2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

Learning a Super Mario Controller from Examples of Human Play

Min Luo
School of Computer Science
and Information Technology
RMIT University, Australia

Geoffrey Lee
School of Computer Science
and Information Technology
RMIT University, Australia

geoff.lee@rmit.edu.au

Abstract—Imitating human-like behaviour in action games
is a challenging but intriguing task in Artificial Intelligence
research, with various strategies being employed to solve the
human-like imitation problem. In this research we consider
learning human-like behaviour via Markov decision processes
without being explicitly given a reward function, and learning to
perform the task by observing expert’s demonstration. Individual
players often have characteristic styles when playing the game,
and this method attempts to find the behaviours which make
them unique. During play sessions of Super Mario we calculate
player’s behaviour policies and reward functions by applying
inverse reinforcement learning to the player’s actions in game.
We conduct an online questionnaire which displays two video
clips, where one is played by a human expert and the other is
played by the designed controller based on the player’s policy.
We demonstrate that by using apprenticeship learning via Inverse
Reinforcement Learning, we are able to get an optimal policy
which yields performance close to that of an human expert
playing the game, at least under specific conditions.

I. INTRODUCTION

The game industry has been rapidly expanding for the past
few decades and it is the fastest-growing component of the
international media sector. It has been devoting considerable
resources to design highly sophisticated graphical content and
challenging and believable Artificial Intelligence (Al). Various
artificial intelligence methods have been employed in modern
video games to engage players longer, game agents built
with human-like behaviour and cooperation, which raise the
players’ emotional involvement and increase immersion in the
game simulation.

To better develop human-like behaviour in game agents,
an Al technique called imitation learning has been developed
which allows for the Al to learn from observation. It was orig-
inally applied with success to robot manufacturing processes
[1]. Preliminary work on imitation learning has been focused
on the task of motion planning for artificial opponent in first-
person shooter games [2], but modelling game Al through
imitation learning is seen to have great potential for more
games than just first-person-shooters.

A particularly fitting challenge for imitation learning has
been posed by the Super Mario Turing Test Al competition [3]
[4] whose goal is to develop an artificial controller that plays
Super Mario in a human-like fashion. With this challenge in
mind, this paper presents work on realising a controller for the
game Super Mario by applying Apprenticeship Learning via
Inverse Reinforcement Learning (IRL) [5], a high-performance
method of imitation learning.
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Imitating player behaviour has several key benefits: We can
create games with more intelligent and believable NPCs', and
opponents that do not react to players in a pre-determined fash-
ion, regardless of context [6]. Game play can be dynamically
altered to adapt to different players by their features of play
(their playing “style” as well as their “skill”’) to sustain their
engagement with the game longer [7], and learned Al agents
are able to help game companies test the strength of game
Al and discover defects or limitations before its release to the
market [8].

In order to implement and test the application of IRL
to a Super Mario controller, this paper investigates how we
can design an appropriate knowledge representation for the
Super Mario testbed environment. We investigate the MDP
framework and inverse reinforcement learning algorithms that
allows us to learn a controller via imitation learning. We
also address objective methods to evaluate our controller’s
performance, and how to best evaluate if our controller’s
behaviour is human-like.

Our contributions include providing a solution to represent
knowledge in Super Mario game within an MDP framework,
on which we applied apprenticeship learning via IRL. We show
two experiments using self-reporting that forms the basis of a
“Super Mario Turing Test”, and we provide an experimental
analysis of why AL/IRL holds promise for providing human-
like controllers and eventually passing this modified Turing
test.

The rest of this paper is organized as follows: Section
IT describes the basic techniques and algorithms which serve
as foundations, and brief current state of the art in human-
behaviour modelling. Section III is our proposed framework
used to generate our experimental results. In Section IV we
discuss experimental results, analysing the convergence results
for apprenticeship learning and present and discussing quanti-
tative results of questionnaires. Finally, Section V summarises
our results and lays out opportunities for future work.

II. BACKGROUND AND RELATED WORK
A. Mario, Al and Turing Tests

Super Mario has been used to study human-like behaviour
since 1990’s. In 1992, John and Vera used GOMS (Goals,
Operations, Methods and Selection rules) to predict the be-
haviour of an expert in Super Mario Bros [9]. By using the only
information in the booklet and some hand coded heuristics,
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they carried out their experiment at two levels, the functional-
level operators and keystroke-level operators, and proved that
GOMS is capable of predicting the expert’s behaviour and the
expert’s behaviour is objective oriented.

From 2009 to 2012 a yearly Al competition was held in
which teams developed Al controllers to play Infinite Mario,
with the intention to win as many levels as possible’. The
various entries to this competition utilised all manner of
machine learning and evolutionary programming techniques.
The clear victor in the competition was the A* algorithm [10],
which due to Mario’s deterministic nature, allowed for perfect
prediction and timing. The algorithm successfully navigated all
challenges in increasingly difficult levels. One defining point
was that the algorithm, by performing so well, played in a
manner that performs impossible feats, appearing completely
unnatural to the human eye. Due to the dominance of the A*
algorithms over the competition, an advanced test track was
implemented with the goal to create a controller that exhibited
human-like behaviour.

In the Turing test track of Mario AI Championship?, the
most common methods used in the competition were hand
coded rules, supervised learning and indirect representation
(using fitness values as a guide to evolution) [4]. Super-
vised learning, neuroevolution via Artificial Neural Networks
(ANN), directed scripting and behaviour trees all featured in
the competitors algorithms. The most successfully "humanlike’
controller employed neuroevolution, which differs from our
approach as it applies evolutionary algorithms to adjust the
weights of an ANN.

Based on John and Vera’s work with GOMS, Mohan
and Laird proposed a hierarchical RL framework that allows
learning playing Infinite Mario [11]. They used object-oriented
behaviours to achieve object related goals and by selecting
primitive actions corresponding to the object. The limitation
of their learning approach is that the agent is not able to find
a good policy. In [11] they assigned rewards for each positive
interaction with the world, which while proper for traditional
reinforcement learning, is different from what we do in this
project. The agent learns to play the game to maximize it’s
score, rather than learning to play like a human. We instead
approach the problem by defining that the environment is filled
with unknown rewards, which can be derived (as a linear
combination function) by learning from observing an expert
at work.

Our approach differs significantly in that we do not deal
with evolutionary algorithms and genomes. Our approach, by
applying IRL to the problem, allows us to utilise reinforcement
learning to maximize the reward over time, where the reward
is behaving in a humanlike fashion. The main difference being
that the algorithm will take a less optimal solution if it predicts
larger gains in the future. To the best of our knowledge, our
approach is the first attempt to use apprenticeship learning via
IRL to the Turing Test challenge.

B. Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learn-
ing inspired by behaviourist psychology and has been studied
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in areas such as genetic algorithms, statistics, game theory,
control theory and checkers [12]. An RL agent learns by
selecting actions that yield the greatest accumulated numerical
reward over time rather than seeking an immediate reward.

In machine learning, the environment is typically repre-
sented as a Markov Decision Process (MDP) and decisions
made by the agent are called a policy 7 (a probability dis-
tribution for selecting actions at each state). The goal of the
agent is to find the optimal policy 7, a policy that maximizes
accumulated rewards over time [12].

RL proceeds by trying actions in a particular state and
updating an evaluation function which assigns expected reward
values to the available actions based on the received, possibly
delayed, reward. Dynamic Programming (DP) is the selected
RL algorithm for this paper, as was used in the original
implementation of the IRL problem. More recent versions may
use alternative methods. See [12] for more details on the DP
algorithm.

C. Apprenticeship Learning via Inverse Reinforcement Learn-
ing

When teaching a young child to play a game, it is much
easier and more practical to demonstrate it to the child rather
than listing all the game rules. Then the child will learn by
trying to mimic the demonstrator’s performance and grasp the
task gradually. Learning from an expert by watching, imitating,
or from demonstration is called apprenticeship learning (AL)
[5], which employs IRL to solve such a problem.

Inverse Reinforcement Learning (IRL) problems work in
the opposite way to reinforcement learning - when there is no
explicitly given reward function, we can use an IRL algorithm
to derive a reward function by observing an expert’s behaviour
throughout the MDP environment. Rewards are mapped to
features within the states to reflect the importance of those
features to the expert. This analysis of expert behaviour yields
a policy that attempts to perform in a manner close to the
expert. MDPs without reward functions are defined as MDP\R

[5].

For this project, we invited three experts to demonstrate
gameplay tasks to the Apprenticeship Learning algorithm. To
observe the performance requires logging the experts’ actions
in related MDP states (further details in Section III-A). While
Mario has some solid goals to associate with rewards (coins,
points, goombas stomped) it is not obvious how an expert
player would prioritize each goal. In this scenario there is no
way to get a reward function directly, so it becomes a MDP\R
problem to learn the expert’s internal reward function.

The method Abbeel et al. [5] used to derive a reward
function in MDP\R was by thinking of an expert as an agent
trying to maximize a hidden reward function, which can be
expressed as a linear combination of known features from the
environment:

R (s) = w™ - 6(s) (D

where ¢ is a vector matrix of features, w* is a vector
which specified the relative weights between these features

corresponding to the reward function.



The apprenticeship learning algorithm is described in detail
by Abbeel and Ng [5]. The algorithm solves a linear program-
ming problem by bringing the policy 7 of a RL algorithm
close to 7, the optimal policy performed by expert.

We assume that 7g is the optimal policy performed by
expert based on an unknown reward function. By analysing
the prevalence of each feature in the expert’s environment
every timestep, we can calculate the feature expectations of the
expert u(mg). The AL algorithm iteratively calculates feature
weightings w via a max-margin calculation to create reward
functions, which are subsequently used by a RL algorithm to
learn the optimum policies. The feature expectations of these
policies p(7) are compared to the expert’s feature expectations,
and the process is repeated until polices are generated that are
comparable within an acceptable error rate (¢), where € > 0.

lp(me) = (@] <€ 2)

A policy with a matching feature expectation performs
actions in a way that produces the same state transitions as that
of the expert. The result is not only a policy that mimics the
expert, but also one where the underlying reward structure can
be extrapolated to states previously unexplored by the expert,
allowing for behaviour that performs as the expert would in
unfamiliar situations.

III. IRL FOR SUPER MARIO

In this section, we describe how we applied AL/IRL to our
project. We explain the construction of the MDP and features,
based on the human player style and Mario’s interaction the
environment, and describe how we applied the learned policies
to the Super Mario game.

The process of designing a controller in our proposed
framework is comprised of 3 distinct steps. First, we record
and export the expert trajectories from the game. Then we
set up the environment and run the AL and IRL algorithms.
The optimal policy for Super Mario is obtained at the end of
this step. Finally the obtained policy is applied directly to the
modified version of Super Mario.

A. MDP Representation and Features Definition

In the Turing Test Track, the standard Mario AI Benchmark
used a grid to represent the current state of the environment.
In line with previous attempts we have used a 5x5 grid to
describe the world around Mario (see Figure 1).

To limit the scope of our preliminary investigation, some
constraints were put on the game. Mario’s size was fixed to
“big” without any possibility of shooting. There are two types
of enemies adopted in the levels, Goombas and Green Koopas.
At this stage of the project, we chose overground without gaps
as our basic level type. Additionally, the usage of a 5x5 grid
representation is actually described as a partially observable
Markov Decision Process (POMDP), as we only view small
window of the world at once. This will affect the transition
probabilities from state to state as outside influences will affect
the state in ways the MDP cannot predict. The ability of the
algorithm to adapt to new situations is part of the advantage
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Fig. 1. Using a 5x5 grid to represent the MDP state, the origin is located
in the upper left corner and Mario is in the middle of the grid and occupies
two cells (position [1,2] and [2,2]). Assuming there are 4 possible items: coin,
enemy, platform and brick appearing in the grid, we would have 423 states
overall.

IRL provides, as it learns behaviours based on values of the
features observed, allowing it to act like the learnt behaviour
even in environments the player has not been before.

There are 15 possible objects that may appear in any level.
With 15 objects, the level would create at most 1523 states
in the state set S, as Mario occupies 2 cells in the middle
of the grid. Fortunately almost all the MDP states are sparse
matrices, because a background cell counts as an empty cell,
thus the number of the state elements in S is far less than 15%3.
During the game Mario and the various enemies are not fixed
to a particular block position, so their positions are rounded
to the nearest block position. This discretization creates some
variance in the state transition probabilities as sometimes the
same action (for example, jumping to stomp a goomba) may
not always result in the same end state depending on the actors’
distance to transitioning between blocks.

Data is recorded sparsely, by the column, row, and item
ID. For example, Figure 1 can be expressed as: 0,2: -4;(a
mud brick) 0,3:-16;(a brick) 0,4:-16; 1,3:2;(a coin) 1,4:2; 2,3:2;
2,4:2; 3,1:-16; 3,2:-16; 3,3:-16; 3,4:-16; 4,0:-128;(a platform)
4,1:-128; 4,2:-128; 4,3:-128; 4,4:-128;.
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Fig. 2. Defining direction in a 5x5 grid.

We also gathered 20 significant features of gameplay
by watching human demonstrations and analysing Mario’s



interaction with the MDP environments. These values include
noting the direction of Mario, if he is jumping, the closest
block, enemy, coin, etc. For features that describe the relative
position of an object to Mario, a specific value was assigned
relating to the direction of Mario to the object in the grid. In
a small 5x5 grid, the direction is a more effective indicator
compared to small displacements of distance between blocks.
Directions were defined by “slicing” the grid into 8 discrete
directions, shown in Figure 2. The 23 pieces of block data
plus the extended feature data combines to form each unique
state in the MDP.

The basic actions in the gameplay simply mirror keyboard
presses. There are four keys: A, S, <, —, which indicate
Sprint, Jump, Move left and Move right respectively. Often
players press more than one key at any given time. For
correctly catching the player’s actions, key presses are rep-
resented as binary digits and obtained as a binary string. We
denote actions as a combination of four digits, which represent
boolean values of Move left, Move right, Jump and Sprint,
from left to right. For example, 0110 means that Mario is
jumping to the right and 1001 indicates that Mario is sprinting
to the left.

B. Data Gathering and Pre-processing

The data of the state-action trajectories of an expert is
captured by a log file, and consists of 4 parts: the time, action,
states and features. Time is expressed in milliseconds; actions
and features have been explained previously.

For the sake of legibility, we create a state mapping file.
The list of possible transitions can be easily created based on
the actions taken in a particular state. As previously mentioned,
in an MDP [12], at each discrete time step ¢, given a state s
and any action a, the probability of transition to the next state
is denoted as:

ply = P{sg1=58|si=s a=a},

a
ss’?

To calculate the probability P?_,, we use the formula shown

as below:
_ The number of s — s" when taking action a

p;ls’ . . . (3)
Total times of taking action a at state s

C. Running IRL algorithm

The Inverse Reinforcement Learning Toolkit (IRL Toolkit)
[13] is a package developed in Matlab which contains a
collection of inverse reinforcement learning algorithms and
provides a framework for evaluating these algorithms on the
environment of MDPs. The package was originally developed
as a reference implementation for the Gaussian Process Inverse
Reinforcement Learning algorithm described in [13], but it
also provides a general framework for the researchers who are
interested in IRL. In this project, we adopted the algorithms
described in [5].

Once modelled in the MDP environment, the expert trajec-
tories and the probability transitions are imported to Matlab
for setting up the algorithm running environment. When the
IRL calculations complete, we get an optimal policy obtained
through the AL/IRL algorithm from the expert’s performance.
The optimal policy is then imported and applied into the
testbed game for observation.

IV. EXPERIMENTAL DESIGN AND RESULTS

In this section we present experimental results, focusing
on convergence results i.e., on analysing if the optimal policy
devised by AL/IRL converges to the expert policy provided by
demonstrations. Secondly we explain the design and construc-
tion of a self-reporting experiment and discusses the results
from various perspectives.

A. Apprenticeship learning Via IRL Analysis

In Section II-C, we described the apprenticeship learning
algorithm as presented in Abbeel’s paper [5]. Here we firstly
introduce how we captured the experiment trajectory data from
the users’ demonstrations, and display and analyse the AL
convergence results obtained from the experiment.

This leads to our first contribution, designing an appropriate
knowledge representation in Super Mario game testbed which
allows a controller to learn via imitation learning.

In section III-A, we proposed the approach to represent
the MDP environment, using a 5 x 5 grid whose size is
much smaller than that of the best controller (VLS) used in
the 2012 Turing Test Mario Championship, which is 22 x
22 [3]. Using a smaller size grid still allows us to capture
key information from the environment without encountering
the same computational trade-offs and limitations described
by the authors of the VLS controller.

To search information in this smaller size grid precisely
and quickly, we discretised the possible directions in the grid
surrounding Mario (as described in Section III-A on MDP
representation). This is a typical approach in several pattern
recognition problems (e.g., gesture recognition) employing
template matching [14]. By assuming that the reward function
is expressed as a linear function of the known features we
were able to obtain convergence of the the learned policy to
the feature expectations of the expert after a finite number of
iterations.

1) Experimental Setup and Data Logging: As mentioned in
Section II, the testbed game is the modified version of Markus
Persson’s Infinite Mario Bros. The experiments were run on
an Intel Core I7- 3610QM, 2.3GHZ, with a 4 GB RAM. The
computer captured one line of log data every 40 milliseconds.

We invited 3 players for the tests since all of them have
extensive experience in playing several kinds of video games.
Each player was asked to complete a specific level for six
times. After that, we chose the one who had highest average
skills score (such as the number of coins collected, enemies
killed and stomped in the level), which is returned by the
Mario simulator at the end of the level, as our expert. For
the purpose of covering the states as much as possible, we
asked the expert to play three more levels and each level was
successfully played six times. We ended up with 3413 states
and 10 actions. The maximum size of a state transition set was
25.

2) Convergence Results : In this experiment, we assumed
that the expert is trying to maximize a reward function. For
finding a policy 7 that can induce feature expectation ()
close to the expert feature expectation u(wg) , we applied
apprenticeship learning to our expert’s trajectories. The IRL



algorithm was stopped after 10 iterations as it reached a
satisfactory minimum distance to the expert policy. We have
plotted the margin (distance to expert’s policy) in Figure 3.
The distance is calculated using the Euclidean distance to
the expert’s feature expectations. Our results return a optimal
policy m* which almost exactly matches the expert’s policy in
terms of feature expectations.
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Fig. 3. Convergence speed of the IRL algorithm in Super Mario.

From the results displayed in Figure 3, we can see that appren-
ticeship learning is a fast learning method to study our expert’s
performance. Another important property of apprenticeship
learning is that it is able to mimic the expert’s style, which
means each instance of the controller’s policy closely matches
the expert’s policy. We list some features in Table I from the
learned policy for analysis of the expert’s style.

On examination of Table I, the data indicates a strong
preference for moving right, which is necessary to complete the
game. The expert places a higher priority on killing monsters
by stomping on them, and places the highest priority on dealing
with Koopa shells in his immediate vicinity (Mario might be
facing a shell, stomping on a shell, kicking a shell or jumping
over a shell). These results indicate that apprenticeship learning
should be able to mimic an expert, however to prove this we
have performed a user study to confirm our findings.

B. Questionnaire Experimental Study

We administered an online questionnaire to test the hypoth-
esis that the controller learned via AL/IRL was “human-like”,
to the point where it could pass, at least in some instances, a
modified version of a Turing Test (the Mario Al Turing Test
[4]). The design of the questionnaire is available online* or
on request. A summary of the results we gained from it is
analysed and discussed.

1) Evaluating the controller’s performance: To evaluate
the controller’s performance, the benchmark test in assessing
the believability of a controller’s performance versus that of a
human player is conducted via a Turing Test, as done in the
Mario AI Championship. In addition, we were concerned that
the participants might have biased judgements if they knew
that one of the video was generated by a computer, thus we

“https://dl.dropboxusercontent.com/u/48945922/2014-04-
01_Mario_Paper_Survey/MarioQuestionnaire.pdf

ran two kind of tests, biased and unbiased. The results are
presented in Section IV-C

2) Evaluating the controller’s behaviour as human-like:
Judging a controller’s believability can usually be done from
a first-person (playing with) or third-person (observing) per-
spective. In this project, it is impossible to run a first-person
assessment as the game only has one character. It is reasonable
and feasible to judge the performance from the third-person
perspective. We decided to use the results from the 2012 Mario
Al Championship as our baseline, since they had already been
published when our work was carried out.

3) Design: To ensure the evaluation was correct, we set
up the questionnaires in the following steps which can help us
organize the clear comparison between human and computer
performance, as in the modified Turing Test for dialogue
provided in [15]:

o Items
The items used in the questionnaires were five video
clips of Mario game playing: three of them are the
expert’s demonstration and the other two are learned
controller’s performance.

e  Groups

We developed two types of questionnaires,
investigating both within-subject and between-
subject results. Each questionnaire consisted of two
groups, which observed different combinations of
gameplay video. The purpose was to assess how
our controller performed in simulating human play.
In addition, we would be able to see if having
knowledge of the computer’s participation would
have biased these performance judgements.

The first questionnaire required the participants
detailed analysis of the controller’s performance
(referred to as QDPJ). Questions involved asking
the user to agree/disagree with statements such
as “Mario is collecting items proficiently” and
“Mario appears to be exploring the world around
him.” The second questionnaire asked about Mario’s
overall performance judgements (denoted as QOPJ).
This questionnaire informed the subjects of the
Al computer participation, and it involved asking
the user to agree/disagree with statements such as
“Mario’s performance is human-like” and “Mario’s
performance is akin to one of an expert”.

The subjects were divided into in four groups: Group
Al and Group A2 denote the subjects who took QDPJ
first and QOPJ second, while, Group Bl and Group
B2 denote those who took the questionnaires in the
opposite order. Subjects in Group Al and Group
A2 are unbiased as they are not informed of Al
participation until QDPJ, and those in Group B1 and
Group B2 are biased.

e  Subjects
We were able to invite 70 participants. The subjects
were divided into four groups: 17 of them were in
Group Al, 31 of them in Group A2, 10 of them
in Group Bl and 12 of them in Group B2. Having



Right Movement ~ Jumping  Collecting Coins  Stomping Killing  Hitting Brick ~ Close Shell
nE 6.420 1.739 0.007 9.346 0.124 9.842
w(7) 6.071 1.751 0.019 9.420 0.107 9.865
w -0.076 -0.607 -0.019 0.489 -0.045 0134

TABLE L

SOME OF THE FEATURES LEARNED VIA IRL. DISPLAYED ARE THE FEATURE EXPECTATION FROM THE EXPERT POLICY (i F, THE FEATURE

EXPECTATION OF THE LEARNT POLICY ,u,(ﬁ'), AND THE LEARNT FEATURE WEIGHT w. HIGHER EXPECTATIONS INDICATE THE PREFERENCE TO ACTIVATE A
GIVEN FEATURE IF AVAILABLE. FEATURE WEIGHTS ARE RELATIVE, THE HIGHER THE VALUE THE HIGHER THE PRIORITY OF THE FEATURE OVER OTHERS.

experience of playing video games was an important
prerequisite.

C. Result and analysis

In this section, the figures provided represent an overall
result of the experiments. Individual testing groups (Al,
A2, B1, B2) are discussed to highlight minor discrepancies
between survey results.

We were interested in testing how the subjects’ judgement
would be affected if they have been told there was a computer
playing the game. We have used the x? test for independence
to see if the two factors response and questionnaire pattern
(Group A: unbiased and Group B: biased) are independent.
The degree of freedom for the test is two, since we compare
two patterns of three cells (frequency of Agree, Neutral and
Disagree). The result is displayed in Table II.

Agree  Neutral  Disagree | Total
Group A 12 6 30 48
12.34 6.86 28.80
0.010 0.107 0.050
Group B 6 4 12 22
5.66 3.14 13.20
0.021 0.234 0.109
Total 18 10 42 70

TABLE II. SIGNIFICANCE TEST RESULTS: CHI-SQ = 0.530, DF =2,

P-VALUE = 0.767

The p-value is 0.767, which is higher than the usual values
used in hypothesis testing (typically 0.01 or 0.05). Therefore,
we can conclude that knowing a computer was used to generate
some of the clips did not provide a bias in the users’ judging
the game play video clips.

Overall Result: Human-like
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Fig. 4. Survey results: Comparison of participants’ perception of human-like
behaviour of the AI Controller and the human Expert.

Overall, 70 participants took part in the evaluation process. The
scores are calculated as the percentage of judges’ opinions:

Overall Result: Akin to an Expert
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Fig. 5. Survey results: Comparison of participants’ perception of Expert
Gameplay of the Al Controller and the human Expert.

Agree, Neutral or Disagree. As per Figure 4, 25.71% of
subjects agreed that the controller’s performance was human-
like. This result is only 0.08% lower than the best agent VLS
in the Turing Test Track 2012 Mario Championship. We have
noticed that there is an interesting phenomenon where 20% of
the survey participants disagreed that the expert’s play clips
were "humanlike’. Both the controller and the expert received
14.29% Neutral responses respectively, so we can see that the
controller’s performance did appear even more human, or at
least not obviously non-human.

As shown in Figure 5, the controller also picked up on
some of the player’s expertise. According to survey results the
player only received a 32.86% ‘expert’ result, and that the IRL
controller performed at 20%. This means that it is performing
just as well for over half of those respondents.

Overall performance human-like: IRL Controller

Al A2 Bl B2
Agree 29.41% | 22.58% | 40.00% 16.67%
Neutral 17.65% | 9.68% 10.00% | 25.00%
Disagree | 52.94% | 67.74% | 50.00% | 58.33%

Overall performance human-like: Human Expert

Al A2 Bl B2
Agree 76.47% | 58.06% | 80.00% | 58.33%
Neutral 11.76% 16.13% 10.00% 16.67%
Disagree 11.76% | 25.81% 10.00% | 25.00%

Akin to an Expert - IRL Controller

Al A2 Bl B2
Agree 41.18% | 9.68% 20.00% 16.67%
Neutral 5.88% 19.35% 10.00% 16.67%
Disagree | 52.94% | 58.71% 10.00% | 66.67%

Akin to an Expert - Human Expert

Al A2 Bl B2
Agree 5.88% 41.94% 50.00% 33.33%
Neutral 17.65% 19.35% 40.00% 25.00%
Disagree 76.47% 58.71% 10.00% 41.67%
TABLE TII. VERALL GROUP RESULTS.



The significance results for each group are listed in Table
III. Of note, in the individual groups there were a number of
observable discrepancies and highlights. In Group Al, 29.41%
of the subjects agreed that the controller’s performance was
human-like and 41.18% thought the controller was akin to
an expert. For the expert’s performance result, while 76.47%
agreed the performance was human-like, only 5.88% thought
the performance was akin to an expert, which indicates that
for this group that our controller performed more skilfully than
the expert.

Group B1 results indicate that 40% of the subjects thought
the controller’s performance was human-like. Compared to the
result of Mario AI Championship 2012, it is quite a high score,
although with the small sample size of the group the individual
result is not significant. Group B2 results diverged in that
only 16.67% of the participants thought the IRL controller’s
behaviour was human-like, which is much lower than the
overall result. However the results for the expert are also lower,
only 58.33% of them agreed that the performance was human-
like.

For the evaluation of the controller’s performance, Group
Al and Group B1 have much higher score than Group A2 and
Group B2. Some possible causes for this are:

1)  The video clip duration for Group A2 and B2 may not
long enough to let the judges have a good observation
about Mario’s performance;

2)  The video clip of the controller for Group A2 and
B2 might not provide enough information of Mario’s
skills. We checked the clip and found that the level
environment in Group A2 and B2 was quite empty
compared to the other clips so that it was not able to
give the judges sufficient details about Mario’s skills;

3)  The optimal policy obtained from AL/IRL constrains
Mario to taking an ’optimum’ unique action in a
particular state, so this may limit the diversity of
transitions in the real gameplay.

From the results above, we can prove that our controller’s
performance has been able to pass this modified Turing test at
times. We can say apprenticeship learning via IRL has been
feasible and effective for this project and it has potential for
learning and imitating human-like game play in Super Mario.
However, we have also noticed that the score of the controller’s
exploring ability is low in each group (see Figure 6 and Figure
7

As mentioned in Section III-A, we have generalized 20
features of Mario in the gameplay for the apprenticeship
learning method. We have extracted 4 features to investigate
the drawbacks in our current approach. As seen in Figure
7, all feature values are uniformly normalized in the range
[0, 1]. The figure illustrates that the controller has better
killing skill and stomping skill than the expert, but there is a
remarkable difference existing in devouring flowers skill, the
controller has a null score. The controller also has lower score
in the collecting coins behaviour. Possible reasons for this may
include:

1)  AL/IRL cannot generate a consistent enough policy
for an event rarely demonstrated by the expert;

Exploring Ability

80%

67.14%

70%
60%

50.00%

50%

40% M Controller

1.43%

30% M Expert

20.00%g 579

20%

10%

0%

Agree Neutral Disagree

Fig. 6. Comparison between the perceived exploration ability of the controller
and the expert.

Features Extracted from Gameplay

H Controller

M Expert

Flowers
Devoured

Coins Collected

Enemies Killed Stomping Kills

Fig. 7. Features extracted from gameplay, weights normalised in [0,1]. A
comparison between the behaviours of the controller and the expert.

2)  The collected states in the state set are not sufficient,
which could be improved upon by letting the expert
play more levels for a longer period of time;

3) The MDP environment was represented via a 5x5
gird, which limits Mario’s vision. There was a trade
off between grid size and scalability, compared to
the in-game visible area the size of the grid is fairly
small, and flowers and coins often sit outside of the
range. Thus there will always be some items available
in a human player’s eye view that the agent is not able
to detect;

4)  Finally, the optimal policy we obtain from AL/IRL
is deterministic, which means that the single optimal
action is taken in a particular state every time. This
limits the variety of taken actions in this particular
state and it could be improved upon by using some
of the candidate non-deterministic policies generated
by AL/IRL, when iterating in search of the optimal
policy.

V. CONCLUSION

In this paper, we proposed that apprenticeship learning
as an imitation learning method to develop a human-like
controller for the game Super Mario. We have provided a



solution to represent the knowledge in Super Mario and have
demonstrated that apprenticeship learning converges rapidly
(see Section IV-A2) to the expert policy. We have established
the advantages of AL/IRL and have also highlighted limitations
inherent in our current knowledge representation and its use
by AL/IRL. We also found limitations in the current imple-
mentation that affected Mario’s ability to explore the game
environment.

We have been able to apply the obtained optimal policy
in a Super Mario controller and have been able to assess
its human-likeness via users’ self-reporting. Our preliminary
results perform at the same level to state-of-the-art techniques
used in the latest Super Mario Al competition results published
to date (see Section IV-B). Finally, we proved that the subjects’
responses in the self-reporting experiment were not affected by
knowing that a computer had generated some of the video clips
presented in the experiment (again, see Section IV-B).

There are two areas of particular interest for future work.
Firstly, increasing Mario’s perception by using larger or shaped
detection grids for determining the MDP states. To some
degree, this can be mitigated but cannot be completely solved
by enlarging the size of the grid. Growing the grid size has
implications on state size, its storage and the convergence of
the IRL algorithms and it may affect the algorithm efficiency.
The trade-off between these factors could result a fairly com-
plex problem, which will be very interesting to tackle in our
future work.

Secondly, when a human is playing the game, they may at
times take different actions in a repeated state. The obtained
optimal policy returns one action at a certain state through cal-
culating the weights of the expert known features. This limits
the controller imitating the versatility of human behaviour as
it lacks the variety and flexibility a human player expresses.
For instance, if a player runs into a wall ten times and finally
jumps over it once, the controller may learn that running into
the wall was the player’s preferred method of acting in that
state and only perform that action. For solving this problem,
we may borrow some idea from Bayesian models of imitation
learning which formulate the probability of each action based
on the previous action at a current state [16] [17] [18]. This
obviously represents another avenue for future work, which
we look forward to developing in the near future.
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