period ‘‘t’’ (in this system, the resulting ANN will have

only one output neuron) and the values from previous

elements of the time series (t - 1, t - 2, …, t - k) to

obtain a function as it is shown in (1):

at ¼ f at�1; at�2; . . .; at�kð Þ ð1Þ

In order to obtain a single ANN to forecast time series

values, an initial step has to be done with the original

values of the time series, i.e. normalizing the data. The

original values of the time series are normalized into the

range [0,1] (leading to the Nt values). Once the ANN gives

the resulting values, the inverse process is carried out,

rescaling them back to the original scale. Only one neuron

was chosen at the output layer (i.e. 1 to N ahead

forecasting) because if it was allowed several nodes at

the output layer (t, t ? 1, …, t ? n), the forecasting task

would be done for several output future values in a row (1

ahead forecast). This forecasting method would lead to

forecast value t from t - k, …, t - 2, t - 1 but also to

forecast values t ? 1, t ? 2, …, t ? n from t - k, …, t - 2,

t - 1, so in every forecasting step, important previous data

would be missing for t ? 1, t ? 2, …, t ? n. Due to this, it is

considered better to use 1 to N ahead forecast.
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Therefore, the time series will be transformed into a

pattern set depending on the k input nodes of a particular

ANN, and each pattern will consist of the following:

• k inputs values that correspond to k normalized previ-

ous values of period t: Nt-1,Nt-2, …, Nt-k.

• One output value: Nt (the desired target).

This patterns set will be used to train and validate each

ANN generated during the evolutionary execution. There-

fore, patterns set will be split into two subsets, training and

validation. The complete patterns set is ordered into the

same way the time series is. The first x% (where x is a

parameter) from the total patterns set will generate the train

patterns subset, and the validation subset will be obtained

from the rest of the total patterns set. The test subset will be

the future (and unknown) time series values that the user

wants to forecast. An example of this process using an

ANN with 3 input nodes (k = 3) can be seen at Fig. 1.

3.2 ADANN

The problem of designing ANN could be seen as a search

problem into the space of all possible ANN. Then, that

search can be done by a GA [30] using exploitation and

exploration.

Therefore, there are three crucial issues: (1) about the

solution’s space, which information of the net should be

included into the chromosome; (2) how this information is

codified into the chromosome, i.e. encoding schema; and

(3) how each individual is evaluated and translated into the

fitness function.

In this approach, it has been chosen multilayer percep-

tron (MLP) as computational model due to its approxi-

mation capability and inside this group, Full Connected

MLP with only a hidden layer and Backpropagation (BP)

as learning algorithm, according to [31].

As it was mentioned in Sect. 1, the design of the ANN

will be done by setting the parameters of the ANN. In the

case of MLP with only one hidden layer and BP, these

parameters are: number of inputs nodes, number of hidden

neurons, number of output neurons (only one, it is set by

the forecasting problem), which is the connection pattern

(how the nodes are connected), and the whole set of con-

nection weights (implemented by the seed used to initialize

the connection weights as it will be explained below).

For our approach [7] to design ANN to forecast time

series, a DES for Full Connected MLP has been consid-

ered. For this DES, the information placed into the chro-

mosome will be two decimal digits, i.e. two genes, to

codify the number of inputs nodes (i); other two for the

number of hidden nodes (h); two more for the learning

factor (a); and the last ten genes for the initialization seed

value of the connection weights (s) (seed in SNNS [32] is

‘‘long int’’ type, that is why it has been used 10 genes

(decimal digits) to encode ‘‘s’’), as it can be seen in Fig. 2.

This way, the values of ‘‘i,’’ ‘‘h,’’ ‘‘a’’ and ‘‘s’’ are obtained

from the chromosome as it can be seen in (2). Max_inputs

and max_hidden are parameters of the system. NTS repre-

sents the number of elements of the time series.

i ¼ NTS � max inputs � d1 � 10þ d2ð Þ=100ð Þ
h ¼ NTS � max hidden � d3 � 10þ d4ð Þ=100ð Þ
a ¼ d5 � 10þ d6ð Þ=100

s ¼
X16

j¼7

dj � 1016�j

ð2Þ

The search process (GA) will consist of the following

steps:

Fig. 1 Process to obtain train

and validation pattern subsets
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1. A randomly generated population, i.e. a set of

randomly generated chromosomes, is obtained.

2. The phenotype (i.e. ANN architecture) and fitness

value of each individual of the current generation are

acquired. To obtain the phenotype associated to a

chromosome and its fitness value:

2.1. The phenotype of an individual of the actual

generation is first obtained (using SNNS tool).

2.2. Then, for each ANN, training and validation

pattern subsets are obtained from time series

data depending on the number of inputs nodes,

as it was explained in Sect. 3.1.

2.3. The ANN is trained with BP (using SNNS). The

architecture (topology and connections weights)

of the ANN when the validation error (i.e. error

for validation patterns subset) is minimum

during the training process is stored (i.e. we

adopt early stopping). The fitness for each

individual is the minimum mean square error

(MSE) during the learning process. So this

architecture is the final phenotype of the

individual.

3. Once that fitness values for whole population have

been already obtained, the GA operators such as

elitism, selection, crossover and mutation are applied

in order to generate the population of the next

generation, i.e. a new set of chromosomes.

4. Steps 2 and 3 are iteratively executed till a maximum

number of generations are reached.

A schema of the whole search process can be seen at

Fig. 3.

The fitness value for each individual is the minimum

validation error during the learning process (ANN train-

ing), according to [43].

Regarding the use of MSE in the fitness function, the

rationale is to reduce extreme errors that may highly affect

multistep ahead forecasts. Also, preliminary experiments

(using only training data and a few datasets) have shown

that the MSE fitness leads to better forecasts when com-

pared with mean absolute error (MAE). To choose the

genetic algorithm parameters, Goldberg’s GA [33] and [34]

were taken into account, apart of the experience obtained

during the preliminary experiments. The GA parameters

were set to population size, 50; maximum number of

generations, 100; percentage of the best individual that

stay unchangeable to the next generation (percentage of

elitism), 10%; crossover: parents are split in one point

randomly selected, offspring are the mixed of each part from

parents; mutation probability will be one divided by the

length of the chromosome (1/lengthchrom = 1/16 = 0.07),

and it will be carried out for each gene of the chromosome.

At the end of the search process, the best individual

from the last generation is used to forecast the future

unknown values (t, t ? 1, …, t ? n) one by one using the

k previous known values (t - k, …, t - 2, t - 1). k is the

number of inputs of the ANN obtained from the GA

execution. To forecast several consecutive values (t, t ? 1,

…, t ? n) every time a new value (t) is forecasted, it will

be included in order into the previous known values set of

the time series and used to forecast the next one, t ? 1 (1 to

N ahead forecast).

3.3 Differential evolution algorithm

Differential evolution algorithm (DE) is a stochastic non-

linear optimization algorithm by Storn and Price [35] and

belongs to the class of evolution strategy optimizers. DE

looks for the global minimum of a multidimensional,

multimodal function trying to obtain a good probability.

Fig. 2 Encoding practice used

(decimal presentation) where dj

is the n decimal digit (0–9)

Fig. 3 ANN design by GA schema
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DE community has been growing since the mid 1990s, and

today more researchers are working on and with DE [29,

36].

The main idea of DE is a scheme for generating trial

parameter vectors. DE differs from other evolutionary

algorithms (EA) in their mechanism of generating

offspring. In GA, an individual plays the role of a parent to

generate an offspring. Nevertheless, DE adds the weighted

difference between two vectors, i.e. chromosomes of the

population, to a third vector. So, no separate probability

distribution has to be used, which makes the scheme

completely self-organizing.

In DE a population of solution vectors is successively

updated by addition, subtraction and component swapping,

until the population converges to an optimum. No deriva-

tives are used, very few parameters are set and it is a simple

and apparently very reliable method. That means DE does

not require for the optimization problem to be differen-

tiable as is required by classic optimization methods. DE

can therefore also be used on optimization problems that

are not even continuous and are noisy, change over time,

etc.

Some studies using DE have been done in weather time

series forecasting field [28, 29]. In this document, it is

presented an automatic method to design ANN using

advantages of DE (i.e. hybrid system), to forecast time

series.

There are many schemes of generating individuals in

DE. In this document, it is presented the most popular

scheme, the DE/rand/1/bin, which is used in this research.

Here, we have the process for a DE/rand/1/bin:

1. Pinitial B Generate and evaluate an initial population of

x solutions.

2. Repeat for i = 0, 1, 2, …, until a stopping criterion is

met

2.1. A target vector (Xi) and a base vector (Xr0) are

chosen. The second one randomly, where i, r0 e
{1, …, x}.

2.2. Two random different population members (Xr1,

Xr2) are also chosen, where r1, r2 e {1, …, x}.

2.3. Compute the difference vector from Xr1 and Xr2

(i.e. Xr1 - Xr2).

2.4. Multiply ‘‘2.3’’ by the mutation factor F (param-

eter of the system).

2.5. Vi B Add ‘‘2.4’’ to the base vector (Xr0) to

obtain a mutant vector.

2.6. Ui B Crossover between target vector (Xi) and

Vi.

2.7. Selection is carried out between Xi and Ui.

To apply DE to our system, it was necessary to replace

the GA, which is responsible for carrying out the global

search into the hybrid system, by DE as it can be seen in

[44].

3.4 Estimation distribution algorithm

Estimation of distribution algorithms (EDA) [42] is an

outgrowth of GA. In GA, a population of individual solu-

tions of a problem is kept as part of the search for a better

solution. This population is typically represented as an

array of objects. Depending on the specification of the GA,

the objects might be bit strings, real numbers, etc. In EDA,

this representation of the population is replaced by a

probability distribution over the choices available at each

position in the vector that represents each individual of the

population.

For example, in the case the population is represented by

bit vectors of length 4, the EDA for these populations

would be a single vector of four probabilities (p1, p2, p3

and p4) where each p is the probability of that position

being any of the possible values. Using this probability

vector, it is possible to generate an arbitrary number of new

candidate solutions.

In EC, new solutions are often generated by combining

and modifying existing ones in a stochastic way. Proba-

bility distribution of new solutions over the space of all

possible ones is usually not specified. In EDA, a proba-

bility distribution is used to approximate a population and

new solutions are obtained by sampling this distribution.

This has several advantages; one of them is to avoid

premature convergence and being a more compact

representation.

Maybe because estimation distribution algorithm is a

recent technique (came into use just a few years ago), it has

been carried out few hybrid studies (i.e. ANN ? EDA)

applied only to classification domains [37]. In this paper, it

is proposed a new hybrid method using advantages of EDA

to design ANN to forecast time series. Besides, it is a

totally automatic method.

There are different kinds of EDA, but for our approach,

it has been chosen UMDA, with no dependencies between

variables, according to [37]. Here, we have the process for

a general EDA:

1. D0 B Generate and evaluate an initial population of

solutions

2. Repeat for k = 0, 1, 2, …, until a stopping criterion is

met

2.1. DSel
k B Select a subset of solutions from Dk

2.2. Pk(X) B Estimate the empirical probability

distribution of DSel
k

2.3. DNew
k B Sample solutions from Pk(X)

Neural Comput & Applic (2013) 22:11–20 15
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2.4. Dk?1 B Create the new population with solu-

tions from DNew
k and DSel

k

2.5. Dk B Dk?1

2.6. Evaluate solutions in Dk

To apply EDA to our approach, it was necessary to

replace the GA (explained in Sect. 3.2), which is respon-

sible for carrying out the global search into the hybrid

system, by EDA. It can be observed that the principal

differences between GA and EDA consist of steps ‘‘2.2’’

and ‘‘2.3,’’ where instead of carrying out crossover and

mutation, it is estimated the empirical probability of each

individual and sampled the solutions. A more detailed

explanation of the system using EDA is given in [45].

4 Experimental setup and results

4.1 Time Series

The research presented in this paper was initially motivated

by NN3 (2007) and NN5 (2008) time series competition

[38]. To compare the proposed TSF methods, we selected 5

benchmark time series. Four of them are series from the

well-known Hyndman’s Time Series Data Library (TSDL)

[46].

These time series are named Passengers, Temperature,

Dow-Jones and Quebec. Passengers time series represents

the number of passengers of an international airline in

thousands, measured monthly from January 1949 till

December 1960. Temperature time series shows the mean

monthly of air temperature measured at Nottingham Castle

from 1920 till 1939; in this case. Dow-Jones is about the

monthly closings of the Dow-Jones industrial index from

August 1968 till August 1981. Quebec represents the

number of births daily measured in Quebec from January 1,

1977, till December 31, 1978. The last one called Mackey–

Glass is based on the Mackey–Glass differential equation

and is widely regarded as a benchmark for comparing the

generalization ability of different methods. This series is a

chaotic time series generated from a time-delay ordinary

differential equation. This time series has been chosen in

order to extend the experimental datasets by a different

kind of a benchmark, i.e. by a time series that is not based

on real-world data and that contains neither a trend nor a

noise component.

4.2 Evaluation

The global performance of a forecasting model is evaluated

by an accuracy measure, such as root mean squared error

(RMSE) and symmetric mean absolute percentage error

(SMAPE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

h

XTþh

t¼Tþ1

e2
t

vuut ð3Þ

SMAPE ¼ 1

h

XTþh

t¼Tþ1

jetj
ðjytj þ jFtjÞ=2

� 100% ð4Þ

Where et = yt - Ft for t = T ? 1, …, T ? h, ‘‘T’’ is

the number of previous known elements, ‘‘h’’ denotes the

forecasting horizon, yt represents the real value and Ft the

forecasted one.

In all these measures, lower values indicate better

forecasts. Historically, the RMSE is a very popular metric

within TSF.

SMAPE has the advantage of being scale independent,

thus can be more easily used to compare methods across

different series. Although the SMAPE was originally pro-

posed in [39], (4) adopts the variant used in [40] since it

does not lead to negative values (ranging from 0 to 200%).

SMAPE is also used in NN3, NN5 and NNGC1 [38]

forecasting competitions as evaluation error. For the fore-

casting comparison, we opted to compute SMAPE and

RMSE.

4.3 Evolutionary method results

Each evolutionary approach (i.e. GA, DE and EDA hybrid

systems) was executed five times, with a stopping criterion

of 100 and 200 generations, for all time series. We report

the mean results of these five executions. To evaluate the

error for each method, forecasted values were compared

with real values, under the RMSE and SMAPE criteria (3

and 4).

In Table 1, the results obtained for all time series and

the average in generation number 100 are shown. On the

other hand, it is shown the results obtained for all time

series and the average in generation number 200 in

Table 2.

As it can be observed in Table 1, applying DE instead of

GA, we achieve better forecasting (SMAPE/RMSE) in two

of the time series. On the problems of Mackey–Glass and

Temperature, better SMAPE results are obtained with DE,

and in Mackey–Glass case, the improvement is about 2.6%.

Besides, DE and EDA obtain better average results than GA.

If the experiments are run over 200 generations

(Table 2), it can be seen an important improvement in

almost all the time series, where DE obtains a better

forecast than GA in four of the five time series. Only in

Quebec time series, GA is still better than DE although

difference is not significant. A special consideration has to

be taken on Mackey–Glass time series where the SMAPE

error result is 3.74%, being the values forecasted by our

approach almost identical to the real time series values.

16 Neural Comput & Applic (2013) 22:11–20
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Better results obtained by DE, compared with GA, after

having run experiments 200 generations can be explained

because in DE, more variation in population (because

solutions still do not converge) leads to more varied search

over solution space. That is why it can take more time to

DE to arrive to a better solution.

As it can be seen in Table 1, EDA outperforms GA in

two of the time series when the experiment has been run

only 100 generations. Mackey–Glass and Temperature

obtain better SMAPE results with EDA, and in Mackey–

Glass case, the improvement is about 2.4%. Besides, EDA

does not win in any time series, but in the average, it is the

best method.

But if the experiments are run over 200 generations, it

can be seen in Table 2 an important improvement in almost

all the time series, where EDA obtain a better forecast than

GA in four of the five time series. Only in Passengers time

series, GA is still better than EDA although both results are

Table 1 SMAPE and RMSE

Passengers, Temperature, Dow-

Jones, Quebec and Mackey–

Glass with GA, DE and DEA

for 100 generations (best values

in bold)

100 Generations GA DE EDA

Passengers

SMAPE (%) 3.18 3.36 3.57

RMSE 0.24 3 1021 0.25 9 10-1 0.26 9 10-1

Temperature

SMAPE (%) 4.31 3.91 3.98

RMSE 0.59 9 10-1 0.54 3 1021 0.55 9 10-1

Dow-Jones

SMAPE (%) 6.66 8.19 6.81

RMSE 0.14 3 100 0.17 9 100 0.14 3 100

Quebec

SMAPE (%) 12.64 13.74 13.27

RMSE 0.15 3 100 0.16 9 100 0.15 3 100

Mackey–Glass

SMAPE (%) 8.67 5.99 6.27

RMSE 0.60 9 10-1 0.41 3 1021 0.43 9 10-1

Average

SMAPE (%) 7.09 7.04 6.78

RMSE 0.86 9 10-1 0.90 9 10-1 0.82 3 1021

Table 2 SMAPE and RMSE

Passengers, Temperature, Dow-

Jones, Quebec and Mackey–

Glass with GA, DE and DEA

for 200 generations (best values

in bold)

200 Generations GA DE EDA

Passengers

SMAPE (%) 3.15 3.12 3.22

RMSE 0.23 3 1021 0.23 3 1021 0.24 9 10-1

Temperature

SMAPE (%) 4.24 3.91 3.94

RMSE 0.58 9 10-1 0.54 3 1021 0.56 9 10-1

Dow-Jones

SMAPE (%) 6.31 5.81 5.26

RMSE 0.13 9 100 0.12 9 100 0.11 3 100

Quebec

SMAPE (%) 12.12 13.68 10.96

RMSE 0.14 9 100 0.16 9 100 0.13 3 100

Mackey–Glass

SMAPE (%) 8.04 3.74 1.81

RMSE 0.55 9 10-1 0.25 9 10-1 0.12 3 1021

Average

SMAPE (%) 6.77 6.05 5.04

RMSE 0.81 9 10-1 0.76 9 10-1 0.66 3 1021

Neural Comput & Applic (2013) 22:11–20 17
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really close. A special consideration has to be taken on

Mackey–Glass time series where the SMAPE error result is

1.8%, being the values forecasted by our method almost

identical to the real time series values. On the other hand,

EDA average with 200 generations is almost 1.7% better

than GA average. Good results obtained by EDA compared

with GA after having run experiments 200 generations

could be explained because EDA, unlike GA, avoid pre-

mature convergence. So, when GA gets stock in a local

minimum value, EDA does not and it keeps on looking for

a better result if it has more time, in this case, more gen-

erations to look for. In general, DE and EDA need more

generations to improve results, but the improvements

obtained after 200 generations, make these two methods a

good option to be used as a global search in a hybrid

system to design ANN to forecast time series.

To have a better idea how each method (i.e. GA, DE and

EDA) has evolved during the 200 generations, it is shown

in Fig. 4 the evolution of the fitness value for Mackey–

Glass time series.

As it can be observed, a lower value means a better

fitness. While GA stops decreasing its fitness value

between generation 60 and 70, DE and EDA keeps on

decreasing their values after generation 100.

4.4 ADANN versus Forecast pro�

As a baseline comparison, we choose the popular fore-

casting tool Forecast Pro� (FP) [41]. In particular, we fed

the tool with the in-samples of five datasets (i.e. Passen-

gers, Temperature, Dow-Jones, Quebec and Mackey–

Glass) and executed the full automatic feature of the tool to

obtain the forecasts. The rationale is to use a popular

benchmark that can easily be compared and that does not

require expert model selection capabilities from the user.

Table 3 shows the results obtained for each time series

applying these two different methods, FP and ADANN

using the EDA version with 200 generations. Error

obtained by each method will be measured in SMAPE and

RMSE as it has been done before.

Different information can be acquired from Tables 1

and 2. First of all, Mackey–Glass forecast done by FP is not

a good one, while ADANN obtains a SMAPE error of

1.8%, really close to the real values. Although FP outper-

forms ADANN in three of the five time series (Tempera-

ture, Dow-Jones and Quebec), results from both systems

are really close. Besides, ADANN has a better average.

5 Conclusions and future works

In this paper, we propose three methods to design ANN to

forecast time series.

As they are totally automatic methods, any previous

knowledge from the user is not required. The user does not

have to be an expert in time series. The user just have to

give the time series he wants to forecast and the number of

future elements he wants to be forecasted to the system,

and this method will give these forecasted values as result

to the user.

The results of the experiments disclose that using DE

and EDA, instead of GA, obtain different results depending

on the number of generations they are executed. With only

100 generations, DE and EDA results do not improve too

much compared to GA although both averages are better

than GA. But if 200 generations are reached, it can be
Fig. 4 GA, DE and EDA fitness value during 200 generations for

Mackey–Glass time series

Table 3 SMAPE and RMSE Passengers, Temperature, Dow-Jones,

Quebec and Mackey–Glass with ADANN and Forecast Pro�

ADANN Forecast Pro�

Passengers

SMAPE (%) 3.22 4.51

RMSE 0.24 3 1021 0.27 9 10-1

Temperature

SMAPE (%) 3.94 3.42

RMSE 0.56 9 10-1 0.49 3 1021

Dow-Jones

SMAPE (%) 5.26 4.78

RMSE 0.11 3 100 0.11 3 100

Quebec

SMAPE (%) 10.96 10.37

RMSE 0.13 9 100 0.12 3 100

Mackey–Glass

SMAPE (%) 1.81 26.2

RMSE 0.12 3 1021 0.19 9 100

Average

SMAPE (%) 5.04 9.85

RMSE 0.66 3 1021 0.99 9 10-1
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observed a significant improvement, sometimes with a gain

of 4.3% in the results, as it happens in Mackey–Glass time

series using DE and a gain of 6.2% using EDA.

As it was commented before, obtaining better results by

DE and EDA than with GA after having run the experiments

200 generations could be explained because in DE more

variation in population (because solution has not converged

yet) leads to more varied search over solution space. That is

why it can take more time to DE to arrive to a better solution.

When GA gets stuck in a local minimum, EDA does not and

it keeps on looking for a better result if it is given more time,

in this case, more generations to look for.

In general, DE and EDA need more generations to

improve results better than GA, but the improvement

obtained after 200 generations, make these two methods

better options to use than GA in the global search for a

hybrid system to design ANN to forecast time series.

ADANN, using its EDA and 200 generations version,

outperforms FP forecasting tool in two of the five cases and

obtains a better average.

Future works with additional time series, with similar

characteristics to Quebec and Mackey–Glass, will allow us

to obtain more accurate conclusions about the effect of using

DE and EDA instead of GA. On the other hand, it would be

really interesting to improve DE system with some ideas

such as instead of using a random Xr0, use the best one (i.e.

the one with the best fitness value); or instead of using single

difference (i.e. Xr1 - Xr2), use more vectors for more vari-

ations, for example (Xr1 - Xr2 ? Xr3 - Xr4). Or to improve

EDA system with some ideas such as using EDA with

dependencies between its variables such as MIMIC (i.e.

variables with order one dependencies) or even ‘‘tree’’ EDA,

with no restriction on the numbers of dependencies.

Acknowledgments The research reported here has been supported

by the Spanish Ministry of Science and Innovation under project

TRA2007-67374-C02-02. The authors want to thank specially Ramon

Sagarna for introducing the subject of EDA.

References

1. Makridakis S, Wheelwright S, Hyndman R (2008) Forecasting

methods and applications, 2nd edn. Wiley, USA

2. Nunn I, White T (2005) The application of antigenic search

techniques to time series forecasting. GECCO. In: Preparation of

papers for international journal of automation and computing 13,

pp 353–360

3. Cortez P (2010) Sensitivity analysis for time lag selection to

forecast seasonal time series using neural networks and support

vector machines. In Proceedings of the IEEE International Joint

Conference on Neural Networks (IJCNN 2010), pp 3694–3701,

Barcelona, Spain

4. Crone S, Kourentzes N (2010) Feature selection for time series

prediction a combined filter and wrapper approach for neural

networks. Neurocomputing 73:1923–1936
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