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Optimization

min f(x), x = (xq,...
s.t.: g(x) <0
h(x) =0

7Xn) € R" (1)

Can be converted to unconstrained optimization using:
@ Penalty method;
@ Lagrangian;

@ Augmented Lagrangian.

Our focus is unconstrained optimization. We must learn how to walk
before we can run.

/@W
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@ Introduction: Large Scale Global Optimization
© Approaches to Large-Scale Optimization
a Variable Interaction: Definitions and Importance

e Interaction Learning: Exploiting Modularity

© Conclusion

O Questions
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Large Scale Global Optimization (LSGO)
How large is large?
@ The notation of large-scale is not fix.
@ Changes over time.
2) @ Differs from problem to problem.
(3) @ The dimension at which existing methods start to fail.
y
State-of-the-art (EC)
@ Binary: ~ 1 billion [a].
@ Integer (linear): = 1 billion [b], [c].
@ Real: ~ 1000-5000.
[a] Kumara Sastry, David E Goldberg, and Xavier Llora. “Towards billion-bit optimization via a parallel estimation
of distribution algorithm”. In: Genetic and Evolutionary Computation Conference. ACM. 2007, pp. 577-584.
[b] Kalyanmoy Deb and Christie Myburgh. “Breaking the Billion-Variable Barrier in Real-World Optimization
Using a Customized Evolutionary Algorithm”. In: Genetic and Evolutionary Computation Conference. ACM. 2016,
pp. 653-660.
[c] Kalyanmoy Deb and Christie Myburgh. “A population-based fast algorithm for a billion-dimensional resource
allocation problem with integer variables”. In: European Journal of Operational Research 261.2 (2017),
pp. 460-474.
v
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Large Scale Global Optimization: Applications Large Scale Global Optimization: Research

Why large-scale optimization is important?

@ Growing applications in various fields.
: A : Scopus
Target shape design optimization [a]. e P
Satellite layout design [b].
. . - . . 150
Parameter estimation in large scale biological systems [c].
Seismic waveform inversion [d]. s
Parameter calibration of water distribution systems [é]. -
-]
Vehicle routing [f]. :
8 7%
[a] Zhenyu Yang et al. “Target shape design optimization by evolving B-splines with cooperative coevolution”.
In: Applied Soft Computing 48 (Nov. 2016), pp. 672-682. %
[b] Hong-Fei Teng et al. “A dual-system variable-grain cooperative coevolutionary algorithm: satellite-module
layout design”. In: IEEE transactions on evolutionary computation 14.3 (Dec. 2010), pp. 438-455. s
[¢c] Shuhei Kimura et al. “Inference of S-system models of genetic networks using a cooperative coevolutionary
algorithm”' ln: BIOInformatlcs 217 (Apr 2005)' pp 1154—1163 ¢ 1971 1975 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 2019
[d] Chao Wang and Jinghuai Gao. “High-dimensional waveform inversion with cooperative coevolutionary Copyright © 2017 Elsevier B.v. All ights reserved. Scopus® is & registered trademark of Elsevier B.V.
differential evolution algorithm”. In: |[EEE Geoscience and Remote Sensing Letters 9.2 (Mar. 2012), pp. 297-301.
[e] Yu Wang et al. “Two-stage based ensemble optimization framework for large-scale global optimization”. In:
European Journal of Operational Research 228.2 (2013), pp. 308-320.
[] Yi Mei, Xiaodong Li, and Xin Yao. “Cooperative coevolution with route distance grouping for large-scale
capacitated arc routing problems”. In: |[EEE Transactions on Evolutionary Computation 18.3 (2014), pp. 435—449.
v
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Large Scale Global Optimization: Research The Challenge of Large Scale Optimization
Scopus
Other (116%)
Environmental S... (2.7%) Why |S |t d|ff|cu|t?
Business, Manag... (3.0%) —
Computer Scienc.. . . .
Energy (35%) i @ Exponential growth in the size of search space (curse of
Physics and Ast... (3.9%) . . .
Social Sciences... (4.1%) d | menSIOﬂa I |ty) .
Chemical Engine... (4.7%) <
Decision Scienc... (17.5%)
Research Goal
@ Improving search quality (get to the optimal point).
@ Improving search efficiency (get there fast).
v

Mathematics (42.1%)
Engineering (40.4%)

Copyright © 2017 Elsevier B.V. Al rights reserved. Scopus® Is a registered trademark of Elsevier B.V.
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Large Scale Global Optimization: Evolutionary Approaches

Q Initialization

© Sampling and Variation Operators

© Approximation and Surrogate Modeling
© Local Search and Memetic Algorithms
© Decomposition and Divide-and-Conquer
Q Parallelization (GPU, CPU)

@ Hybridization
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Initialization Methods

Inconclusive evidence for or against initialization methods:

» Uniform design works worse than RNG, while good-lattice point and
opposition-based methods perform better [1].

» Another study showed that population size has a more significant effect
than the initialization [2].
Achieving uniformity is difficult in high-dimensional spaces [3].

» Yet another study suggest comparing average performances may not
reveal the effect of initialization [4].

@ Shortcomings:
It is difficult to isolate the effect of initialization.
» Different effect on different algorithms (mostly tested on DE).
» Numerous parameters to study.

[1] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “Initialization methods for large scale global optimization”. In:
Congress on Evolutionary Computation. |EEE. 2013, pp. 2750-2757.

[2] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “Effects of population initialization on differential evolution f
scale optimization”. In: |IEEE Congress on Evolutionary Computation. |[EEE. 2014, pp. 2404-2411.

[3] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “Why advanced population initialization techniques perform pedRly 0
high dimension?” In: SEAL. 2014, pp. 479-490. % g

[4] Eduardo Segredo et al. “On the comparison of initialisation strategies in differential evolution for large scale opsimi
In: Optimization Letters (2017), pp. 1-14.
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Initialization Methods

@ Study the importance of initialization methods [1] in large-scale
optimization.

Determlnlstlc Non Composne] [Composne] [ Generic ] [Ag’;léccﬁfn]

Random
Low X
Number . Hybrid
Generator ] Discrepancy ] -

]

Stochastic

Uniform
Chaotic Experimental

Design

[1] Borhan Kazimipour, Xiaodong Li, and A Kai Qin. “A review of population initialization techniques for evolutigsary
algorithms”. In: Evolutionary Computation (CEC), 2014 IEEE Congress on. |IEEE. 2014, pp. 2585-2592.
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Sampling and Variation Operators

Opposition-based sampling [1]
Center-based sampling [2].
Quantum-behaved particle swarm [3].
Competitive Swarm Optimizer [4].
Social learning PSO [5].

°
°
°
°
°
@ Mutation operators [6], [7].

[1] Hui Wang, Zhijian Wu, and Shahryar Rahnamayan. “Enhanced opposition-based differential evolution for solving
high-dimensional continuous optimization problems”. In: Soft Computing 15.11 (2011), pp. 2127-2140.

[2] Sedigheh Mahdavi, Shahryar Rahnamayan, and Kalyanmoy Deb. “Center-based initialization of cooperative co-evolutionary
algorithm for large-scale optimization”. In: |[EEE Congress on Evolutionary Computation. |EEE. 2016, pp. 3557-3565.

[3] Deyu Tang et al. “A quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous
non-linear large scale problems”. In: Information Sciences 289 (2014), pp. 162-189.

[4] Ran Cheng and Yaochu Jin. “A competitive swarm optimizer for large scale optimization”.
Cybernetics 45.2 (2015), pp. 191-204.

In: IEEE Transactions on

[5] Ran Cheng and Yaochu Jin. “A social learning particle swarm optimization algorithm for scalable optimization”.
Information Sciences 291 (2015), pp. 43-60.

[6] Hongwei Ge et al. “Cooperative differential evolution with fast variable interdependence learning and GE
mutation”. In: Applied Soft Computing 36 (2015), pp. 300-314. =
[7] Ali Wagdy Mohamed and Abdulaziz S Almazyad. “Differential Evolution with Novel Mutation and Adapti "‘%7 d
Strategies for Solving Large Scale Global Optimization Problems”. In: Applied Computational Intelligence and Soj

2017 (2017).
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Approximation Methods and Surrogate Modeling

High-Dimensional Model Representation (HDMR) [1].
Radial Basis Functions [2].

Kriging and Gradient-Enhanced Kriging Metamodels [3].
Piecewise Polynomial (Spline) [4].

[1] Enying Li, Hu Wang, and Fan Ye. “Two-level Multi-surrogate Assisted Optimization method for high dimensional
problems”. In: Applied Soft Computing 46 (2016), pp. 26-36.

[2] Rommel G Regis. “Evolutionary programming for high-dimensional constrained expensive black-box optimizatiog
radial basis functions”. In: |EEE Transactions on Evo/ut/onary Computation 18.3 (2014) pp. 326-347.

problems”. In: |[EEE Congress on Evo/utlonary Computation. |EEE. 2016, pp. 1917-1923.

[4] Zhenyu Yang et al. “Target shape design optimization by evolving B-splines with cooperative coevolution”.
Soft Computing 48 (Nov. 2016), pp. 672-682.
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Parallelization

@ Algorithms capable of parallelization [1], [2].
e GPU [3], [4].
o CPU/OpenMP [5].

[1] Jing Tang, Meng Hiot Lim, and Yew Soon Ong. “Diversity-adaptive parallel memetic algorithm for solving large scale
combinatorial optimization problems”. [n: Soft Computing 11.9 (2007), pp. 873-888.

[2] Hui Wang, Shahryar Rahnamayan, and Zhijian Wu. “Parallel differential evolution with self-adapting control parameters
and generalized opposition-based learning for solving high-dimensional optimization problems”. In: Journal of Parallel
Distributed Computing 73.1 (2013), pp. 62-73.

[3] Kumara Sastry, David E Goldberg, and Xavier Llora. “Towards billion-bit optimization via a parallel estimation
distribution algorithm™.

[4] Alberto Cano and Carlos Garcia-Martinez. “100 Million dimensions large-scale global optimization using distri
computing”. In: IEEE Congress on Evolutionary Computation. |[EEE. 2016, pp. 3566—-3573.

[5] AJ Umbarkar. “OpenMP Genetic Algorithm for Continuous Nonlinear Large-Scale Optimization Problems”.
International Conference on Soft Computing for Problem Solving. Springer. 2016, pp. 203-214.
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Local Search and Memetic Algorithms

@ Multiple Trajectory Search (MTS) [1].

@ Memetic algorithm with local search chaining [2].
» MA-SW-Chains [3].
» MA-SSW-Chains [4].

@ Multiple offspring sampling (MOS) [5], [6].

[1] Lin-Yu Tseng and Chun Chen. “Multiple trajectory search for large scale global optimization”.
Evolutionary Computation. |EEE. 2008, pp. 3052-3059.

In: IEEE Congress on

[2] Daniel Molina, Manuel Lozano, and Francisco Herrera. “Memetic algorithm with local search chaining for large scale
continuous optimization problems”. In: /EEE Congress on Evolutionary Computation. |EEE. 2009, pp. 830-837.

[3] Daniel Molina, Manuel Lozano, and Francisco Herrera. “MA-SW-Chains: Memetic algorithm based on local searc
for |arge scale continuous global optimization”. In: IEEE Congress on Evo/utionary Computation IEEE. 2010, pp. 1-8

In: IEEE Congress on Evo/utronary Computatron IEEE 2012 pp. 1-8.

[6] Antonio LaTorre, Santiago Muelas, and José-Marfa Pefia. “A MOS-based dynamic memetic differential evolu
for continuous optimization: a scalability test”. In: Soft Computing 15.11 (2011), pp. 2187-2199.
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Hybridization (The best of both worlds)

@ Rationale: benefiting from unique features of different optimizers.
» EDA-+DE: [1].

» PSO+ABC: [2].
» Different DE variants: JADE+SaNSDE [3].
» PSO+ACO [4].
» Minimum Population Search+CMA-ES [5].

[1] Yu Wang, Bin Li, and Thomas Weise. “Estimation of distribution and differential evolution cooperation for large scale
economic load dispatch optimization of power systems”. In: Information Sciences 180.12 (2010), pp. 2405-2420.

[2] LN Vitorino, SF Ribeiro, and Carmelo JA Bastos-Filho. “A hybrid swarm intelligence optimizer based on particles 3
artificial bees for high-dimensional search spaces”. In: |[EEE Congress on Evolutionary Computation. |EEE. 2012, pp.

[3] Sishi Ye et al. “A hybrid adaptive coevolutionary differential evolution algorithm for large-scale optimization”.
Congress on Evolutionary Computation. |EEE. 2014, pp. 1277-1284.

[4] Wu Deng et al. “A novel two-stage hybrid swarm intelligence optimization algorithm and application”.
Computing 16.10 (2012), pp. 1707-1722.

[5] Antonio Bolufé-Réhler, Sonia Fiol-Gonzélez, and Stephen Chen. “A minimum population search hybrid for larg
global optimization”. |In: |[EEE Congress on Evolutionary Computation. |[EEE. 2015, pp. 1958-1965.
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Decomposition Methods Variable Interaction, Linkage, Epistasis

What is variable interaction?

@ Genetics: two genes are said to interact with each other if they collectively
represent a feature at the phenotype level.

o @ The extent to which the fitness of one gene can be suppressed by another gene.
@ Divide-and-conquer . . .

@ The extent to which the value taken by one gene activates or deactivates the effect
@ Dimensionality reduction of another gene.

v

Why variable interaction?

@ The effectiveness of optimization algorithms is affected by how much
they respect variable interaction.

@ Also applies to classic mathematical programming methods.

17/ o4
Variable Interaction, Linkage, Epistasis Definitions

Variable Interaction
[llustrative Example

o f(x,y) = x? + A\1y?
o g(x,y) = x*+ A1y? + daxy

A variable x; is separable or does not interact with any other variable iff:

arg minf(x) = (arg minf(x),a\t;g r_‘r;i_nf(x)),
X x; )i

T

where x = (x1,...,X,) is a decision vector of n dimensions.

Partial Separability

A function f(x) is partially separable with m independent subcomponents iff:

Improvement Interval

arg minf(x) = (arg minf(x1,...),...,arg minf(... ,xm)),

X1

£ X1,...,Xm are disjoint sub-vectors of x, and 2 < m < n.

| 5

1 at

1 1 E Note: a function is fully separable if sub-vectors xi, ..., xn, are 1-dimensional (i.e.,
= TImprovement Interval Improvement Interval m = n).
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Definitions

Full Nonseparability

A function f(x) is fully non-separable if every pair of its decision variables interact with
each other.

Additive Separability

A function is partially additively separable if it has the following general form:

f(x) = Z fi(xi) .

where x; are mutually exclusive decision vectors of f;, x = (x1,...,X,) " is a global

decision vector of n dimensions, and m is the number of independent subcomponents.

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO

Effect of Variable Interaction

© Approximation and Surrogate Modelling:

» Should be able to capture variable interaction.
» Second order terms of HDMR.

© Local Search and Memetic Algorithms:
» What subset of variables should be optimized in each iteration of local
search?
» Coordinate-wise search may not be effective. Memetics perform well on
separable functions! A coincidence?!
© Decomposition and Divide-and-Conquer:
» Interacting variables should be placed in the same component.

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO
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Effect of Variable Interaction

Sampling and Variation Operators:
@ GAs: inversion operator to promote tight linkage [1].
> Increasing the likelihood of placing linked genes close to each other to
avoid disruption by crossover.
» Rotation of the landscape has a detrimental effect on GA [2].
@ The need for rotationally invariance:
» Model Building Methods:

* Estimation of Distribution Algorithms and Evolutionary Strategies:
Covariance Matrix Adaptation.
* Bayesian Optimization: Bayesian Networks.

» DE's crossover is not rotationally invariant.
» PSO is also affected by rotation [3].

[1] David E Goldberg, Robert Lingle, et al. “Alleles, loci, and the traveling salesman problem”. In: International Con| Brenge.
on Genetic Algorithms and Their Applications. Vol. 154. 1985, pp. 154-159.

" {9
of some theoretical and practical aspects of genetic algorithms”. In: BioSystems 39.3 (1996), pp. 263-278. :GKQ 7

[3] Daniel N Wilke, Schalk Kok, and Albert A Groenwold. “Comparison of linear and classical velocity update q@ “ e
swarm optimization: Notes on scale and frame invariance”. |In: International journal for numerical methods in enggreering 70.8
(2007), pp. 985-1008.

Linkage Learning and Exploiting Modularity

@ Implicit Methods:
» In EC:
* Estimation of Distribution Algorithms
* Bayesian Optimization: BOA, hBOA, Linkage Trees
* Adaptive Encoding, CMA-ES
» Classic Optimization:
* Quasi-Newton Methods: Approximation of the Hessian.

@ Explicit Methods:

» In EC:

* Random Grouping

Statistical Correlation-Based Methods
Delta Grouping
Meta Modelling
Monotonicity Checking

* Differential Grouping
» Classic Optimization

* Block Coordinate Descent

* Adaptive Coordinate Descent

* % ot
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Implicit Methods Scalability issues of EDAs

@ Accurate estimation requires a large sample size which grows

® Scaling Up EDAs: exponentially with the dimensionality of the problem [1].

» Model Complexity Control [1].
» Random Matrix Projection [2].
» Use of mutual information [3]. @ The cost of sampling from a multi-dimensional Gaussian distribution
> Cauchy-EDA [4]. increases cubically with the problem size [3].

@ Scaling up CMA-ES:
» CC-CMA-ES [5].

@ A small sample results in poor estimation of the eigenvalues [2].

» LM-CMA [6]. Maximum Likelihood eigenvalue estimates True eigenvalues
[%)] wn
<) 4 Q 2
= =
@ ©
. S . . . s =2 =1
[1] Weishan Dong et al. “Scaling up estimation of distribution algorithms for continuous optimization”. In: /EEE c 5
Transactions on Evolutionary Computation 17.6 (2013), pp. 797-822. 8-, k=)
[2] Ata Kabén, Jakramate Bootkrajang, and Robert John Durrant. “Toward large-scale continuous EDA: A random matrix o o
theory perspective”. In: Evolutionary Computation 24.2 (2016), pp. 255-291. 20 40 60 80 100 20 40 60 80 100
[3] Qi Xu, Momodou L Sanyang, and Ata Kaban. “Large scale continuous EDA using mutual information”. In: /EEE
Congress on Evolutionary Computation. |EEE. 2016, pp. 3718-3725.
[4] Momodou L Sanyang, Robert J Durrant, and Ata Kaban. “How effective is Cauchy-EDA in high dimensions?” [1] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. \ol. 1. Springer Zeghs«if

Congress on Evolutionary Computation. |EEE. 2016, pp. 3409-3416. GECC

[5] Jinpeng Liu and Ke Tang. “Scaling up covariance matrix adaptation evolution strategy using cooperative coevolu A
International Conference on Intelligent Data Engineering and Automated Learning. Springer. 2013, pp. 350-357, 4\\\\L -

[6] Ilya Loshchilov. “LM-CMA: An Alternative to L-BFGS for Large-Scale Black Box Optimization”. In: Evolutiggary
Computation (2015).
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Random Projection EDA Explicit Methods

sample from full ML estimate

[2] Roman Vershynin. “Introduction to the non-asymptotic analysis of random matrices”.
(2010).

. Thy,

04 -02 0 02 04
sample from diagonal estimate

saarch points i
04 02 ¢
o™ 04
92 T g 204 02 0 0z 04

ORI R @ A large problem can be subdivided into smaller and simpler problems.
. 0.4 = , .
@ Dates back to René Descartes (Discourse on Method).

0.2,

@ Has been widely used in many areas:

> Computer Science: Sorting algorithms (quick sort, merge sort)

> Optimization: Large-scale linear programs (Dantzig)

> Politics: Divide and rule (In Perpetual Peace by Immanuel Kant: Divide et impera
is the third political maxims.)

0.4 -0.4
04 02 0 02 04 04 02 0 02 04

Sample from Ens-RP (M=50)

Acknowledgement: the above image is obtained from: http://draininbrain.blogspot.com.au/
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Decomposition in EAs: Cooperative Co-evolution [1] CC is a Framework

cv
|CV]‘"""‘CVfL; ..... ‘wg‘
X P A 3 .
} CC as a scalability agent:
{Replace . ..
x| x| | e %, | @ CC is not an optimizer.
: / evaluate : @ Requires a component optimizer.
: / : . L .
: ‘ X; . @ CC coordinates how the component optimizer is applied to
‘ o : v, ‘ components.
cv; ‘ : @ A scalability agent.
- v
Xin Xiv X.n
—_— | —_

[1] Mitchell A. Potter and Kenneth A. De Jong. “A cooperative coevolutionary approach to function optimizatio
Int. Conf. Parallel Problem Solving from Nature. Vol. 2. 1994, pp. 249-257.
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Challenges of CC The Decomposition Challenge

How to decompose?

Main Questi @ There are many possibilities.
ain Questions

@ How to d th blem? @ Which decomposition is the best?
ow to decompose the problem? /

? . ..
@ How to allocated resources? Optimal decomposition

Q How to coordinate o It is governed by the interaction structure of decision variables.

@ An optimal decomposition is the one that minimizes the interaction
between components.
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Survey of Decomposition Methods lllustrative Example (Canonical CC)

@ Uninformed Decomposition [1]
> n 1—d!mensiona| components (the original CC) @ @ ................ ‘
» k s-dimensional components. \ N
Random Grouping [2]
Statistical Correlation-Based Methods

Delta Grouping [3]

Meta Modelling [4] @ S
Monotonicity Checking [5 A G - )

Differential Grouping [6]

© ¢ ¢ ¢ ¢

©

[1] F. van den Bergh and Andries P Engelbrecht. “A cooperative approach to particle swarm optimization”. In: |[EEE

Transactions on Evolutionary Computation 2.3 (June 2004), pp. 225-239. Flgure: Varlable Interaction Of a hypOthetlcaI funCtlon'

[2] Zhenyu Yang, Ke Tang, and Xin Yao. “Large scale evolutionary optimization using cooperative coevolution”. In:
Information Sciences 178.15 (2008), pp. 2985-2999.

[3] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. “Cooperative co-evolution with delta grouping for large scale

non-separable function optimization”. In: |[EEE Congress on Evolutionary Computation. |EEE. 2010, pp. 1-8. @ n l-dimensional com ponentS:

[4] Sedigheh Mahdavi, Mohammad Ebrahim Shiri, and Shahryar Rahnamayan. “Cooperative co-evolution with a new

decomposition method for large-scale optimization”. In: IEEE Congress on Evolutionary Computation. |EEE. 2014, 7o ¥ > Cl: {X1}7 {X2}7 {X3}7 {X4}? {X5}7 {X6}7 {X7}
pp- 12851292, GECCQle > G {xat Ped, Bk {at D) {6 {xa}
[5] Wenxiang Chen et al. “Large-scale global optimization using cooperative coevolution with variable interaction leag >
In: Parallel Problem Solving from Nature. Springer. 2010, pp. 300-309. 4\\\A\ e
[6] Mohammad Nabi Omidvar et al. “Cooperative co-evolution with differential grouping for large scale optimizatjen”. > Cc: {Xl}, {X2}, {X3}, {X4}, {XS}, {Xﬁ}, {X7}
IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378-393.
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lllustrative Example (fixed k s-dimensional) lllustrative Example (Random Grouping)
Figure: Variable interaction of a hypothetical function. Figure: Variable interaction of a hypothetical function.

@ k s-dimensional (k =2,s = 4): @ Random Grouping (k = 2,5 = 4):

» Ci {x1, %2, %3, X}, {X5, X6, X7 } » Gt {x2,x3,%6, X5}, {X7, X1, X4}
» G {x1,x0,x3, %}, {x5, X6, X7 } » G {x3,xa,x1, %}, {X6, X7, X5 }
| L

» Co: {x1,x2,x3,%a}, {5, X6, X7} » Co: {x1,x5,%6,x7}, {x2, Xa, X3}
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Random Grouping Random Grouping

Theorem

Given N cycles, the probability of assigning v interacting variables
X1, X2, ..., X, into one subcomponent for at least k cycles is:

N N 1 50
P(XZk)=Z<N>< ! )r<1— = )_r () P(X21)=1—P(X=0)=1—<1—1—03> — 0.0488

r mv—l mv—l
r=k

Example
Given n = 1000, m =10, N =50 and v = 4, we have:

) ) ] _ which means that over 50 cycles, the probability of assigning 4 interacting
Wh?re N is tf.1e number of cycles, v is the total number of INEEEITS variables into one subcomponent for at least 1 cycle is only 0.0488. As we
variables, m is the number of subcomponents, and the random variable X

is the number of times that v interacting variables are grouped in one
subcomponent.

can see this probability is very small, and it will be even less if there are
more interacting variables.
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1

P(X >= 1), N=50 ——
P(X >= 1), NL10000 -

0.9 P(X>=1),v=

P(X>=1 §,V=4 ,,,,,,,
)

0.8

0.7

0.6

0.5

Probability
1
Probability

0.4
03 \ . 03 | _
02

0.1

! ey ! ! 0 T T i ! ! ! ! ! !
2 3 4 5 6 7 8 9 10 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of interacting variables(v) Number of cycles

Figure: Increasing N, the number of cycle increases the probability oG@e
number of interacting variables in one subcomponent.

Figure: Increasing v, the number of interacting variables will significagég
the probability of grouping them in one subcomponent, given n = 1000 andieg
m = 10. ’
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lllustrative Example (Informed with Fixed Groups)

Figure: Variable interaction of a hypothetical function.

@ Delta Grouping (k =2,s = 4):
> Cl: {X17X57X27X4}7{X37X67X7}

» G {x3,x5,%6, X7}, {x1, X2, Xa }
| 4

» Co: {x3,X6,x1, X}, {X2, X5, X7}
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Infomred Decompositions with Fixed Groups

@ Adaptive Variable Partitioning [1].
@ Delta Grouping [2].
@ Min/Max-Variance Decomposition (MiVD/MaVD) [3].

» Sorts the dimensions based on the diagonal elements of the covariance
matrix in CMA-ES.

@ Fitness Difference Partitioning [4], [5], [6].

[1] Tapabrata Ray and Xin Yao. “A cooperative coevolutionary algorithm with correlation based adaptive variable
partitioning”. In: IEEE Congress on Evolutionary Computation. |EEE. 2009, pp. 983-989.

[2] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. “Cooperative co-evolution with delta grouping for large scale
non-separable function optimization”. In: /EEE Congress on Evolutionary Computation. |EEE. 2010, pp. 1-8.

[3] Jinpeng Liu and Ke Tang. “Scaling up covariance matrix adaptation evolution strategy using cooperative coevolutig
International Conference on Intelligent Data Engineering and Automated Learning. Springer. 2013, pp. 350-357.

[4] Eman Sayed, Daryl Essam, and Ruhul Sarker. “Dependency identification technique for large scale optimizationgg
In: IEEE Congress on Evolutionary Computation. |EEE. 2012, pp. 1-8.

[5] Eman Sayed et al. “Decomposition-based evolutionary algorithm for large scale constrained problems”.
Sciences 316 (2015), pp. 457-486.

[6] Adan E Aguilar-Justo and Efrén Mezura-Montes. “Towards an improvement of variable interaction identificatip
large-scale constrained problems”. In: /EEE Congress on Evolutionary Computation. |EEE. 2016, pp. 4167-4174.
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Delta Grouping

X2

Improvement Interval

- -

Improvement Interval

x1

A

Improvement Interval
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Infomred Decompositions with Variable Groups

@ Multilevel Grouping: MLCC [1], MLSoft [2].
@ Adaptive Variable Partitioning 2 [3].

o 4CDE [4].

@ Fuzzy Clustering [5].

In: IEEE Congress

[1] Zhenyu Yang, Ke Tang, and Xin Yao. “Multilevel cooperative coevolution for large scale optimization”.
on Evolutionary Computation. |EEE. 2008, pp. 1663-1670.

[2] Mohammad Nabi Omidvar, Yi Mei, and Xiaodong Li. “Effective decomposition of large-scale separable continuous functions
for cooperative co-evolutionary algorithms”. In: |EEE Congress on Evolutionary Computation. |EEE. 2014, pp. 1305-1

[3] Hemant Kumar Singh and Tapabrata Ray. “Divide and conquer in coevolution: A difficult balancing act”. In:
Agent-Based Evolutionary Search. Springer, 2010, pp. 117-138.

global optimization”.
2011, pp. 1-6.

[5] Jianchao Fan, Jun Wang, and Min Han. “Cooperative coevolution for large-scale optimization based on kerne}
clustering and variable trust region methods”. In: |IEEE Transactions on Fuzzy Systems 22.4 (2014), pp. 829-839.
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lllustrative Example (Exact Methods)

Figure: Variable interaction of a hypothetical function.

o Differential Grouping and Variable Interaction Learning:
Cl: {X17X27X4}7{X37X57X67X7}
G {x1, %2, xa}, {x3, X5, X6, X7}

v

v vy

Cc: {X17X27X4}7 {X37X57X67 X7}

Monotonicity Check (Algorithms)

Linkage Identification by Non-Monotonicity Detection [1]
Adaptive Coevolutionary Learning [2]

Variable Interaction Learning [3]

Variable Interdependence Learning [4]

Fast Variable Interdependence [5]

[1] Masaharu Munetomo and David E Goldberg. “Linkage identification by non-monotonicity detection for overlapping
functions”. In: Evolutionary Computation 7.4 (1999), pp. 377-398.

[2] Karsten Weicker and Nicole Weicker. “On the improvement of coevolutionary optimizers by learning variable
interdependencies”. In: IEEE Congress on Evolutionary Computation. Vol. 3. |EEE. 1999, pp. 1627-1632.

[3] Wenxiang Chen et al. “Large-scale global optimization using cooperative coevolution with variable interaction |cggg
In: Parallel Problem Solving from Nature. Springer. 2010, pp. 300-309.

Information Sciences 186.1 (2012), pp. 20-39.

[5] Hongwei Ge et al. “Cooperative differential evolution with fast variable interdependence learning and cross-cl
mutation”. In: Applied Soft Computing 36 (2015), pp. 300-314.
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Monotonicity Check

/ /.
3%, X, X; (X1, ey Xy e

f(Xl, ey Xjg oo

) < () A
() > ()

- “dimension i=1
1.5 2

2 a—
-2 -1.5 0 1
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Differential Grouping [1]

Theorem

Let f(x) be an additively separable function. Ya, by # bp,d € R, 6 # 0, if
the following condition holds

A5,Xp[f](X)|Xp:3,xq:b1 7& A5,Xp[f](x)|xp:azxq:b27

then x, and x, are non-separable, where

(5)

Dsa[F1) = F(oooxp+ 0, ) = £ Xpr ),

refers to the forward difference of f with respect to variable x, with
interval §.

§ \% &

[1] Mohammad Nabi Omidvar et al. “Cooperative co-evolution with differential grouping for large scale optimizatjen”
IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378-393.
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Separability = A; = A, Deductive Reasoning

Assuming:
m . o
B Strong Syllogism Weak Syllogism
0 =3 filx) ; ¢
i=1
We prove that: A= B A= B
Separability = A1 = A, A is true A is false
.. B is true .. B is less plausible
By contraposition (P = Q = —-Q = —P): o o
A A - bilit
1 # Ay = non-separability Ao B A— B
o - B is false B is true
|A1 — Ap| > € = non-separability .
) - Als false

_____ .. A'is more plausible

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO Mohammad Nabi Omidvar, Xiaodong Li
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Deductive Reasoning - Example The Differential Grouping Algorithm
Strong Syllogism Weak Syllogism
° °
Detecting Non-separable Variables
Rain = Cloud Rain = Cloud .
_I _ y _I .u |A1 — Ap| > € = non-separability
It is rainy It is not rainy %
.. It is cloudy .. Cloud becomes less likely Detecting Separable Variables
° ° |A1 — As| < €= Separability (more plausible)
Rain = Cloud Rain = Cloud
It is not cloudy It is cloudy
.. It is not rainy .". Rain becomes more likely
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Differential Grouping vs CCVIL

X1 Xl =x+0
Example ‘ .
. G o D 2 2 X2 /—ENQ
Consider the non-separable objective function f(x1,x2) = x; + Axi1x2 + X5, 15 e
A T~
A % 0- / T
Of (x1, %) A > |
Txl = 2X1 =F )\XQ. ins \ \ \ ( I
This clearly shows that the change in the global objective function with . \
respect to xj is a function of x; and x. By applying the Theorem:
_ 2 2 2 2 . -~
A(S,xl[f] = [(Xl + (5) + )\(Xl + 5)X2 + X2] — [Xl + Axixo + Xz} ) \h\ ) j \
=6 + 26x1 + Axad. § >~ /
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Differential Grouping Family of Algorithms Shortcomings of Differential Grouping

Linkage Identification by Non-linearity Check (LINC, LINC-R) [1]
Differential Grouping (DG) [2]

Global Differential Grouping (GDG) [3]

Improved Differential Grouping (IDG) [4]

eXtended Differential Grouping (XDG) [5]

Graph-based Differential Grouping (gDG) [6] @ Cannot detect the overlapping functions.
@ Fast Interaction Identification [7] @ Slow if all interactions are to be checked.

o
o
o
o
o
o

[1] Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama. “Linkage identification by nonlinearity check for real-coded [~ ] Requires a th reShOId para meter (6)
genetic algorithms”. In: Genetic and Evolutionary Computation—-GECCO 2004. Springer. 2004, pp. 222-233.

[2] Mohammad Nabi Omidvar et al. “Cooperative co-evolution with differential grouping for large scale optimization”. In: @ Can be sensitive to the choice of the threshold parameter (e)
IEEE Transactions on Evolutionary Computation 18.3 (2014), pp. 378-393.

[3] Yi Mei et al. “Competitive Divide-and-Conquer Algorithm for Unconstrained Large Scale Black-Box Optimization”. In:
ACM Transaction on Mathematical Software 42.2 (June 2015), p. 13.

[4] Mohammad Nabi Omidvar et al. IDG: A Faster and More Accurate Differential Grouping Algorithm. Technical Report
CSR-15-04. University of Birmingham, School of Computer Science, Sept. 2015.

[5] Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge. “Extended differential grouping for large scale global
optimization with direct and indirect variable interactions”. |n: Genetic and Evolutionary Computation Conference. AG
2015, pp. 313-320.

[6] Yingbiao Ling, Haijian Li, and Bin Cao. “Cooperative co-evolution with graph-based differential group&&{ £2)
global optimization”. In: International Conference on Natural Computation, Fuzzy Systems and Knowledge Discover
2016, pp. 95-102. %\\

[7] Xiao-Min Hu et al. “Cooperation coevolution with fast interdependency identification for large scale optimiza
Information Sciences 381 (2017), pp. 142-160.
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Algorithm 1: DG2

(N F,§, fase, ) = ISM(F, 0, X, X);
© = DSM(A, F. T, fiase, n);
(k,y1,...,Yx) = ConnComp(O) ;
xep = {}, £ =0;
fori=1— kdo

if |yi| =1 then

Xsep = Xsep U Yi;
else
| e=g+1 x=yi

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO

Algorithm 2: ISM

N =0,xn;

Foxn = NaNnxn ;

fn><1 = NaN;x1 ;

x(l) =X, fbase = f(x(l))y M= 1;

m = 1(X+x);

fori=1—n—1do

if ~isnan(f;) then

x(2) — X(l), x[Q) =m;
f=fx?), T=r+1;

forj=i+1— ndo
if ~isnan(f;) then
L x® =X, x¥ = mj;

[F=fx®), T=r+1;

X(4) = X(l), X:(‘4) =m;, XJ(-4) = mj;

Fi=f(x*), r=r+1;
AW =F — F(xD);

A® =F; —T;

A= \A(l) _ A(2)|;

// matrix of all NalNs
// vector of all NaNs
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Differential Grouping 2

x3

(a, b, ) (a, b, )
(al7 b7 C/)

’ 3
(a7 b’ C) (87 b,7 C)
X2
1
(a',b,c) (@b, ¢)
&1

Figure: Geometric representation of point generation in DG2 for a 3D function.
xi63x0: AV=F (3 b, c)f(a, b, c),AP=f(a b c)-F(a, b, c)
x16 x3:AV=F (3 b, ¢)—f(a, b, c),AP=f (2 b, /) F(a.b,c)
xpe> x3: AN=f (a, b c)—f(a, b, c),AP=f(a, b, c')F(a. b
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DG2: Accuracy

Figure: Non-uniform distribution of floating-point numbers for a hypothetical
system (8 = 2, emin = —1, eémax = 3, and p = 3). The vertical bars denote all the
representable numbers in this system.

Theorem

If x € R lies in the range of F, then

fI(x) = x(1+6), 0] < pum,

where g is called the unit roundoff, which is equal to %61_” .
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DG2: Accuracy DG2: Accuracy

Theorem
Given a floating-point number system that satisfies IEEE 754such that Alzf(x) S F(X)=(F(x) — F(x))(1 + 51):A(1)(1 1oy,
10i| < pm. We have: R / / @
k Da=F(y) o f(y)=(f(y) — f(y))(A + 62)=A"(1 + b2),
(1+6)% =1+ 0k, (7)
i=1 A=|A1 6 As| = |A1 — As|(1+ 63)
where = [F(x)(1 + 61)(1 4 83) — F(x') (L + 61)(1 + 03)
|‘9k| < __ =Yk, € = 1 /
~ 1 — num ’ ’ — f(y) (L4 62)(1 + d3) + F(y')(1 + 62)(1 + 63)] .
provided that kuy < 1.
GECCOl
61/84 62 /84
DG2: Accuracy DG2: Accuracy
A= A1 < 22| (F(x) = £(x) = (F(y) — 1Y) | (8) .
| | ()= FOI < 757 () = e (10)
= 72| (F(x) + F(¥)) = (F(y) + F(x)) |
< - max{ (F(x) + f(¥)) , (F(y) + F(X)) }::emf. esup = 7/m max{f(x), £(x'), £(y), f(y')} (11)
Equation (8) is based on the assumption that the codomain of f is S Lesup, (12)
non-negative, i.e.,, f : R — Ré’. A more general form for f : R — R is as o + M Mo + M

follows:
et = V2 (IF O]+ [F(Y)] + [F(y)] + [F(X)])-
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Algorithm 3: © = DSH(A, F, T, fose.r) Direct/Indirect Interactions

© = NaN,xn;
m=1mn=0;
fori=1—n—1do
forj=i+1—ndo Indirect Interactions

finax = max{foase, Fj, fi, fj }; .. . .. . . .

et = 72 - max{fomse + Fi B+ 512 In an objective function f(x), decision variables x; and x; interact directly
€sup = Vy/n - Fnax; . A

I G (denoted by x; <> x;) if

|_ Qi;j=0m=mn+1;
else if Aj > esyp then Ja - of
Lei,j:]-;'r]l:nl“l‘l; : i .
L Oxi0x; | _,
fori=1—n—1do

for j=i+1— ndo decision variables x; and x; interact indirectly if

frmax = max{flJasey Fijv rl'v i‘j};
€int = 72 - Max{ fnathrmbase + Fij, Fi + 1}

# 0,

€sup = V7 * fmax; of
if @, # NaN then —— =0,
€= —%T_'fm - €inf + _7702'1711 - Esup; axfaxj
if Aj > € then
L Oy=1 and there exists a set of decision variables {xk1, ..., xks } such that
else
| ©,=0 Xi £ X1y o0y Xks <7 Xj-
k ! 4
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Efficiency vs Accuracy Benchmark Suites

Saving budget at the expense of missing overlaps:
@ eXtended Differential Grouping [1].
@ Fast Interdependecy Identification [2].

e CEC'2005 Benchmark Suite (non-modular)
(3) © @ CEC'2008 LSGO Benchmark Suite (non-modular)
o CEC'2010 LSGO Benchmark Suite
o CEC'2013 LSGO Benchmark Suite

Figure: The interaction structures represented by the two graphs cannot be
distinguished by XDG.

[1] Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge. “Extended differential grouping for large SGE&G
optimization with direct and indirect variable interactions”. In: Genetic and Evolutionary Computation Conference.
2015, pp. 313-320. %

[2] Xiao-Min Hu et al. “Cooperation coevolution with fast interdependency identification for large scale optimiza
Information Sciences 381 (2017), pp. 142-160.
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Challenges of CC The Imbalance Problem

@ Non-uniform contribution of components.

Main Questions

@ How to decompose the problem? Imbalanced Functions
© How to allocated resources?

© How to coordinate?

F(x) =Y wifi(x), (13)
i=1

w; = 105./\/'(0,1)’

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO
The Imbalance Problem (2) Contribution-Based Cooperative Co-evolution (CBCC)
1e+16 1

Types of CC

1e+14 @ CC: round-robin optimization of components.

o CBCC: favors components with a higher contribution.

\ I Quantifies the contribution of components.

\ Optimizes the one with the highest contribution.
1e+10 [ 8 ’

1e+12

I \X\\ - - .
10408 | | How to Quantify the Contribution
e @ For quantification of contributions a relatively accurate decomposition
1e+06 - X\X“‘*——»xﬂxx,,,,x . is needed.
10000 ' . . . . . T @ Changes in the objective value while other components are kept

0 5000 10000 15000 20000 25000 30000 constant.

Iterations GECCQO.
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le+08
le+06
10000 F.

100

0.01
0.0001
1e-06
1e-08
. le-10
0 5000 10000 15000 20000 25000 30000 le-12 5
Evaluations

f(x)

100000 E
10000 - 3
1000

5000 10000 15000 20000 25000 30000
Evaluations

(a) Round-Robin CC (b) Contribution-Based CC
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Large-Scale Multiobjective Optimization

Large-scale multiobjective optimization is growing popularity:
@ Development of a benchmark [1].
@ Exploiting modularity using CC [2], [3], [4].
@ Analysis of the existing benchmarks [5].

[1] Ran Cheng et al. “Test problems for large-scale multiobjective and many-objective optimization”. n: |EEE Transactions

on Cybernetics (2016).

[2] Luis Miguel Antonio and Carlos A Coello Coello. “Use of cooperative coevolution for solving large scale multiobjective
optimization problems”. |In: IEEE Congress on Evolutionary Computation. |EEE. 2013, pp. 2758-2765.

[3] Luis Miguel Antonio and Carlos A Coello Coello. “Decomposition-Based Approach for Solving Large Scale Multi-offjective,
Problems”. In: Parallel Problem Solving from Nature. Springer. 2016, pp. 525-534.

optimization problems with large-scale variables”.
pp. 275-298.

[5] Ke Li et al. “Variable Interaction in Multi-objective Optimization Problems”.
Springer International Publishing. 2016, pp. 399-409.

ATIEAN
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Contribution-Aware Algorithms

@ Contribution-Based Cooperative Co-evolution (CBCC) [1], [2].

@ Incremental Cooperative Coevolution [3]
@ Multilevel Framework for LSGO [4]

[1] Mohammad Nabi Omidvar, Xiaodong Li, and Xin Yao. “Smart use of computational resources based on contribution for
cooperative co-evolutionary algorithms”. In: Proc. of Genetic and Evolutionary Computation Conference. ACM, 2011,
pp. 1115-1122.

[3] Sedigheh Mahdavi, Shahryar Rahnamayan, and Mohammad Ebrahim Shiri. “Incremental cooperative coevoluti \
large-scale global optimization”. In: Soft Computing (2016), pp. 1-20. \\\\ =)
L

[4] Sedigheh Mahdavi, Shahryar Rahnamayan, and Mohammad Ebrahim Shiri. “Multilevel framework for large-sc3
optimization”. In: Soft Computing (2016), pp. 1-30.
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Analysis of ZDT

Xy 011111
XX 101111
X3 110111
X 111011
X 111101
X\ 111110

X1 X2 X3 X4 X5 Xp
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Analysis of DTLZ1-DTLZ4 Analysis of DTLZ5-DTLZ7

(1)
O, l ® @
(5)
° o ° o Figure: Variable interaction graphs of DTLZ5 and DTLZ6.

Figure: Variable interaction graphs of DTLZ1 to DTLZ4 .

Proposition 2
For DTLZ5 and DTLZ6, Vf;,i € {1,--- , m}, we divide the corresponding decision

Proposition 1 variables into two non-overlapping sets: x; = (xi,--- ,x)", £=m —1for i € {1,2}
1 — I [ 000 o — coo T .
For DTLZ1 to DTLZ4, Vf;,i € {1,--- , m}, we divide the corresponding decision YVhIIe b=m—itlfori€{3,..,m}and X (i, . »Xn) - For f;, where
. . . o T, . i€{l,---,m— 1}, all members of x; and x; interact with each other; for f,,, we have
variables into two non-overlapping sets: x; = (x1, -+ ,x¢)", £ =m —1 for j € {1,2} th teraction struct DTLZ1.DTLZ4
while £ =m —i+1fori€{3,---,m}; and xy = (Xm, - - - 7x,,)T. All members of x; not € same Interaction structure as i : y
only interact with each other, but also interact with those of x;; all members of x; are . ___4d A\/
independent from each other. Proposition 3
N All objective functions of DTLZ7 are fully separable.
ar s /54
Some Future Directions (1) Some Future Directions (I1)
What if th ] a7 @ CC for combinatorial optimization, e.g.,
° at it the components have overlap! » Y. Mei, X. Li and X. Yao, “Cooperative Co-evolution with Route
o Differential group is off-line and can be time-consuming. Is there a Distance Grouping for Large-Scale Capacitated Arc Routing Problems,”
more efficient method? IEEE Transactions on Evolutionary Computation, 18(3):435-449, June

2014.

@ However, every combinatorial optimization problem has its own
characteristics. We need to investigate CC for other combinatorial
optimization problems.

@ Do we need to get 100% accurate grouping? What is the relationship
between grouping accuracy and optimality achieved by a CC
algorithm?
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Some Future Directions (I11) LSGO Resources

@ Learning variable interdependencies is a strength of estimation of
distribution algorithms (EDAs), e.g.,

_ _ o @ There is an IEEE Computational Intelligence Society (CIS) Task Force
» W. Dong, T. Chen, P. Tino and X. Yao, “Scaling Up Estimation of

Distribution Algorithms for Continuous Optimization,” |EEE on LSG_O: .
Transactions on Evolutionary Computation, 17(6):797-822, December @ Upcoming LSGO Tutorials
2013. » July 2017 GECCO (Berlin, Germany).
» A. Kaban, J. Bootkrajang and R.J. Durrant. “Towards Large Scale » November 2017 SEAL (Shenzhen, China).
Continuous EDA: A Random Matrix Theory Perspective.” Evolutionary o LSGO Repository: http://www.cercia.ac.uk/projects/lsgo

Computation

@ Interestingly, few work exists on scaling up EDAs.

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO

Acknowledgement Questions

Thanks for your attention!
Thanks goes to

@ Professor Xin Yao and EPSRC (grant nos. EP/K001523/1 and
EP/J017515/1) for supporting this tutorial.

@ Dr. Ata Kaban and Dr. Momodou L. Sanyang for allowing us to use qO qo q q 7
O ™

some figures from their publications.

. Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO

Mohammad Nabi Omidvar, Xiaodong Li Decomposition and CC for LSGO



