
Variable Neighborhood Decomposition for Large

Scale Capacitated Arc Routing Problem

Yi Mei

School of Computer Science

and Information Technology

RMIT University

Melbourne, Victoria 3000, Australia

Email: yi.mei@rmit.edu.au

Xiaodong Li

School of Computer Science

and Information Technology

RMIT University

Melbourne, Victoria 3000, Australia

Email: xiaodong.li@rmit.edu.au

Xin Yao

CERCIA, School of Computer Science

University of Birmingham

B15 2TT Birmingham, UK

Email: x.yao@cs.bham.ac.uk

Abstract—In this paper, a Variable Neighborhood Decomposi-
tion (VND) is proposed for Large Scale Capacitated Arc Routing
Problems (LSCARP). The VND employs the Route Distance
Grouping (RDG) scheme, which is a competitive decomposition
scheme for LSCARP, and generates different neighborhood
structures with different tradeoffs between exploration and
exploitation. The search first uses a neighborhood structure that
is considered to be the most promising, and then broadens the
neighborhood gradually as it is getting stuck in a local optimum.
The experimental studies show that the VND performed better
than the state-of-the-art RDG-MAENS counterpart, and the
improvement is more significant when the subcomponent size
is smaller. This implies a great potential of combining the VND
with small subcomponents.

I. INTRODUCTION

The Capacitated Arc Routing Problem (CARP) [1] is an

important combinatorial optimization problem with many ap-

plications in the logistics area, such as winter gritting [2] [3]

[4] [5], waste collection [6] [7] [8] and snow removal [9] [10].

It aims at designing a least cost plan for a given set of vehicles

to serve a set of streets in the road network subject to some

predefined constraints.

The Large Scale CARP (LSCARP) is practically significant,

since the problem size (i.e., the number of streets) is very

large in many real-world applications. For example, for the

urban waste collection problem, there may be hundreds or even

thousands of streets in a city for which waste is to be collected.

Therefore, it is important to study how to solve LSCARP.

The previous studies showed that applying the approaches

for CARP directly to LSCARP cannot lead to promising

performance [11] [12] [13] [14] [15] [16] due to the scalability

issue. That is, the performance of the previous algorithms

deteriorates rapidly either in quality [11] [12] or in speed [13]

with the increasing problem size. In this case, the divide-and-

conquer strategy becomes a promising alternative to address

the scalability issue.

When decomposing LSCARP, an intuitive idea is to parti-

tion the set of tasks (the edges and arcs need to be served) into

subsets, and then solve the sub-problems of serving each sub-

set of tasks separately. Following this idea, Mei et al. proposed

a Random Route Grouping (RRG) [15] and a Route Distance

Grouping (RDG) [16] for partitioning the tasks. They both

divide the routes of the best-so-far solution so that the upper

bound of the optimal solution under the given decomposition is

guaranteed to improve with the improvement of the best-so-far

solution. RDG makes better use of domain knowledge (e.g.,

the distance between tasks) than RRG, and thus achieves much

better results. Both decomposition schemes were combined

with the Cooperative Co-evolution (CC), which is a generic

framework in evolutionary computation that implements the

divide-and-conquer strategy. Briefly speaking, CC divides the

entire search process into a number of cycles. At the beginning

of each cycle, the whole problem is decomposed by RRG

or RDG, and then the resultant subcomponents are solved

separately by the subcomponent optimizer (e.g., MAENS

[17]).

When decomposing LSCARP with RRG or RDG, grouping

the routes of the best-so-far solution s̄ can also be seen as

generating a neighborhood around s̄. In other words, the neigh-

borhood N (s̄) consists of all the solutions in which the tasks

in different groups are in different routes. Therefore, the above

CC can be considered as a Variable Neighborhood Search

(VNS) process [18]. At cycle t of the CC, the neighborhood

N (t)(s̄) of the best-so-far solution s̄ is defined by RRG or

RDG, and then the local optimum within N (t)(s̄) is to be

found by the subcomponent optimizer MAENS.

Yao proposed simulated annealing algorithms with variable

neighborhoods [19] [20] for combinatorial optimization prob-

lems (e.g., travelling salesman problems), and proved that the

traditional fixed neighborhood structure, which is often the

smallest and most greedy one, is not necessarily the best to

obtain the global optimum. Dynamic neighborhoods can lead

to better performance in combinatorial optimization [20]. The

idea of using VNS for decomposing large scale optimization

problems has also been proposed for continuous optimization

and p-median problem [21], and the resultant approach is

called the Variable Neighborhood Decomposition (VND). For

continuous optimization, the neighborhood is naturally defined

by fixing a subset of dimensions. For the p-median problem,

the solution space is combinatorial, and thus a problem-

specific neighborhood structure is defined to decompose the

problem.

The advantage of VND is that it defines a set of differ-

1313

2014 IEEE Congress on Evolutionary Computation (CEC) 
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE



ent neighborhood structures, which have different properties

from each other, and examines them one after another. The

variation of neighborhood structure makes the search explore

more effectively within the solution space. For instance, for

continuous optimization, the neighborhood Nk(x) can be

defined by fixing all but k variables of the decision vector

x. This way, the search gradually increases the radius of the

neighborhood around x as k increases. However, RRG and

RDG do not have the advantage of VND since they only

generate neighborhood structures with similar properties. RRG

randomly groups the routes in each cycle, which is too blind.

On the other hand, RDG groups the routes based on the

fixed greediness parameter α, which leads to a fixed balance

between exploration and exploitation throughout the search

process.

In this paper, a set of variable neighborhood structures that

lead to different extent of exploration are developed by varying

the parameter α of RDG adaptively during the search process.

The neighborhood that is expected to be most promising is

examined first. Then, if the search is stuck in local optima,

the broader neighborhoods are used to increase the exploration

capability of the search to jump out of the local optima. The

VND is combined with MAENS, and the resultant algorithm

is tested on the EGL-G LSCARP benchmark instances.

The rest of the paper is organized as follows: First, CARP

is introduced in Section II. Note that LSCARP is essentially

CARP with a large problem size (i.e., more than 300 required

edges). After that, the VND for LSCARP is developed based

on RDG and described in Section III. Then, the experimental

studies are carried out in Section IV. Finally, the conclusion

and future work are provided in Section V.

II. CAPACITATED ARC ROUTING PROBLEM

In CARP, a graph G(V,E,A) is given, where V , E and A

are the set of vertices, edges and arcs of the graph. For both

E and A, there are subsets ZE ⊆ E and ZA ⊆ A, which

are also called tasks, that need to be served. For the tasks in

ZE , service from either direction is acceptable, while for the

tasks in ZA, only the same direction as the arc is allowed.

The services are done by a number of vehicles located at a

depot vertex v0 ∈ V . Let the set of all the tasks be denoted

as Z = ZE ∪ ZA. Each task z ∈ Z has a positive demand

d(z) > 0 and a positive serving cost sc(z) > 0. Besides,

traversing from any vertex vi to a different vertex vj induces

a positive deadheading cost dc(vi, vj) > 0. If vi and vj are

disconnected, then dc(vi, vj) =∞. Each vehicle has a limited

capacity Q of the demand, which is smaller than the total

demand of all the tasks. Hence, multiple vehicles are needed.

CARP aims at designing a routing plan to finish the service of

the task set Z with the minimal total cost (deadheading plus

serving costs) subject to the following constraints:

• Each vehicle must start and end at the depot;

• Each task is served exactly once;

• The total demand of the tasks served by each vehicle

cannot exceed its capacity Q.

v1

v2

v3 v4

v5

v6x1

(x5)

s1=(0,x1,x8,0) s2=(0,x3,x6,0)

v0
(depot)

v7

v8

x6

(x2) x3

(x7)

x8

(x4)

Fig. 1: An example of a CARP solution [15].

The mathematical formulation of CARP has been inten-

sively investigated. Baldacci and Maniezzo [22] formulated

the undirected CARP with n tasks as a VRP with 2n + 1
customers. Belenguer and Benavent [23] proposed a math-

ematical formulation of CARP based on the cut constraints,

and designed a cutting plane method to solve it. Bartolini et al.

[24] and Martinelli et al. [14] developed relaxed mathematical

CARP models and obtained the best-so-far lower bounds for

the benchmark instances with exact methods. For the sake of

brevity, the details of the mathematical CARP models are not

described here, since they can be found in [14] [23] [24].

An example of a CARP solution is given in Fig. 1 [15].

In the figure, v0 is the depot, and the tasks are represented

by solid lines. There are four edge tasks, each of which

are assigned two positive integer indices, representing both

directions of it. For example, the task (v2, v6) is assigned the

indices of x2 and x6. x2 stands for the direction from v2 to

v6, and x6 the reverse direction. The dashed arrows between

two nodes indicate the shortest path from the first node to

the second. Then, the example solution s includes two routes

s1 = (0, x1, x8, 0) and s2 = (0, x3, x6, 0), where 0 is the

depot loop (v0, v0) defined to ensure that each route starts

and ends at the depot.

III. VARIABLE NEIGHBORHOOD DECOMPOSITION FOR

LSCARP

As shown in [21], the framework of VND can be briefly

described as follows:

1) Define the set of neighborhood structures Nk, k =
1, . . . , kmax. Generate an initial solution x;

2) Set k ← 1;

3) Find the local optimum within the neighborhood

Nk(x) of the current solution x, i.e., x
∗
k =

argmin
x∈Nk(x){f(x)};

4) If f(x∗
k) is better than f(x) (e.g., f(x∗

k) < f(x) for a

minimization problem), then move the current solution

to the new local optimum (x ← x
∗
k) and set k ←

1314



1. Otherwise, examine the next neighborhood structure

(k ← k + 1);

5) If k > kmax, then stop. Otherwise, go to Step 3).

When solving LSCARP with VND, the neighborhood

structures are defined based on RDG. Given the best-so-far

LSCARP solution s̄ = (s̄1, . . . , s̄m), where the kth route

s̄k = (s̄k1, . . . , s̄klk) is represented by a sequence of tasks

starting and ending at the depot (s̄k1 = s̄klk = 0), RDG

measures the distance between the routes and groups the routes

by solving the corresponding fuzzy p-medoid problem [25] so

that the routes that are closer to each other are more likely

to be placed in the same group. Given the distance matrix

between the routes (∆̂route)m×m, the fuzzy p-medoid problem

aims to obtain the optimal subset of routes c = (c1, . . . , cg)
(g is the number of groups) out of the set of routes s, which

are called the medoids. It is stated as follows:

min
c⊆s

Jα(c; s) =
∑

si∈s\c

∑
cj∈c

Mα(si, cj) · ∆̂route(si, cj) (1)

where Mα(si, cj) is the membership function of si to cj ,

which is defined as follows:

Mα(si, cj) =

(
1

∆̂route(si,cj)

)α

∑g

k=1

(
1

∆̂route(si,ck)

)α (2)

After obtaining the set of medoids c, each of the remaining

routes is placed in the same group as one medoid using

the roulette wheel method based on its membership function

values to the medoids. That is, the route si ∈ s \ c has the

probability of Mα(si, cj) to be in the group of cj . Finally,

the tasks of the original LSCARP is decomposed into g

subsets of tasks (Z1, . . . , Zg), each of which corresponds to

all the tasks in the group of one medoid, i.e., Zj = {z ∈
si ∪ cj |si is in the group of cj}.

It can be seen that the greediness of the grouping depends

on the parameter α ∈ [0,∞). A larger α leads to a more

greedy grouping. In the extreme case where α = ∞, the

greediness is maximized, and each si entirely belongs to

the closest medoid to it. In the other extreme case where

α = 0, the greediness is minimized, and the grouping is

totally blind, as the membership is the same for all the si’s and

cj’s regardless of the distance between them. In other words,

different values of α lead to different groupings of the routes,

i.e., neighborhood structures. Given the best-so-far solution s̄,

one can select a set α = {αk|k = 1, . . . , kmax} of different

α values, and generate each neighborhood structure Nk(s̄) as

follows:

1) Obtain the grouping of the tasks (Zk1, . . . , Zkg) by

applying RDG with the parameter αk to the routes of

s̄;

2) Let Ω(Zki) be the solution space of the CARP with

the task set of Zki, i = 1, . . . , g, then Nk(s̄) =
{(s1, . . . , sg)|si ∈ Ω(Zki), i = 1, . . . , g}

Intuitively, it is more desirable to place close routes together

in the same group, and thus a larger α tends to result in a more

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

8

9

10

k

α
k

1+9×0.2
k-1

1+9×0.4
k-1

1+9×0.6
k-1

1+9×0.8
k-1

Fig. 2: The curves of αk’s with λ = 0.2, 0.4, 0.6 and 0.8,

k = 1, . . . , 20.

promising neighborhood and makes the search converge faster

to a better local optimum. Hence, it is reasonable to start with

a neighborhood generated by RDG with a larger α. Then, after

the search gets stuck in the local optimum, it becomes more

desirable to increase the exploring capability by switching

to a broader neighborhood structure, that is, a neighborhood

generated by RDG with a smaller α. For this reason, we set

α as a decreasing sequence of α’s. From preliminary studies,

it is observed that when α = 10, the greediness is nearly

maximized, and the membership function value of si is nearly

1 to the closest medoid to it. Therefore, we set α1 = 10. On

the other hand, a condition of αk ≥ 1 is imposed to guarantee

the least bias to group the routes together with the medoids

that are closer to them. Based on the above considerations, α

is defined as follows:

αk = 1 + 9λk−1, 0 < λ < 1, k = 1, . . . , kmax (3)

This way, it is obvious that α1 = 10 and αk ≥ 1, k =
1, . . . , kmax. An illustration of the curves of αk’s with λ = 0.2,

0.4, 0.6 and 0.8 is given in Fig. 2.

Note that in Step 3) of VND, it is impossible to enumerate

all the solutions within the neighborhood Nk(s̄) of the best-

so-far solution s̄, since the CARPs are NP-hard. Therefore,

MAENS [17] is employed to search within Nk(s̄) for a

number of generations to approximate the local optimum. It is

found that the CC framework is a natural implementation to

this end, and the number of generations is naturally defined in

a cycle. In summary, the VND for LSCARP can be described

as follows:

1) Initialization: Define the set of neighborhood structures

Nk based on RDG and α = {αk|k = 1, . . . , kmax}.
Randomly generate the best-so-far solution s̄. Set k ← 1,

t = 1;

2) Repeat the following steps until t > tmax:

a) Search within the neighborhood Nk(s̄) by MAENS to

obtain a new best-so-far solution s̄
′
k. To be specific,

apply MAENS to each CARP with the task set of Zki,

1315



i = 1, . . . , g for Nt generations to obtain the new best-

so-far solution s̄
′
ki with respect to Zki. Then, the new

best-so-far solution is s̄
′
k = (s̄′k1, . . . , s̄

′
kg);

b) If tc(s̄′k) < tc(s̄), then s̄ ← s̄
′
k and set k ← 1.

Otherwise, k ← k + 1;

c) t← t+ 1;

3) Return the final best-so-far solution s̄.

The above VND framework is similar to the framework

of RDG-MAENS [16], which divides the entire search pro-

cess into tmax cycles. At the beginning of each cycle, the

original LSCARP is decomposed into a number of smaller

sized CARPs by RDG, which leads to the neighborhood

Nk(s̄). The key difference is that in the VND framework,

the neighborhood structure changes as the number of cycles

without improvement increases.

The relationship between the neighborhood structure and α

value is not simply a one-to-one mapping. In contrast with the

continuous value of α, the neighborhood Nk(s̄) is a discrete

grouping of the tasks obtained by solving the fuzzy p-medoid

problem Eq. (1) and grouping the routes randomly according

to their membership function value Eq. (2) to each medoid.

It is known that when α is large, the grouping is greedy and

all the routes are highly likely to be grouped together with

the closest medoid to it. Therefore, it is possible that some

of the Nk(s̄)’s are the same as each other, especially when

k is small. On the other hand, the grouping becomes much

more arbitrary when α is small, and even the same α can lead

to different neighborhood structures. This property is helpful

in cooperating with the search of MAENS within each cycle.

Since CARP is NP-hard, the neighborhood Nk(s̄) may not

be fully exploited by MAENS in a single cycle, especially

when the decomposed sub-problems still have large problem

sizes. In this case, it might take multiple cycles to fully exploit

the current neighborhood before changing to a broader one.

As discussed before, the neighborhood structures are highly

likely to be the same as each other when k is small (α is large).

In other words, the more promising neighborhood structures

are more likely to be exploited for multiple cycles and thus

exploited more comprehensively. The parameter λ controls the

changing speed of the neighborhood. If λ is larger, then it tends

to take more cycles to switch to broader neighborhoods.

IV. EXPERIMENTAL STUDIES

The neighborhood structures generated by the VND for

LSCARP are generated by RDG, which depends on the num-

ber of subcomponents g and parameter α. Eq. (3) shows that

αk depends on the parameter λ. Then, the VND for LSCARP

has two parameters of g and λ. In the experimental studies, g

is set to a constant throughout the entire search space, and thus

the neighborhood structure solely depends on λ. The VND for

LSCARP is tested on the EGL-G [11] LSCARP benchmark

instances with different λ values and compared with the RDG-

MAENS that uses a static neighborhood structure with g = 2,

α = 10 and g = 3, α = 10, denoted as (2, 10) and (3, 10),
respectively. From Eq. (3), it is obvious that the RDG-MAENS

(2, 10) and (3, 10) are equivalent to the VNDs with g = 2,

TABLE I: The parameter settings of the VND for LSCARP

Parameter Description Value

g Number of subcomponents 2, 3

λ Parameter of αk series 1, 0.8, 0.6, 0.4

psize Population size 30

offsize Offspring population size 6 · psize

Pls Probability of local search 0.2

Nt Generations per cycle 10

tmax Number of cycles 50

λ = 1 and g = 3, λ = 1, since αk = 1 + 9 × 1k = 10, ∀k
when λ = 1.

A. Parameter Settings

The parameter settings are given in Table I, where g and λ

are the parameters for generating the neighborhood structures

Nk, and the remaining are the parameters of MAENS and the

VND. All the parameters are set the same as that of RDG-

MAENS except the new parameter λ, as they essentially have

the same framework.

The tested EGL-G benchmark set [11] was generated based

on the road network of Lancashire, UK, consisting of 10

LSCARP instances with 347 to 375 tasks. Different instances

were generated by selecting different task sets and capacities

of vehicles. 30 independent runs were conducted for each

of the compared algorithms on all the test instances. All

the algorithms were implemented in C++, compiled by GNU

Compiler Collection (GCC) for windows and run on the CPU

Intel Core i7-2600 @3.4 GHz, using only one core.

B. Results and Discussions

Tables II and III show the mean and standard deviation

of the 30 total costs obtained by the 30 independent runs of

the compared VNDs with g = 2 and g = 3 on the EGL-G

LSCARP instances, respectively. The features of the instances

are given as well. “|V |”, “|E|” and “|Z|” refer to the number

of vertices, edges and tasks, respectively. “τ” is the minimal

number of vehicles required to serve all the tasks, which is

obtained as follows:

τ =

⌈∑
z∈Z d(z)

Q

⌉
(4)

In general, with the same number of tasks, a larger τ indicates

more routes, and thus a tighter capacity constraint and higher

level of difficulty of the problem.

From Table II, one can see that when g = 2, all the

compared VNDs show similar performance to each other. The

VND with λ = 0.4 obtains the best mean of the total costs

on 5 out of the 10 instances (G1-D, G1-E, G2-B, G2-C and

G2-D), while the one with λ = 1 (i.e., the RDG-MAENS

(2, 10)) performs the best in terms of the mean total cost on 3

instances (G1-B, G1-C and G2-E). However, when conducting

Wilcoxon’s rank sum test [26] with significance level of 0.05

to each pair of the results of the compared algorithms, it can

be seen that none of the differences is statistically significant.

There are two major reasons of this phenomenon. First, when

1316



TABLE II: The mean and standard deviation (in the parenthe-

sis) of the results obtained by the compared VNDs with g = 2
on the EGL-G test set. The best mean is marked with †.

Name (|V |,|E|,|Z|,τ ) g = 2

λ = 1 λ = 0.8 λ = 0.6 λ = 0.4

G1-A (255,375,347,20)
1007619 1007232 1006352† 1006694

(4449) (3949) (4189) (3637)

G1-B (255,375,347,25)
1122863† 1123077 1123231 1125488

(4587) (4362) (5477) (5950)

G1-C (255,375,347,30)
1250174† 1251803 1252883 1252728

(5918) (4671) (4757) (4144)

G1-D (255,375,347,35)
1386120 1384753 1384673 1384463†

(6590) (5938) (4955) (5659)

G1-E (255,375,347,40)
1525629 1525482 1528987 1525420†

(5716) (6472) (6497) (5302)

G2-A (255,375,375,22)
1104944 1106732 1104909† 1106198

(4781) (5517) (4922) (5835)

G2-B (255,375,375,27)
1221429 1222592 1222761 1221117†

(6812) (6051) (5599) (4753)

G2-C (255,375,375,32)
1355548 1353877 1354401 1353811†

(7329) (3997) (4685) (4845)

G2-D (255,375,375,37)
1492063 1491564 1493078 1490923†

(5652) (5051) (6007) (6629)

G2-E (255,375,375,42)
1629002† 1632116 1632677 1631074

(5056) (6556) (7016) (4824)

Avg. 1309539 1309923 1310395 1309792

g = 2, the resultant CARP sub-problems are still large. Given

around 350 tasks in the original problem, the average number

of tasks in each subcomponent is 350/2 = 175, which is still

quite large, not to mention that the size of subcomponents

are usually non-uniformly distributed. Thus, it is still hard

to fully exploit the current neighborhood before moving to

broader neighborhoods. Second, the actual performance of

the VNDs largely depend on the initial neighborhood (N1(s̄)
with α1 = 10). Fig. 3 shows the curves of the average α

and total cost over the 30 independent runs of the compared

VNDs with g = 2 on G1-A. The pattern is similar on all

the other instances. From Fig. 3a, it can be seen that for all

the compared VNDs with g = 2, the average α is almost

equal to 10 in the first 10 cycles. On the other hand, Fig.

3b shows that the average total cost already converges to

a good local optimum within the first 10 cycles. Starting

from such a good local optimum, there is little space for

improving the solution even by searching within a broader

neighborhood. Meanwhile, as mentioned in the first reason,

the original neighborhood with α1 = 10 is not fully exploited

due to the large problem size, and thus continuing searching

within the same neighborhood may still be able to locate more

promising areas with more comprehensive exploitation. As a

result, after being stuck in the local optimum with respect to

the original neighborhood structure N1(s̄) (i.e., after the first

10 cycles), changing to broader neighborhood structures makes

no significant difference to the performance of the algorithm.

From Table III, it can be seen that when g = 3, all the

0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

7

8

9

10

Cycle

α

g=2,λ=1

g=2,λ=0.8

g=2,λ=0.6

g=2,λ=0.4

(a) Curves of average α

0 5 10 15 20 25 30 35 40 45 50

1

1.01

1.02

1.03

1.04

1.05

1.06

1.08

6

Cycle

T
o

ta
l 

co
st

g=2,λ=1

g=2,λ=0.8

g=2,λ=0.6

g=2,λ=0.4

(b) Curves of average total cost

Fig. 3: Curves of the average α and total cost of the VNDs

with g = 2 on EGL-G1-A.

VNDs with λ < 1 performed much better than the VND

with λ = 1, i.e., the RDG-MAENS (3, 10). The VND with

λ = 0.6 performed the best, obtaining significantly better

results than the VND with λ = 1 (the RDG-MAENS (3, 10))
on 5 instances (G1-A, G1-B, G1-E, G2-A and G2-C) under

Wilcoxon’s rank sum test with significance level of 0.05.

This is because when g = 3, the decomposed sub-problems

are much smaller than that obtained by g = 2. Then, each

neighborhood structure is exploited more comprehensively

given the same number of cycles. In this situation, switching to

broader neighborhood structures becomes more desirable than

staying in the same narrow neighborhood. Fig. 4 shows the

curves of the average α and total cost over the 30 independent

runs of the compared VNDs with g = 3 on G1-A, which is

selected as a representative of all the other instances. From

the figures, one can see that after being stuck in the local

optima of the original neighborhood with α1 = 10 (around 7

cycles), changing to broader neighborhood structures (λ < 1)

can lead to clearly larger improvement than staying in the

same neighborhood (λ = 1). Besides, the outperformance of

the VND with λ = 0.6 over the ones with λ = 0.8 and 0.4

1317



TABLE III: The mean and standard deviation (in the parenthe-

sis) of the results obtained by the compared VNDs with g = 3
on the EGL-G test set. The best mean is marked with †. For

each VND with λ < 1, if its results are significantly better

than that of the VND with λ = 1, then the corresponding

mean value is marked in bold.

Name (|V |,|E|,|Z|,τ ) g = 3

λ = 1 λ = 0.8 λ = 0.6 λ = 0.4

G1-A (255,375,347,20)
1014068 1006813 1007393 1005873†

(8986) (4637) (4289) (4153)

G1-B (255,375,347,25)
1127199 1125378 1122077† 1124759

(7083) (6318) (4496) (4895)

G1-C (255,375,347,30)
1255139 1252304 1253789 1251693†

(7580) (5547) (5706) (4457)

G1-D (255,375,347,35)
1387294 1386849 1383997† 1385181

(7452) (7801) (7321) (5854)

G1-E (255,375,347,40)
1530237 1525712 1525994 1525671†

(7280) (5440) (6491) (5557)

G2-A (255,375,375,22)
1110665 1107977 1105870† 1106760

(6875) (5274) (5306) (3972)

G2-B (255,375,375,27)
1224629 1223538 1220012† 1221305

(10357) (8920) (5152) (6440)

G2-C (255,375,375,32)
1355141 1353782 1351845† 1352830

(6345) (5609) (4073) (4921)

G2-D (255,375,375,37)
1489114† 1489398 1489500 1491292

(6000) (4816) (5597) (4988)

G2-E (255,375,375,42)
1629837† 1630761 1630048 1630440

(4557) (6746) (7242) (7281)

Avg. 1312332 1310251 1309052 1309580

implies that the λ value should be set neither too large nor

too small to achieve the best tradeoff between the exploitation

within the current neighborhood and the exploration in the

broader neighborhoods.

When g = 2, the compared RDG-MAENS (2, 10) is the

state-of-the-art version. However, when g = 3, the RDG-

MAENS (3, 10) is not the state-of-the-art [16]. Thus, it is

necessary to compare the VND with the state-of-the-art RDG-

MAENS version for g = 3, i.e., (3, 5) [16]. Table IV shows

the mean and standard deviation of the results obtained by

the state-of-the-art versions of RDG-MAENS and VND with

g = 2 and 3 on the EGL-G test set. The best mean is marked

with †, and the significantly better mean is marked in bold.

It is seen that the VND with g = 3 and λ = 0.6 obtained

best mean total cost on 4 instances, better than the two state-

of-the-art RDG-MAENS versions ((2, 10) and (3, 5), obtained

the best mean on 3 and 2 instances, respectively). In addition,

the VND with g = 3 and λ = 0.6 obtained significantly better

total cost on G2-C. In short, the VND with g = 3 and λ = 0.6
showed better performance than the state-of-the-art versions of

RDG-MAENS.

Table V shows the best results of all the compared VNDs

on the EGL-G test set, along with the best known results,

which were obtained from [16]. The new best known results

are marked in bold. The best known results are updated on

0 5 10 15 20 25 30 35 40 45 50

1

2

3

4

5

6

8

10

Cycle

α

g=3,λ=1

g=3,λ=0.8

g=3,λ=0.6

g=3,λ=0.4

(a) Curves of average α

0 5 10 15 20 25 30 35 40 45 50

1

1.02

1.04

1.06

1.08

1.1

1.12

6

Cycle

T
o

ta
l 

co
st

g=3,λ=1

g=3,λ=0.8

g=3,λ=0.6

g=3,λ=0.4

(b) Curves of average total cost

Fig. 4: Curves of the average α and total cost of the VNDs

with g = 3 on EGL-G1-A.

6 out of the total 10 instances, 5 of which were obtained by

the VNDs with g = 3. This shows a potential of using large

g value (small subcomponent size) and variable neighborhood

structure to obtain better solutions.

Table VI shows the average computational time over the

30 independent runs of the compared VNDs on the EGL-G

test set. It can be seen that with the same g value, the VNDs

with different λ values have similar computational time to

each other. This implies that the computational time of the

algorithm largely depends on the g value, which is the most

important factor in determining the subcomponent size.

In summary, the experimental results show a great potential

of combining variable neighborhood structures and a small

subcomponent size (a large g value) to search more effectively

in the huge solution space of LSCARP.

V. CONCLUSION

A Variable Neighborhood Decomposition (VND) method

is proposed for tackling the LSCARP more effectively. A

set of neighborhood structures with different properties are

defined based on the RDG decomposition scheme [16]. Briefly

1318



TABLE V: The best results of the compared VNDs on the EGL-G test set. The new best known results are marked in bold.

Name (|Z|,τ ) BK g = 2 g = 3

λ = 1 λ = 0.8 λ = 0.6 λ = 0.4 λ = 1 λ = 0.8 λ = 0.6 λ = 0.4

G1-A (347,20) 998777 998777 998611 998020 1001289 1002154 1001013 997055 997313

G1-B (347,25) 1111971 1118030 1117058 1115659 1118030 1118030 1117708 1114120 1116929

G1-C (347,30) 1241762 1243403 1242704 1244475 1245092 1241762 1241586 1243808 1244115

G1-D (347,35) 1371443 1373389 1375029 1374914 1373510 1376280 1375002 1373480 1375149

G1-E (347,40) 1512584 1517424 1514639 1518090 1517507 1513648 1514687 1517772 1515838

G2-A (375,22) 1094912 1097578 1096797 1094827 1095933 1100422 1099298 1098454 1100024

G2-B (375,27) 1208326 1209694 1214490 1209562 1212192 1210276 1203579 1211759 1210266

G2-C (375,32) 1341519 1342637 1347103 1345840 1345156 1341519 1345228 1344184 1344574

G2-D (375,37) 1481181 1483558 1483541 1481666 1481746 1481649 1481218 1481045 1479814

G2-E (375,42) 1618899 1620692 1618832 1617295 1620381 1620992 1618338 1616119 1616857

TABLE IV: The mean and standard deviation (in the paren-

thesis) of the results obtained by the state-of-the-art versions

of RDG-MAENS and VND with g = 2 and 3 on the EGL-G

test set. The best mean is marked with †, and the significantly

better mean is marked in bold.

Name g = 2 g = 3

RDG-MAENS VND RDG-MAENS VND

(α = 10) (λ = 0.4) (α = 5) (λ = 0.6)

G1-A
1007619 1006694† 1007223 1007393

(4449) (3637) (4734) (4289)

G1-B
1122863 1125488 1124751 1122077†

(4587) (5950) (6190) (4496)

G1-C
1250174† 1252728 1251718 1253789

(5918) (4144) (5954) (5706)

G1-D
1386120 1384463 1383619† 1383997

(6590) (5659) (6419) (7321)

G1-E
1525629 1525420 1524393† 1525994

(5716) (5302) (5627) (6491)

G2-A
1104944† 1106198 1108916 1105870

(4781) (5835) (6828) (5306)

G2-B
1221429 1221117 1222183 1220012†

(6812) (4753) (6013) (5152)

G2-C
1355548 1353811 1353118 1351845†

(7329) (4845) (4881) (4073)

G2-D
1492063 1490923 1489723 1489500†

(5652) (6629) (5284) (5597)

G2-E
1629002† 1631074 1630132 1630048

(5056) (4824) (6926) (7242)

Avg. 1309539 1309792 1309578 1309052

speaking, different neighborhoods are generated by the RDG

with different α values, which determine different degrees of

greediness when grouping the routes together. The resultant

VND with different switching rates between neighborhood

structures (controlled by the parameter λ < 1) was compared

to the state-of-the-art RDG-MAENS counterpart (λ = 1) on

the EGL-G LSCARP test set. The experimental results show

that the VND performs better than the RDG-MAENS, and the

improvement increases with the increase of g (the decrease

of subcomponent size). The VND with g = 3 and λ = 0.6
performed better than the best version of RDG-MAENS so

TABLE VI: The average computational time over the 30

independent runs of the compared VNDs on the EGL-G test

set.

Name g = 2 g = 3

λ = 1 λ = 0.8 λ = 0.6 λ = 0.4 λ = 1 λ = 0.8 λ = 0.6 λ = 0.4

G1-A 1628 1685 1633 1667 985 1065 1083 1022

G1-B 1390 1444 1436 1438 888 959 942 922

G1-C 1264 1304 1290 1292 846 914 883 882

G1-D 1145 1183 1171 1191 822 867 839 857

G1-E 1068 1119 1109 1119 775 858 837 831

G2-A 1675 1748 1709 1730 1073 1110 1114 1139

G2-B 1511 1556 1558 1550 1002 1059 1020 1028

G2-C 1373 1431 1405 1441 947 1022 992 990

G2-D 1268 1337 1331 1374 920 1015 975 948

G2-E 1181 1249 1245 1278 893 968 954 930

Avg. 1350 1406 1389 1408 915 984 964 955

far. The VND has a great potential to be combined with small

subcomponent size.

The basic idea of VND is to start with the smallest but

most promising neighborhood structure, and gradually extend

to broader neighborhood structures when the search is getting

stuck in a local optimum of the current neighborhood. The

RDG-based definition of the neighborhood structures is based

on the assumption that the neighborhood generated by RDG

with the largest α value is the most promising one, which

has not been verified. Besides, in contrast to the traditional

VND method, one cannot guarantee full enumeration of the

current neighborhood structure before moving to the next one.

It is obvious that the neighborhoods generated by larger sub-

components need more cycles to be fully exploited. In future,

more investigations on the neighborhood structures are to be

conducted to ensure that the more promising neighborhoods

are examined first. Also, an adaptive exploitation scheme of

each neighborhood is to be developed by setting the number

of cycles or generations for each neighborhood based on its

subcomponent sizes.

ACKNOWLEDGMENT

This work was supported by an ARC Discovery grant

(No. DP120102205), an NSFC grant (No. 61329302), and an

1319



EPSRC grant (No. EP/I010297/1). Xin Yao was supported by

a Royal Society Wolfson Research Merit Award.

REFERENCES

[1] M. Dror, Arc routing: theory, solutions and applications. Boston:
Kluwer Academic Publishers, 2000.

[2] H. Handa, L. Chapman, and X. Yao, “Robust Salting Route Optimization
Using Evolutionary Algorithms,” in Proceedings of the 2006 IEEE

Congress on Evolutionary Computation, vol. 1. Springer, 2006, pp.
10 455–10 462.

[3] ——, “Robust route optimization for gritting/salting trucks: a CERCIA
experience,” IEEE Computational Intelligence Magazine, vol. 1, no. 1,
pp. 6–9, 2006.

[4] G. Ghiani, G. Improta, and G. Laporte, “The capacitated arc routing
problem with intermediate facilities,” Networks, vol. 37, no. 3, pp. 134–
143, 2001.

[5] A. Amberg, W. Domschke, and S. Voß, “Multiple center capacitated
arc routing problems: A tabu search algorithm using capacitated trees,”
European Journal of Operational Research, vol. 124, no. 2, pp. 360–376,
2000.

[6] F. Chu, N. Labadi, and C. Prins, “A scatter search for the periodic
capacitated arc routing problem,” European Journal of Operational

Research, vol. 169, no. 2, pp. 586–605, 2006.

[7] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Evolutionary algo-
rithms for periodic arc routing problems,” European Journal of Opera-

tional Research, vol. 165, no. 2, pp. 535–553, 2005.

[8] Y. Mei, K. Tang, and X. Yao, “A Memetic Algorithm for Periodic
Capacitated Arc Routing Problem,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, vol. 41, no. 6, pp. 1654–1667,
2011.

[9] J. Campbell and A. Langevin, “Roadway snow and ice control,” Arc

routing: theory, solutions and applications. Boston, MA: Kluwer, pp.
389–418, 2000.

[10] M. Polacek, K. Doerner, R. Hartl, and V. Maniezzo, “A variable neigh-
borhood search for the capacitated arc routing problem with intermediate
facilities,” Journal of Heuristics, vol. 14, no. 5, pp. 405–423, 2008.

[11] J. Brandão and R. Eglese, “A deterministic tabu search algorithm for the
capacitated arc routing problem,” Computers and Operations Research,
vol. 35, no. 4, pp. 1112–1126, 2008.

[12] Y. Mei, K. Tang, and X. Yao, “A Global Repair Operator for Capaci-
tated Arc Routing Problem,” IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 39, no. 3, pp. 723–734, 2009.

[13] X. Chen, “MAENS+: A Divide-and-Conquer Based Memetic Algorithm
for Capacitated Arc Routing Problem,” in 2011 Fourth International

Symposium on Computational Intelligence and Design (ISCID), vol. 1.
IEEE, 2011, pp. 83–88.

[14] R. Martinelli, M. Poggi, and A. Subramanian, “Improved Bounds for
Large Scale Capacitated Arc Routing Problem,” Computers & Opera-

tions Research, vol. 40, no. 8, pp. 2145–2160, 2013.

[15] Y. Mei, X. Li, and X. Yao, “Decomposing large-scale capacitated arc
routing problems using a random route grouping method,” in 2013 IEEE

Congress on, Evolutionary Computation (CEC). IEEE, 2013.

[16] ——, “Cooperative co-evolution with route distance grouping for large-
scale capacitated arc routing problems,” IEEE Transactions on Evolu-

tionary Computation, Preprinted, DOI: 10.1109/TEVC.2013.2281503,
2013.

[17] K. Tang, Y. Mei, and X. Yao, “Memetic Algorithm with Extended
Neighborhood Search for Capacitated Arc Routing Problems,” IEEE

Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1151–
1166, 2009.

[18] P. Hansen, N. Mladenović, and J. A. M. Pérez, “Variable neighbourhood
search: methods and applications,” Annals of Operations Research, vol.
175, no. 1, pp. 367–407, 2010.

[19] X. Yao, “Simulated annealing with extended neighbourhood,” Interna-

tional Journal of Computer Mathematics, vol. 40, no. 3, pp. 169–189,
1991.

[20] ——, “Dynamic neighbourhood size in simulated annealing,” in Proc.

of Int’l Joint Conf. on Neural Networks (IJCNN’92), vol. 1, 1992, pp.
411–416.

[21] P. Hansen, N. Mladenović, and D. Perez-Britos, “Variable neighborhood
decomposition search,” Journal of Heuristics, vol. 7, no. 4, pp. 335–350,
2001.

[22] R. Baldacci and V. Maniezzo, “Exact methods based on node routing
formulations for arc routing problems,” Networks, vol. 47, pp. 52–60,
2006.

[23] J. Belenguer and E. Benavent, “A cutting plane algorithm for the
capacitated arc routing problem,” Computers and Operations Research,
vol. 30, no. 5, pp. 705–728, 2003.

[24] E. Bartolini, J.-F. Cordeau, and G. Laporte, “Improved lower bounds and
exact algorithm for the capacitated arc routing problem,” Mathematical

Programming, vol. 137, no. 1-2, pp. 409–452, 2013.
[25] R. Krishnapuram, A. Joshi, and L. Yi, “A fuzzy relative of the k-medoids

algorithm with application to web document and snippet clustering,” in
1999 IEEE International Fuzzy Systems Conference Proceedings, vol. 3.
IEEE, 1999, pp. 1281–1286.

[26] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics

Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

1320




