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SUMMARY

Symbol detection in multi-input multi-output (MIMO) communication systems using different particle
swarm optimization (PSO) algorithms is presented. This approach is particularly attractive as particle
swarm intelligence is well suited for real-time applications, where low complexity and fast convergence
is of absolute importance. While an optimal maximum likelihood (ML) detection using an exhaustive
search method is prohibitively complex, PSO-assisted MIMO detection algorithms give near-optimal bit
error rate (BER) performance with a significant reduction in ML complexity. The simulation results show
that the proposed detectors give an acceptable BER performance and computational complexity trade-off
in comparison with ML detection. These detection techniques show promising results for MIMO systems
using high-order modulation schemes and more transmitting antennas where conventional ML detector
becomes computationally non-practical to use. Hence, the proposed detectors are best suited for high-speed
multi-antenna wireless communication systems. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The demand for higher data rate communications for multimedia-based bandwidth-intensive appli-
cations is on increase. Multi-input-multi-output (MIMO)-based systems have shown promise to
meet these challenges [1, 2]. Efficient exploitation of spatial diversity available in the MIMO
channel enables higher system capacity. Orthogonal frequency division multiplexing (OFDM)
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employed in conjunction with MIMO architecture constitutes an attractive solution for modern
wireless communication systems [3] as it has the ability to deal with multipath propagation. It
effectively takes advantage of random fading [1–4] and multipath delay spread [5, 6]. A number
of architectures have been developed for MIMO symbol detection. The Vertical Bell Laboratories
LAyered Space–Time (VBLAST) system is one successful implementation of MIMO systems
[1, 2]. However, the performance of the VBLAST detection scheme [7, 8] is limited due to imperfect
interference cancellation and insufficient receive diversity. The ML detection scheme performs the
best, but its complexity increases exponentially with transmit antennas and with higher modulation
schemes [9–18].

One of the challenges in building wide-band MIMO systems is the tremendous processing
power required at the receiver side. Although coded MIMO schemes offer better performance
than separate channel coding and modulation scheme by fully exploring the trade-off between
multiplexing and diversity [19], its hardware complexity can be significant, especially for wide-
band system with more than four antennas at both the transmitter and the receiver sides. On the
other hand, it is easier to implement traditional channel-coding schemes such as Convolution code
and Turbo code for data rates of hundreds of Mbps. For this reason, we discuss the uncoded MIMO
system also called spatial multiplexing.

Several MIMO detection techniques have been proposed [9–21] to reduce its complexity.
Group detection schemes [20] give better performance but their complexity increases, when the
number of sub-streams in a group is large. Soft interference cancellation mitigates error propa-
gation effect; however, complexity is still a problem [21]. Another potential solution is sphere
decoder (SD) [10–14], which has polynomial computational cost on the average [11]. However,
when problem dimensions are high, its complexity coefficients and variance of computational
time become large. In [17] QR decomposition with sort and Dijkstra’s algorithm is used to
decrease the complexity of SD. The multistage likelihood scheme is proposed in [18] where the
Euclidean distance of the candidate symbol combinations is calculated, instead of all possible
combinations.

Real-life optimization problems (such as ML detection) are often so complex that finding the
best solution becomes computationally infeasible. Therefore, an intelligent approach is to search
for a good approximate solution with reduced complexity. Many techniques have been proposed
that imitate nature’s own ingenious ways to explore the optimal solution. The earliest of the
nature-inspired techniques are the genetic and other evolutionary heuristic algorithms that evoke
Darwinian evolution principles.

Swarm intelligence (SI) [22–25] is one such innovative distributed intelligent paradigm for
solving optimization problems, which originally took its inspiration from the biological examples
such as swarming and flocking phenomena in vertebrates.

Particle swarm optimization (PSO) meta-heuristics is a population-based SI technique inspired
by the coordinated movements of birds flocking introduced by Kennedy and Eberhart in [26].
Standard PSO (SPSO) uses a real-valued multidimensional solution space, whereas in binary PSO
(BPSO) particle positions are binary rather than real valued [27]. The combination of the pure
heuristics such as PSO with local search (LS) is termed as ‘memetic algorithms’ (MAs) [28]. MAs
are extensions that apply additional procedure to further refine the search results efficiently. This
hybridization improves search efficiency [29]. An application of PSO for symbol detection in the
MIMO system has been proposed in [30, 31].

In this paper, reduced complexity near-ML detection using PSO techniques is presented.
The remainder of this paper is organized as follows. Section 2 formulates the MIMO symbol
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detection problem for flat-fading channel. A brief account on existing MIMO detection techniques
is presented in Section 3. Section 4 explains the proposed PSO-MIMO detection algorithms,
followed by performance analysis in Section 5. The paper is concluded in Section 6.

2. MIMO DETECTION FOR FLAT-FADING CHANNEL

2.1. MIMO channel model

Consider a MIMO system as shown in Figure 1, where Nt different signals are transmitted and
arrive at an array of Nr(Nt�Nr) receivers via a rich-scattering flat-fading environment. Grouping
all the transmitted and received signals into vectors, the system can be viewed as transmitting an
Nt×1 vector signal x through an Nt×Nr matrix channel H, with Nr×1 Gaussian noise vector v
added at the input of the receiver. The received signal as an Nr×1 vector can be expressed as

y=Hx+v (1)

where y is the received Nr×1 vector. The (nr,nt)th element of H hnrnt is the complex channel
response from the ntth transmit antenna to the nrth receive antenna. The transmitted symbol x is
zero mean and has covariance matrix Rx= E{xx∗}=�2xI. The vector v is also zero mean and Rv=
E{vv∗}=�2vI. In frequency-selective fading channels, the entire channel frequency response hnrnt
is no longer characterized by a constant; therefore, we can write it as a function of the frequency

y( f )=H( f )x( f )+v( f ) (2)

When OFDM modulation is used, the entire channel is divided into a number of sub-channels.
These sub-channels are spaced orthogonally to each other such that no inter-carrier interference is
present at the sub-carrier frequency subject to perfect sampling and carrier synchronization. When
sampled at the sub-carrier frequency of fnc , the channel model becomes

y(nc) =H(nc)x(nc)+v(nc), nc=−Nc/2, . . .,Nc/2−1 (3)

Figure 1. Nt×Nr MIMO communications system model.
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Figure 2. A simplified linear MIMO communication system showing the following discrete signals:
transmitted symbol vector x∈�Nt , channel matrix H∈RNt×Nr , additive noise vector v∈RNt , receive vector

y∈RNt and detected symbol vector x̂∈RNr .

With Nc sufficiently large, the sub-channel at each of the sub-carriers can be regarded as flat
fading. Therefore, when using OFDM, the MIMO detection over frequency-selective channels is
transformed into MIMO detection over Nc narrow band flat-fading channels. For this reason, we
only focus on the MIMO detection algorithms in flat-fading channels. The entries of the channel
matrix H are assumed to be known to the receiver but not to the transmitter. This assumption is
reasonable if training or pilot signals are sent to estimate the channel, which is constant for some
coherent interval.

2.2. Problem formulation

The task is that of detecting Nt transmitted symbols from a set of Nr observed symbols that have
passed through a non-ideal communication channel, typically modeled as a linear system followed
by an AWGN as shown in Figure 2.

Transmitted symbols from a known finite alphabet v={x1, . . ., xM} of size M are passed to
the channel. The detector chooses one of the MNt possible transmitted symbol vectors from the
available data. Assuming that the symbol vectors x∈�Nt are equiprobable, the maximum likelihood
(ML) detector always returns an optimal solution according to the following:

x∗�arg max
x∈�Nt

P(y is observed|x was sent) (4)

Assuming the additive noise v to be white and Gaussian, the ML detection problem of Figure 2
can be expressed as the minimization of the squared Euclidean distance to a target vector y over
Nt-dimensional finite discrete search set

x∗ =arg min
x∈�Nt

‖y−Hx‖2 (5)

The optimal ML detection scheme needs to examine all MNt or 2bNt symbol combinations (b is
the number of bits per symbol). The problem can be solved by enumerating over all possible x and
finding the one that causes the minimum value as in (5). Therefore, the computational complexity
increases exponentially with constellation size M and the number of transmitters Nt.

We present PSO algorithms-assisted MIMO-OFDM symbol detectors thus viewing the MIMO
symbol detection issue as a combinatorial optimization and approximate the near optimal solution
iteratively with lesser than ML computational complexity. In the following section, a brief note
on some of the existing MIMO detection techniques is presented.
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3. EXISTING MIMO DETECTORS

3.1. Linear MIMO detectors

A straightforward approach to recover x from y is to use an Nt×Nr weight matrix W to linearly
combine the elements of y to estimate x, i.e. x̂=Wy. Zero-forcing (ZF) and minimum mean-
squared error (MMSE) are linear detectors. The ZF algorithm attempts to null out the interference
introduced from the matrix channel by directly inverting the channel with the weight matrix [9]. A
drawback of ZF is that nulling out the interference without considering the noise can increase the
noise power significantly, which in turn results in performance degradation. To solve this, MMSE
minimizes the mean-squared error, i.e. J (W)= E{(x− x̂)∗(x− x̂)}, with respect to W [32, 33].
MMSE possess the desirable property of not enhancing noise as much as ZF. Furthermore, its bit
error rate (BER) performance is better than ZF.

3.2. Nonlinear MIMO detectors

A popular nonlinear combining approach is the VBLAST [1, 2] known as ordered successive
interference cancellation. It uses the detect-and-cancel strategy similar to that of decision-feedback
equalizer. Either ZF or MMSE can be used for detecting the strongest signal component used for
interference cancellation. The performance of this procedure is generally better than those of ZF
and MMSE. VBLAST still provides a suboptimal solution with lower computational complexity
than ML. However, the performance of VBLAST is degraded due to error propagation.

3.3. ML detectors

ML detector is optimal but computational complexity as given in (5) is extremely high [18];
therefore, it is a not practical approach in MIMO systems using many transmitters and higher
QAM constellations.

4. PARTICLE SWARM OPTIMIZATION FOR MIMO-OFDM SYSTEM

4.1. Particle swarm optimization

PSO argues that intelligent cognition derived from interactions of individuals in a social world
and this socio-cognitive approach can be effectively applied to computationally intelligent systems
[23]. A swarm consists of a number of particles (possible solutions) that move (fly) through the
feasible solution space to explore the optimal solution that can be coded as binary strings or real-
valued vectors. The particles are capable of interacting with each other in a given neighborhood
and traverse a search space where a quality measure, fitness, can be evaluated. The particles are
evolved through cooperation and competition among themselves over iterations. The coordinates of
each particle represent a possible solution associated with two vectors, position (Xi ) and velocity
(Vi). In d-dimensional search space, the i th particle can be represented by d-dimensional position
vector Xi = (xi1, xi2, . . ., xid) and another d-dimensional velocity vector Vi = (vi1,vi2, . . .,vid).
Each particle experiences an iterative procedure of adaptation to two types of major information,
i.e. individual learning and cultural transmission, which means the procedure accelerates particles
at each time step towards personal best (best value recorded by each particle) and the position
of the most recent global best point (best position returned form the swarm), with the relative
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Figure 3. Vector representation of PSO model.

acceleration towards each determined stochastically. A key attractive feature of the PSO approach is
its simple mathematical model involving two model equations [23] and fewer parameters to adjust.
In BPSO [27] velocity loses its physical meaning. It is used to determine a probability by squashing
velocities to the range (0,1) by using a sigmoid function. A proof of explicit PSO equations and
its guaranteed convergence [25] suggests its use as ML function optimizer as discussed below.

4.2. PSO-MIMO detection algorithm

We exploit parsimonious PSO algorithm’s potential to optimize symbol detection in the MIMO
system. An important step to implement PSO is to define a fitness function; this is the link between
the optimization algorithm and the real-world problem. The fitness function is unique for each
optimization problem. The fitness function using the coordinates of the particle returns a fitness
value to be assigned to the current location. If the value is greater than the value at respective
personal best (pbest) for each particle, or global best (gbest) for the swarm, then previous locations
are updated with the present locations. The velocity of the particle is changed according to the
relative locations of pbest and gbest as shown in Figure 3. Once the velocity of the particle is
determined, it simply moves to the next position. After this process is applied on each particle, it
is repeated till the maximum number of iterations is reached. The PSO algorithm’s flow diagram
is shown in Figure 4. This exploratory-exploitive optimization approach can be extended to the
MIMO detection optimization problem.

The major challenge in designing PSO-based MIMO detectors is selection of algorithm param-
eters that fit the symbol detection optimization problem. Selection of effective fitness function is
also vital and problem dependent. The fitness function perhaps is the only link between the real-
world problem and the optimization algorithm. The basic fitness function used by the optimization
algorithm to converge to the near optimal solution is (5), which is minimum Euclidian distance.
In addition, the choice of initial solution guess plays an important role in the fast convergence
to a suitable solution. Initial guess is essential for these algorithms to perform well. Therefore,
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Figure 4. PSO algorithm’s flow diagram.

the proposed PSO-MIMO detector takes the output of ZF or ZF-VBLAST as its initial solution
guess. This educated guess enables the algorithm to reach a more refined solution iteratively by
ensuring fast convergence. Assuming random initialization does not guarantee convergence in few
iterations.

4.3. SPSO-MIMO detection algorithm

The proposed MIMO detection algorithm based on standard continuous PSO [30] is described
below:

(1) Initialize the particle size (swarm) by taking the initial solution guess. Initialize the algorithm
parameters.

(2) Fitness of each particle with is a potential candidate solution is calculated using (5):

f =‖y−Hx‖2 (6)

Minimum Euclidean distance for each symbol represents the fitness of solution. Find the
global best performance ‘gbestd’ in the population that represents the least Euclidean
distance found so far. Record the personal best ‘pbestid ’ for each bit along its previous
values.
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(3) Velocity for each particle is computed using the following PSO velocity update equation:

vid(k)=vid(k−1)+�1rand1[pbestid−xid(k−1)]+�2rand2[gbestd −xid(k−1)] (7)

with vid ∈{−vmax,vmax}.
(4) The particle position is updated depending on the following PSO velocity update equation:

xid(k)= xid(k−1)+vid(k) (8)

(5) Repeat from step 2 until maximum number of iterations is reached. Here ‘k’ is the number
of iterations. An optimum number of iterations are tuned for efficient performance. The
solution gets refined iteratively.

4.4. MPSO-MIMO detection algorithm

Hybridization of SPSO with LS is termed as ‘memetic’ PSO (MPSO). The MPSO procedure
further refines the solution found out by SPSO-MIMO using lower significant bit (LSB) flipping.
The algorithm is explained below:

(1) Initialize the algorithm parameters. Assume the initial solution guess.
(2) Find fitness using (6). Find ‘gbestd’ and ‘pbestid ’. Perform velocity and position for each

particle using (7) and (8).
(3) Apply neighborhood search, by initializing ‘bs ’. Evaluate the fitness of neighbors iteratively;

update ‘gbestd’ and ‘pbestid’.
(4) Repeat from step 2 until the maximum number of iterations is reached.

Pseudo-code is shown in Table I. The degree of LS ‘bs’ indicates the LSBs of the best solution
found so far. Keeping the search degree as two would mean four neighbors would be searched for
better fitness. In our LS algorithm ‘bs ’ is kept as 1 and 2, respectively.

4.5. BPSO-MIMO detection algorithm

The application of binary version of PSO for symbol detection in the MIMO system results in a
further improved performance [31]. Here the particles are binary rather than real valued as in the
earlier case of the SPSO-MIMO algorithm. The proposed BPSO-based MIMO detection algorithm
is explained below:

(1) Take the output of ZF or ZF-VBLAST such as xi∈{0,1} as initial particles (initial solution
bit string) instead of selecting randomly from the solution space.

(2) The algorithm parameters are initialized. ‘vid’ is initialized to zero (equal probability for
binary decision), ‘pbestid’ and ‘gbestd’ are initialized to maximum Euclidean distance
depending upon the QAM size.

(3) Evaluate the fitness of each particle (bit) using the same fitness function of (6). The effect on
the Euclidean distance due to search space bits is measured. Find the global best performance
‘gbestd’ in the population and record the personal best ‘pbestid ’ for each bit along its
previous values.

(4) For each search space bit at the dth side of the bit string of particle xi , compute the bits
velocity using the PSO velocity update Equation (7).
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Table I. MPSO-MIMO algorithm’s pseudo-code.

Phase-1: Initialize particle size=Np; Randomly get particle
position; Set boundaries for velocities; Initialize parameters;

Phase-2: For i =1 :Np
%Get velocity for next position updating

vid (k)=vid (k−1)+�1rand1[pbestid −xid (k−1)]+�2rand2[gbestd −xid (k−1)]
If velocity<boundary
%Update particle position;

xid (k)=xid (k−1)+vid (k)
Else
%Velocity=Cyclic velocity;
End
%Apply neighborhood search
Initialize lower bits to search
For J =1 :Number of neighbors

%Iterative search in neighborhood
Evaluate();
If Fitness(xid (k))<Fitness(xid (k−1))
%Update Local Best;
pbesti=xid (k);

End
%Update Global Best;
Gbest=min(pbest);

End

(5) The particle position is updated depending on the following binary decision rule:

If rand3<S(vid(k)) then xid(k)=1, else xid(k)=0 (9)

(6) Goto step 3 until maximum number of iterations is reached.

‘rand’ is a random number generated uniformly in [0,1] and ‘S’ is the sigmoid transformation
function

S(vid(k))= 1

1+exp(−vid(k))
(10)

The parameter ‘vi ’ is the particles predisposition to make 1 or 0; it determines the probability
threshold to make this choice. The individual is more likely to choose 1 for higher vid(k), whereas
its lower values will result in the choice of 0. Such a threshold needs to stay in the range of [0,1].
The sigmoid logistic transformation function maps the value of vid(k) to a range of [0,1].

4.6. PSO parameter control

The terms �1 and �2 are positive acceleration constants used to scale the contribution of cognitive
and social components such that �1+�2<4 [9]. These are used to stochastically vary the relative
pull of pbest and gbest. vmax sets a limit to further exploration after the particles have converged.
Its values are problem dependent but usually set in the range of ±4 for BPSO and ±10 for standard
PSO [9]. The particle size is assumed fixed for SPSO and MPSO; however, it varies with the
system in the case of BPSO. These parameters are discussed next.
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4.7. PSO-MIMO detection algorithm’s relationship

In SPSO originally proposed in [26] particle positions are real valued; however, in its later version
BPSO [27], the particles represent binary bits rather than real values. Therefore, the MIMO detec-
tion problem formulation using SPSO as discussed in Section 4.3 is based on real-valued search
space, whereas, in the case of the BPSO-MIMO detection algorithm as explained in Section 4.5,
the problem formulation is different. Here the solution is converted into binary string and particles
are bits in this string. The BPSO algorithm is applied on each bit to get the newer solution bit
string for fitness analysis.

The MPSO-based MIMO detection algorithm finds out the solution using exactly the same
procedure as that of the SPSO-MIMO algorithm; however, the solution returned is further refined
using the LS method. Therefore, the MPSO-MIMO detection technique offers better performance
with additional complexity overhead in comparison with the SPSO-MIMO detection algorithm. In
depth performance analysis of these proposed PSO-MIMO detection methods is presented below.

5. SIMULATION RESULTS’ ANALYSIS AND THEORETICAL EVALUATION

This section provides simulations’ results and theoretical analysis to prove the performance of the
proposed PSO-MIMO detectors.

5.1. Experimental set-up

We evaluate the performance of proposed detectors for a 2×4 (Nt×Nr) MIMO-OFDM system
with 4-QAM, 16-QAM, 32-QAM and 64-QAM constellations. In addition, the proposed detectors
are also tested in a 4×4 and 8×8 4-QAM MIMO configurations. One hundred and twenty-eight
sub-carriers and cyclic prefix of length 32 are used. BER performance is analyzed at different SNR.
The SNR (Eb/No) is the average signal-to-noise ratio per antenna (P/�2v), where P is the average
power per antenna and �2v is the noise variance. The simulation environment assumes Rayleigh
flat-fading channel with no correlation between sub-channels. An average of no less than 30 000
simulations were taken to report statistically relevant results. In the simulated system, acceleration
constants �1 and �2 are assumed to be unity for simplification, whereas vmax=±4 for BPSO and
vmax=±10 for SPSO detection algorithms [9]. The particle size in SPSO and MPSO detection
algorithms is kept as 16 for the result shown in Figure 5. Here random initial particle positions are
assumed. For the BPSO-MIMO system as shown in Figures 7 and 8, particle size ‘Np’ depends
upon the QAM size and the number of transmitters used in the MIMO system. In the case of
BPSO, Np=b×Nt where ‘b’ is bits per symbol. For a 4×4, 4-QAM system, ‘Np’ equals 8 and
it grows to 16 for an 8×8, 4-QAM system. Algorithm iteration ‘Nitr’ is kept according to the
system requirements. As an initial estimate we use the result of VBLAST for the results obtained
in Figures 7 and 8. Lesser Nitr will now be required due to refined initial solution guess instead
of random particle positions as assumed in the earlier results obtained in Figures 5 and 6. For the
results shown in Figures 7 and 8, ‘Nitr’ is kept in the range of 10–20.

5.2. BER versus SNR performance

Figure 5 depicts BER versus Eb/No performance of SPSO-MIMO and MPSO-MIMO detectors
in comparison with the optimal ML. The former shows 4-dB, whereas the latter 2-dB reduced
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performance at 10−2 BER as compared with the ML detector. Figure 6 demonstrates the conver-
gence behavior of SPSO and MPSO algorithms with increase in algorithm iterations using a
random initial solution guess. SPSO-MIMO algorithm with 16-QAM converges to optimal BER in
25 iterations, whereas 32-QAM system takes 32 iterations to converge. Similarly, MIMO-MPSO
detection requires 18 and 25 iterations with 16-QAM and 32-QAM systems to converge to the
ML performance.
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Figure 7 shows the BER versus Eb/No performance of BPSO and SPSO detectors compared
with ML for 4×4 4-QAM MIMO system. Now the initial solution guess of VBLAST is assumed
for fast convergence. Nitr is kept at 10. At 10−3 BER, BPSO and SPSO detector results in 3-
and 6-dB degraded BER performance with respect to ML. Similarly, for an 8×8, 4-QAM, MIMO
system in Figure 8, at 10−3 BER, BPSO and SPSO algorithms result in 4- and 7-dB degraded
BER performance in comparison with the optimal detector. However, a substantial ML complexity
reduction is achieved, which is discussed in the next subsection.
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5.3. Computational complexity theoretical evaluation

Here we examine the computational complexity of the reported PSO-MIMO detectors and formu-
late a theoretical expression for computational complexity. A comparison with the conventional ML
optimal detection method is also drawn. As the hardware cost of each algorithm is implementation-
specific, we try to provide a rough estimate of complexity in terms of number of complex multi-
plications. The computational complexity is computed in terms of the Nt,Nr and the constellation
size M .

For the ML detector as seen from (5) MNt(NrNt) multiplications are required for matrix multipli-
cation operation and additional MNtNr multiplications are needed for square operation. Therefore,
ML complexity becomes

�ML=Nr(Nt+1)MNt (11)

In the case of ZF detection, the pseudo-inverse of matrix (HHH)−1HH takes 4N3
t +2N2

t Nr multi-
plications [34]. Therefore, ZF complexity becomes

�ZF=4N3
t +2N2

t Nr (12)

For VBLAST the pseudo-inverse matrix is calculated Nt times with decreasing dimension. In addi-
tion, the complexity of ordering and interference canceling is

∑Nt−1
i=0 [Nt(Nt−i)+2Nt]. Therefore,

total complexity of VBLAST (�VBLAST) results in

�VBLAST =
Nt∑

i=0
(4i3+2Nri

2)+
Nt−1∑

i=1
[Nt(Nt−i)+2Nt] (13)

= N4
t +(5/2+2/3Nr)N

3
t +(7/2+Nr)N

2
t +1/3NtNr (14)

For the proposed detector, first fitness of each particle in population Np using (5) is calculated.
Multiplication complexity (�PSO) becomes

�PSO=Np(NtNr) (15)

Velocity update in PSO and pheromone updates require �vel additional multiplications per iteration
from (7). To reduce some complexity w=1 and �1=�2=1 is assumed. Therefore, �vel becomes
2 and the complexity becomes

�PSO=Np(NtNr+�vel) (16)

This procedure is repeated Nitr times to converge to the near-optimal BER performance. Therefore,

�PSO=Np(NtNr+�vel)Nitr (17)

The computational complexity for LS MPSO results in

�MPSO=Np(NtNr+�vel)Nitr2
bs (18)

where bs represents the degree of LS in bits.
If the detectors take initial solution guess of ZF or VBLAST solution, its complexity is also

added to get the resultant complexity �PSO-total.

�PSO-total=�PSO+(�VBLAST or �ZF) (19)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Commun. Syst. (2008)
DOI: 10.1002/dac



A. A. KHAN ET AL.

Table II. Computational complexity comparison—MQAM 2×4-MIMO system.

Method 16-QAM 32-QAM 64-QAM

ML detector 3072 12 288 49 152
SPSO-MIMO using (15) (Np=10,Nitr=25, (Np=12,Nitr=32, (Np=16,Nitr=38,

�vel=2) 2500 �vel=2) 3480 �vel=2) 6080
ML complexity reduction 19% 71% 88%
(�ML−�PSO)/�ML
MPSO-MIMO using (16) (Np=10,Nitr=18, (Np=12,Nitr=25, (Np=16,Nitr=32,

�vel=2,bs =1) 3600 �vel=2,bs =1) 6000 �vel=2,bs =1) 10 240
ML complexity reduction 14% (more complex) 51% 79%

Table III. Computational complexity comparison—4QAM Nt×Nr MIMO system.

Method 4×4 8×8

ML 5120 4.7M
SPSO-MIMO using (19) (Np=10,Nitr=10, (Np=20,Nitr=20,

�vel=2,�VBLAST=712) 2512 �vel=2,�VBLAST=8864) 36 064
ML complexity reduction 51% 99%
(�ML−�PSO)/�ML
BPSO-MIMO using (19) (Np=8,Nitr=10, (Np=16,Nitr=20,

�vel=2,�VBLAST=712) 2152 �vel=2,�VBLAST=8864) 29 984
ML complexity reduction 58% 99%

From (11) it is obvious that the complexity of ML is exponential with Nt and M . ML complexity
for a 4-QAM 4×4 system is 5120 and it grows to 4.7M for the 8×8 system. This increase is
even significant with higher-order modulation schemes in MIMO systems with more transmitters.

A detailed complexity comparison is shown in Tables II and III. However, this complexity
estimate is only meaningful in the order-of-magnitude sense since it is based on the number of
complex multiplications only. The above complexity is estimated on subcarrier-by-subcarrier for
the MIMO-OFDM system.

5.4. BER performance-computational complexity trade-off

Table IV suggests that a reasonable performance-complexity trade-off exists when a comparison of
the proposed detectors is drawn with the exhaustive search ML detector. With 32-QAM, MIMO-
SPSO detectors improve the computation time by 71% and this improvement reaches 88% with
64-QAM. Similarly, 64-QAM, MIMO-MPSO detection algorithm reduces the computation time by
79% approximately. For a 4×4, 4-QAM system, at 10−3 BER the performance of BPSO detector
is 3-dB lesser than ML with 58% ML complexity reduction. Similarly, in 8×8, 4-QAM system,
the BPSO algorithm achieves 10−3 BER at 4-dB more SNR than ML, whereas ML complexity
reduction is 99%.

5.5. Effects of change in algorithm parameters and increase in iterations

These detectors converge to near-optimal performance iteratively; however, these algorithms also
experience saturation after reaching a particular threshold BER. Therefore, iteration tuning is
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Table IV. Performance complexity trade-off.

Performance complexity comparison 2×4 32-QAM 4×4 4-QAM 8×8 4-QAM

ML and BPSO detector
Complexity reduction — 58% 99%
Performance degradation at 10−3 BER — 3dB 4 dB

ML and SPSO detector
Complexity reduction 71% 51% 99%
Performance degradation at 10−2 BER 4 dB 6 dB 7 dB

ML and MPSO detector
Complexity reduction 51% — —
Performance degradation at 10−2 BER 2 dB — —
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Figure 9. Convergence with iterations at 15-dB.

required for optimum performance. Figure 6 shows the convergence of SPSO andMPSO algorithms
with an increase in iterations with random initialization. Nitr is kept at 18 and 25 for the 16-QAM
and 32-QAM systems SPSO and MPSO systems. Figure 9 presents the convergence pattern of
BPSO with ZF and VBLAST initial inputs. The algorithm gets saturated at around 10 iterations
with VBLAST input and 15 iterations for the ZF initialization case. Therefore, Nitr is kept at 10 for
a 4×4 MIMO system. The choice of good initial guess has an effect on the detectors convergence
as can be seen from Figure 9.

Figure 10 shows the effect of changing the algorithm parameters on the detectors’ performance.
Values of the cognitive component (c1) and social component (c2) are changed. Results in Figure 10
assume c1=c2=0.5,1.49 and 2. Larger values of social and cognitive components result in an
improvement in BER performance. A possible reason is frequent fly over and coming back to a
better solution is achieved with higher c1 and c2 values.
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Figure 10. Effect on BER performance with change in social and cognitive components.

5.6. Comparison of different PSO-MIMO detection algorithms

In this paper, we applied different PSO algorithms such as SPSO, MPSO and BPSO to optimize the
exhaustive-search ML detection problem in a MIMO communications system. The BPSO-MIMO
detectionalgorithmperformsthebest among theotherPSO-MIMOtechniques.Thereasonforefficient
performance of the BPSO-MIMO detection algorithm is the inherent binary nature of the MIMO
detection problem. The MIMO detection fitness function in (6) is best optimized using the BPSO
algorithm. That is why the binary version of PSO has outperformed the other two MPSO-MIMO
and SPSO-MIMO detection algorithms in BER performance as well as computational complexity.

5.7. An analysis of PSO algorithm as a MIMO detection technique

Particle SI-assisted detection approach shows promising results. Their simple mathematical model,
lesser implementation complexity, resistance to being trapped in local minima and guaranteed
convergence to reasonable solution in lesser iterations make these nature inspired techniques a
suitable candidate for real-time symbol detection in the MIMO system. PSO algorithms imitate
nature’s own ingenious ways to explore the search space to find out an optimal solution from a
complex ML cost surface. The efficiency of these algorithms also lies in a simple computer code in
the central algorithm with few parameters to tune. Exploratory-exploitive search approach, which
is an essence of PSO, makes it an efficient ML search optimizer. The reduction in computation
time with higher-order modulations and more transmitting antennas make these proposed detection
algorithms particularly useful for high data rate communications system.

6. CONCLUSIONS

In this paper the application of PSO algorithms for symbol detection in a spatial multiplexing
system was presented. These SI meta-heuristics proved to be powerful ML function optimizers.
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Their simple model with lesser implementation complexity makes them suitable for this NP-
hard MIMO detection problem. PSO-optimized MIMO symbol detection methods approach near-
optimal performance with significantly reduced computational complexity, especially for higher
constellation systems with multiple transmitting antennas and larger constellation alphabet sizes,
where conventional ML detector is computationally expensive and non-practical to implement.
The simulation results suggest that the proposed PSO detectors reduce the ML computational
complexity by as high as 99% with near-optimal BER performance for an 8×8 MIMO-OFDM
system. Therefore, these proposed detection algorithms are particularly suitable for future high-
speed wireless communications system employing multiple antennas and higher-order modulation
schemes.
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