
Cooperative Co-evolution with Delta Grouping for Large Scale

Non-separable Function Optimization

Mohammad Nabi Omidvar, Member, IEEE and Xiaodong Li, Senior Member, IEEE and

Xin Yao, Fellow, IEEE

Abstract—Many evolutionary algorithms have been proposed
for large scale optimization. Parameter interaction in non-
separable problems is a major source of performance loss
specially on large scale problems. Cooperative Co-evolution(CC)
has been proposed as a natural solution for large scale opti-
mization problems, but lack of a systematic way of decomposing
large scale non-separable problems is a major obstacle for
CC frameworks. The aim of this paper is to propose a
systematic way of capturing interacting variables for a more
effective problem decomposition suitable for cooperative co-
evolutionary frameworks. Grouping interacting variables in
different subcomponents in a CC framework imposes a limit
to the extent interacting variables can be optimized to their
optimum values, in other words it limits the improvement
interval of interacting variables. This is the central idea of
the newly proposed technique which is called delta method.
Delta method measures the averaged difference in a certain
variable across the entire population and uses it for identifying
interacting variables. The experimental results show that this
new technique is more effective than the existing random
grouping method.

I. INTRODUCTION

Numerous metaheuristic algorithms have been developed

for continuous global function optimization. A major issue

with these techniques is their scalability to higher dimen-

sions. It has been shown that the performance of these

algorithms drops rapidly as the dimensionality of the problem

increases[1]. This is mainly due to exponential growth in

the size of search space. Cooperative Coevolution(CC) is a

popular technique in Evolutionary Algorithms(EAs) for large

scale optimization. Using a CC approach the decision vari-

ables of the problem are divided into smaller subcomponents

each of which is optimized using a separate EA.

Despite its success in solving many optimization prob-

lems, CC loses its efficiency when applied to non-separable

problems. Non-separable problems are those subclass of

optimization problems where a proportion of the decision

variables have interaction amongst themselves. When these

interacting variables are placed in different subcomponents

there would be a major decline in the overall performance

of the algorithms. This problem calls for new techniques

which are capable of capturing the interacting variables and

grouping them in one subcomponent.

M. N. Omidvar and X. Li are with the Evolutionary Computing and
Machine Learning Group(ECML), the School of Computer Science and
IT, RMIT University, VIC 3001, Melbourne, Australia (emails: momid-
var@cs.rmit.edu.au, xiaodong.li@rmit.edu.au).

X. Yao is with the Centre of Excellence for Research in Computa-
tional Intelligence and Applications (CERCIA), the School of Computer
Science, University of Birmingham, Birmingham B15 2TT, UK (e-mail:
x.yao@cs.bham.ac.uk).

Recently a new technique called random grouping has

been proposed by Yang et al. [2] which shows significant

improvement over previous CC techniques for large scale

non-separable optimization problems. In random grouping,

every decision variable is randomly assigned to any of the

subcomponents with equal probability and the whole process

is repeated at the beginning of every cycle. It has been

shown that using this technique the probability of grouping

two interacting variables in the same subcomponent will

increase significantly[2]. Unfortunately this probability will

drop significantly when there are more than two interacting

variables.

Ray and Yao proposed a Cooperative Co-evolutionary

Algorithm using Correlation based Adaptive Variable Parti-

tioning technique (CCEA-AVP)[3] in which they optimized

all of the decision variables in one subcomponent for 5
generations before calculating the correlation coefficients of

the top 50% of individuals in the population. The variables

with correlation coefficient value greater than a predeter-

mined threshold are grouped in one subcomponent and the

rest in another subcomponent. It has been shown that this

technique performs better than traditional CCEAs on many

non-separable benchmark functions.

In this paper we propose a new technique for capturing

the interacting variables and grouping them in one sub-

component. As it has been shown by Salomon in [4] the

improvement interval of a function shrinks significantly when

it has high eccentricity and is not aligned with the coordinate

axes (in other words, when the variables are interacting with

each other). Improvement interval of a variable is the interval

in which the fitness value could be improved while all the

other variables are kept constant. This is further explained

in Section III. In non-separable functions, when two in-

teracting variables are grouped in separate subcomponents,

there would be a limit to the extent each variable can be

improved towards its optimal value due to the rotation of

the function. We speculated that measuring the amount of

change in each of the decision variables in every iteration

can lead to identification of interacting variables. We called

this amount of change delta value. As we mentioned earlier

the improvement interval will shrink significantly on a non-

separable function so we expect smaller delta values for

those variables that have interaction amongst themselves.

Based on this idea we proposed a new algorithm that sorts

the decision variables based on the magnitude of their delta

values and groups the variables with smaller delta values in

one subcomponent. Experimental observations revealed that

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 1762

this new technique is very effective in capturing interacting

variables compared to previous techniques.

The organization of the rest of this paper is as follows.

Section II briefly explains the preliminaries. Section III

describes the details of the new technique for capturing

interacting variables. Section IV demonstrates and analyzes

the experimental results. Finally Section V concludes this

paper and gives directions on further potential improvements.

II. PRELIMINARIES

A. Cooperative Co-evolution

Cooperative Co-evolution(CC) [5] proposed by Potter and

De Jong is a framework for decomposition of problems

into smaller subcomponents each of which is evolved us-

ing a separate EA. Potter and De Jong incorporated CC

into Genetic Algorithm for function optimization and have

shown significant improvement over traditional GA. This

algorithm is called Cooperative Co-evolutionary Genetic

Algorithm(CCGA) [5].

CCGA divides a n-dimensional decision vector into n
1-dimensional subcomponents each of which is optimized

using a separate GA in round robin fashion.

In the past decades CC has been incorporated into var-

ious evolutionary algorithms such as Evolutionary Pro-

gramming [6], Evolutionary Strategies[7], Particle Swarm

Optimization[8], and Differential Evolution [2], [9].

The divide-and-conquer approach of CC makes it ideal

for tackling large scale problems. Liu et al. developed

Fast Evolutionary Programming with Cooperative Co-

evolution(FEPCC)[6] by which they tackled function opti-

mization problems with up to 1000 dimensions. A major

drawback of Potter and De Jong’s decomposition strategy

is that it doesn’t account for variable interactions. Poor

performance of FEPCC on non-separable functions supports

this idea[6].

Cooperative Particle Swarm Optimization(CPSO)[8] is the

first cooperative co-evolutionary PSO which was proposed

by van den Bergh and Engelbrecht. CPSO, unlike CCGA

decomposes a n-dimensional problem into m s-dimensional

subcomponents where s is the number of variables in a

subcomponent. CPSO uses a static grouping which means

that the arrangement of variables is not changed through the

evolutionary process. In order to evaluate the individuals in

each of the subcomponents, the variables of every individ-

ual are concatenated with the best-fit individuals of other

subcomponents to form what is called a context vector [8]

and then the context vector is passed to fitness function for

evaluation.

The first attempt for applying CC to large scale opti-

mization was made by Liu et al. using Fast Evolution-

ary Programming with Cooperative Co-evolution(FEPCC)[6]

where they tackled problems with up to 1000 dimensions,

but it converged prematurely for one of the non-separable

functions, confirming that Potter and De Jong decomposition

strategy is ineffective in dealing with variable interaction.

Shi et al. [9] proposed yet another decomposition strategy

in which they divided the decision vector into halves and

each half is optimized using Differential Evolution(DE)[1].

Splitting-in-half strategy can barely scale up with the dimen-

sions of the problem. This is because the dimensionality of

the two subcomponents will soon go beyond the capabilities

of subcomponent optimizers in higher dimensions.

Like CPSO, Yang et al. [2] subdivide a n-dimensional

decision vector into m s-dimensional subcomponents, but

unlike CPSO they use a dynamic grouping technique called

random grouping. Random grouping is explained in more

details in Section II-B.

B. Random Grouping and Adaptive Weighting

As it was mentioned in Section II Yang et al. [2] proposed

random grouping as a simple way of increasing the probabil-

ity of grouping interacting variables in one subcomponent.

Below is an outline of the algorithm proposed in [2] Which

is called DECC-G.

1) set i = 1 to start a new cycle.

2) Randomly split a n-dimensional decision vector into

m s-dimensional vectors. This essentially means that

any variable has equal chance of being assigned to any

of the subcomponents.

3) Optimize the ith subcomponent with a certain EA for

a predefined number of Fitness Evaluations(FEs).

4) If i < m then i + +, and go to Step 3.

5) Construct a weight vector and evolve it using a separate

EA for the best, worst, and a random member of the

current population.

6) Stop if the maximum number of FEs is reached or go

to Step 1 for the next cycle

Step 2 of the above algorithm is where the random

grouping is invoked. Yang et al. have shown in [2] that

the probability of grouping two interacting variables for at

least two out of 50 cycles using 10 subcomponents each

containing 100 variables is approximately 96.62%. Generally

random grouping will increase the probability of assigning

two interacting variables into the same subcomponent.

In an attempt to generalize the theorem proposed by Yang

et al.[2], Omidvar et al. have shown that the probability of

grouping interacting variables into one subcomponent will

drop significantly as the number of interacting variables

increases[1]. This probability can be calculated using Equa-

tion (1).

P (X ≥ k) =
N∑

r=k

(
N

r

)(
1

mv−1

)r (
1− 1

mv−1

)N−r

(1)

where N is the total number of cycles, k is the minimum

number of cycles that the interacting variables should be

grouped into one subcomponent, m is the number of sub-

components, v is the number of interacting variables that

needs to be grouped in one subcomponent and the random

variable X is the number of times that v interacting variables

are grouped in one subcomponent and since we are interested

in the probability of grouping v interacting variables for at

1763

least k cycles, X takes the values greater than or equal to k.

k is also subject to the following condition k ≤ N .

Figure 1 plots Equation (1) for N = 50, and N = 10000
and shows how the probability drops as the number of inter-

acting variables increases. One might think that increasing

the frequency of random grouping is the solution to the

problem, but this will significantly increase the total number

of fitness evaluations. In [1] Omidvar et al. proposed several

techniques in saving computational cost and using that for

more frequent random grouping. Although the proposed

technique significantly improves the performance of DECC-

G, the gained performance is insufficient to group more than

7 interacting variables even for only one cycle. This behavior

is shown by the dashed line in Figure 1. As it can be seen

from the same figure using the techniques described in [1]

it is possible to increase the frequency of random grouping

from 50 cycles to 10000 cycles using the same number of

fitness evaluations, but increasing the frequency of random

grouping by a factor of 200 allows for grouping only two

more interacting variables into one subcomponent with the

same probability compared to the case where only 50 cycles

were used. This can be inferred form the two units shift of

the probability plot to the right in Figure 1. For better clarity

a horizontal line could be imagined at a given probability.

For example a horizontal line at the probability of 0.4 will

cross the solid line(N = 50) at approximately v = 3, and

the dashed line(N = 10000) at approximately v = 5. So

increasing the number of cycles from 50 to 10000 allows for

grouping only two more interacting variables at any given

probability. The focus of this paper is to propose a more

effective technique in grouping interacting variables in one

subcomponent. Further details about the new technique is

provided in Section III.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty

Number of interacting variables(v)

P(X >= 1), N=50
P(X >= 1), N=10000

Fig. 1. Increasing the number of interacting variables(v) will significantly
decrease the probability of grouping them in one subcomponent, given n =
1000 and m = 10 [1].

Another subcomponent of DECC-G is adaptive weighting

as described in Step 5 of the outline of the algorithm earlier

in this section. In adaptive weighting a weight vector is

constructed using a series of coefficients which are multiplied

by the variables of subcomponents before evaluation. The

weight vector itself is evolved using a separate EA at the

end of each cycle. Adaptive weighting is done in order to

co-adapt the interdependent subcomponents. In [1] Omidvar

et al. have shown that adaptive weighting is not very effective

and in most cases fails to further improve the solution.

C. Self-adaptation of subcomponent sizes

Multilevel Cooperative Co-evolution(MLCC)[10] is an ex-

tension of DECC-G which self adapts the subcomponent

sizes using their historical performance through the course

of evolution. MLCC maintains a set of predetermined sub-

component sizes which are chosen at the start of each cycle

based on their performance records which are calculated

using special formulas described in [10]. The performance

of MLCC is shown to be better than DECC-G in [10].

In this paper we use a simpler self-adaptation technique

for subcomponent sizes which was used in [1]. This new

technique uses a similar set of subcomponent sizes used in

MLCC but the mechanism for choosing the decomposers

differs. In this technique the fitness of the best solution is

monitored and once there is no further improvement in the

fitness value a different decomposer is randomly chosen from

the set using a uniform random number generator. This new

DECC variant is called DECC-ML which is shown to have

a better performance than MLCC in [1].

III. PROPOSED TECHNIQUES

A. Delta Method

As it was described earlier in Section II-B the probabil-

ity of grouping interacting variables in one subcomponent

will decrease rapidly as the number of interacting variables

increases (Figure 1). Here we propose a new technique

that is capable of grouping interacting variables in a more

systematic way for more cycles than what is possible with

random grouping.

As it was mentioned in Section I CCEA-AVP relies on

calculation of correlation matrix for grouping interacting

variables. A major disadvantage of CCEA-AVP is that it

relies on a splitting-in-half strategy for decomposition of

decision variables which has limited scalability to higher

dimensions. This is similar to the scalability problem of the

algorithm proposed by Shi et al. in [9]. The other issue of

CCEA-AVP is that it remains unclear as to what type of

correlation coefficient has been used in CCEA-AVP. To the

best of our knowledge most statistical correlation coefficients

such as Pearson’s product-moment coefficient are used to

measure the linear dependence between any two variables

and it is independent of the slope of the line that they form. In

other words two variables might be highly linearly correlated

to each other yet they might be completely separable i.e.

linear correlation of variables which could be measured

using correlation coefficients is not a proper measure for

separability of variables in the context of large scale non-

separable optimization.

In this paper we propose a new technique to address

the shortcomings of random grouping and correlation based

1764

methods. The main idea behind this new technique is based

on a major property of most of non-separable problems. In

cooperative co-evolution the decision vector is decomposed

into several smaller subcomponents and in order to optimize

and evaluate the individuals within each of the subcompo-

nents, the variables of other subcomponents must be kept

fixed. In separable problems each variable can be optimized

one at a time and since there is no interaction between

the variables it is possible to get as close as possible to

the optimal value for that specific variable. Whereas in a

non-separable problem, variable interaction, imposes some

limitation to the extent a variable can be optimized close to

its optimal value. In other words variable interaction reduces

the improvement interval of variables specially when they

are grouped in different subcomponents. Coordinate rotation

is one way of turning a separable problems into a non-

separable one[4]. Salomon used this technique to show how

the performance of GA can drop significantly when applied

to rotated functions specially those with high eccentricity[4].

Figure 2 shows how coordinate rotation reduces the im-

provement interval of interacting variables. Figure 2(a) shows

a quadratic function with its principal axis aligned with

the coordinate system. As it can be seen the improvement

window is relatively large and with some luck it is possible

for the CCEA to find the optimal value of each variable

before optimizing the other variable. Figure 2(b) is identical

to Figure 2(a) except that it is rotated. Point A on the level

curve stays in the same location relative to the shape of

the function, but as it is depicted in Figure 2(b) coordinate

rotation causes the improvement interval of point A to shrink

considerably. Moreover, when the interacting variables are

grouped in different subcomponents, it becomes increasingly

difficult to optimize the variables to their optimal value.

Figure 2(b) clearly shows if one of the variables is kept fixed

the other variable is confined to reaching only a suboptimal

value.

We can use this information of small improvement in-

tervals to identify possible interacting variables in a non-

separable problem. When the improvement interval of a

variable gets smaller, it creeps towards its optimal value in

small successions. So whenever we observe such behavior

we can conclude that there might be another variable with a

small improvement window. This is not necessarily true all

the times, but using this simple heuristic we can significantly

increase the probability of grouping interacting variables into

one subcomponent. Another advantage of the new technique

is its ability to adapt itself to the fitness landscape. It is

clear that the degree of non-separability might change over

time depending on the area of landscape that is explored

by the individuals in the population. This flexibility allows

the algorithm to use more suitable decomposition strategy

depending on the shape of fitness landscape.

In the algorithm proposed in this paper we calculate the

amount of change in each of the dimensions between two

consecutive cycles for all of the individuals in the population.

We then construct the vector ∆ = {δ̄1, δ̄2, ..., δ̄n} where n

Improvement Interval

Im
p

ro
v

em
en

t
In

te
rv

al

x2

x1

A

(a) Quadratic Function

x2

x1

Im
p
ro

v
e
m

e
n
t

In
te

rv
a
l A

Improvement Interval

(b) Rotated Quadratic Function

Fig. 2. Coordinate rotation causes the improvement interval to shrink.
Figures (b) is the rotated version of function in Figure (a). Point A on the
level curves represent the same point before and after rotation. Note that
in (b) the global optimum is outside of the improvement window, which
makes it much harder for an algorithm to locate the global optimum.

is the number of dimensions and the elements of the vector

are calculated using the following equation:

δ̄i =

∑Npop

j=1 δi,j

Npop
, i ∈ {1, 2, ..., n} (2)

where Npop is the population size, and δi,j denotes the delta

value of the jth individual on the ith dimension. This is a

rough estimation of improvement interval in every dimen-

sions which used for capturing the interacting variables.

We can then sort the decision variables based on the mag-

nitude of their corresponding delta value in descending order,

and finally they are divided into predetermined equally-sized

subcomponents. Based on the idea of a small improvement

interval when a small delta value is observed there is a high

probability that another variable exists with a relatively small

delta value that has interaction with the former variable. This

1765

algorithm is called Differential Evolution with Cooperative

Co-evolution using Delta-Grouping(DECC-D) which is out-

lined below.

1) set i = 1 to start a new cycle.

2) Initialize the ∆ vector to zero. This means that the

delta is not used for arrangement of variables in the

first cycle.

3) Divide the decision variables into predefined subcom-

ponent. In the first cycle ∆ vector is initialized to zero

so the variables will preserve their original order.

4) Optimize the ith subcomponent with a certain EA for

one only one iteration. Note that this differs from

DECC-G[2] where the subcomponent optimizers run

for more than one iteration.

5) If i < m then i + +, and go to Step 4.

6) Construct the ∆ vector using Equation (2).

7) Sort the decision variables based on the magnitude of

their corresponding delta value.

8) Stop if the maximum number of FEs is reached or go

to Step 3 for the next cycle

We also developed a variant of DECC-D called DECC-

DML that self-adapts the subcomponent sizes using the

techniques used in DECC-ML[1]. DECC-DML differs from

DECC-D in the way that it decomposes the decision vector.

Instead of using a fixed subcomponent size in step 3,

DECC-DML checks the fitness of the best individual and

if there has been no improvement it will choose a different

decomposer from a set of predetermined decomposers is

called S. For this paper we used the following decomposers,

S = {50, 100, 200, 250}.

IV. EMPIRICAL RESULTS

We evaluated both DECC-D and DECC-DML on

CEC’2008 benchmark functions the detailed description of

which can be found in [11]. In order to further validate the

results we also tested both DECC-D and DECC-DML on

the new CEC’2010 benchmark functions [12]. The results

of experiments on both set of benchmark functions are

provided in Sections IV-A and IV-B respectively. We ran

each algorithm for 25 independent runs for every function.

The population size is set to 50 for all of the experiments.

A. Experiment Results on CEC’2008 Benchmark Functions

We tested our proposed algorithms with CEC’2008 func-

tion for 100, 500, and 1000 dimensions and the mean

of the best fitness value over 25 runs was recorded. The

performance of DECC-D and DECC-DML is compared with

other algorithms in Tables I, II, III for 100, 500, and 1000

dimensions respectively. The maximum number of fitness

evaluations(FEs) was calculated by the following formula,

FEs = 5000 × D, where D is the number of dimensions.

In DECC-D the subcomponent size is set to 50, and for

DECC-DML the following set of decomposers are used,

S = {50, 100, 200, 250}.

As it can be seen from Tables I, and II DECC-DML

outperforms MLCC on 6 out of 7 functions with 100, and 500

dimensions and on 1000 dimensions it outperforms MLCC

on all the 7 functions(Table III). It is interesting to see

that DECC-ML which completely relies on more frequent

random grouping has the best performance, but it should

be noted that several of CEC’2008 benchmark functions are

separable and for those that are non-separable the degree of

non-separability is unknown. By a closer look at Table III

we can see that despite the better performance of DECC-

ML the final mean fitness value is indeed very close to what

is achieved by DECC-DML. Since the aim of this paper

is to demonstrate the delta method as a new technique for

grouping interacting variables, we leave further analysis of

DECC-ML to another study.

TABLE I

RESULTS OF DIFFERENT ALGORITHMS OVER 100

DIMENSIONS(AVERAGED OVER 25 RUNS). BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

DECC DECC-ML DECC-D DECC-DML MLCC

f1 2.7263e-29 5.7254e-28 2.9283e-29 4.7379e-28 6.8212e-14

f2 5.4471e+01 2.7974e-04 5.2479e+01 2.4811e-04 2.5262e+01

f3 1.4244e+02 1.8871e+02 1.4077e+02 1.9233e+02 1.4984e+02

f4 5.3370e+01 0.0000e+00 5.4444e+01 0.0000e+00 4.3883e-13

f5 2.7589e-03 3.6415e-03 8.8753e-04 7.8858e-04 3.4106e-14

f6 2.3646e-01 3.3822e-14 1.2270e-01 3.1548e-14 1.1141e-13

f7 -9.9413e+02 -1.5476e+03 -9.8976e+02 -1.5480e+03 -1.5439e+03

TABLE II

RESULTS OF DIFFERENT ALGORITHMS OVER 500

DIMENSIONS(AVERAGED OVER 25 RUNS). BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

DECC DECC-ML DECC-D DECC-DML MLCC

f1 8.0779e-30 1.6688e-27 3.8370e-29 1.7117e-27 4.2974e-13

f2 4.0904e+01 1.3396e+00 3.8009e+01 1.0232e+00 6.6663e+01

f3 6.6822e+02 5.9341e+02 5.6941e+02 6.8292e+02 9.2466e+02

f4 1.3114e+02 0.0000e+00 1.4631e+02 0.0000e+00 1.7933e-11

f5 2.9584e-04 1.4788e-03 2.9584e-04 2.9584e-04 2.1259e-13

f6 6.6507e-14 1.2818e-13 5.9828e-14 1.2051e-13 5.3433e-13

f7 -5.5707e+03 -7.4582e+03 -4.7796e+03 -7.4579e+03 -7.4350e+03

TABLE III

RESULTS OF DIFFERENT ALGORITHMS OVER 1000

DIMENSIONS(AVERAGED OVER 25 RUNS). BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

DECC DECC-ML DECC-D DECC-DML MLCC

f1 1.2117e-29 5.1750e-28 1.0097e-29 3.3391e-27 8.4583e-13

f2 4.2729e+01 3.4272e+00 3.8673e+01 5.81133e+00 1.0871e+02

f3 1.2673e+03 1.0990e+03 1.1597e+03 1.22537e+03 1.7986e+03

f4 2.4498e+02 0.0000e+00 2.7406e+02 0.0000e+00 1.3744e-10

f5 2.9584e-04 9.8489e-04 1.0392e-15 1.4611e-15 4.1837e-13

f6 1.3117e-13 2.5295e-13 1.1866e-13 2.2908e-13 1.0607e-12

f7 -1.4339e+04 -1.4757e+04 -1.1035e+04 -1.4750e+04 -1.4703e+04

B. Experiment Results on CEC’2010 Benchmark Functions

In Table VI the best, worst, median, mean, and standard

deviation are recorded. These information are recorded from

different stages of evolution to demonstrate the convergence

behavior of the algorithm. Figure 3 shows the convergence

plot of DECC-D and DECC-DML for all of the variants

of Rastrigin and Rosenbrock functions. We also compared

1766

the performance of DECC-D and DECC-DML with other

algorithms such as DECC-G and MLCC as shown in Table

VII. It can be seen that DECC-DML outperforms DECC-G

on 14 out of 20 functions and outperforms MLCC on 12 out

of 20 functions. This shows that the new delta method for

grouping interacting variables is performing reasonably well.

In order to further investigate the performance of delta

method we counted the number of interacting variables that

DECC-DML managed to group in the first 50 variables

regardless of the subcomponent sizes. Table IV shows the

maximum number of interacting variables that were grouped

for more than or equal to 2 cycles. Since functions f1 − f3

are separable it is meaningless to count the number of

captured interacting variables for them. Functions f19, f20

are completely non-separable so there is interaction between

all of the variables so the number of captured interacting

variables is not recorded for them. Let’s consider f4 as an

example. The numbers in the table show that 46 interacting

variables were captured by the delta method for 6 cycles.

Since in DECC-DML the subcomponent size is self-adapted

the maximum number of cycles varies from function to

function, but it suffice to say that in our experiments this

is always less than 7000 cycles for all of the benchmark

function. Even by using 7000 cycles which is slightly higher

than what is really used in our experiments, the probability

of grouping 46 variables for at least two cycles will be

virtually zero in case of random grouping. The entires in

Table IV shows that the number of interacting variables

that was captured by the delta method is reasonably high

compared to random grouping, specially for functions f4−f8.

The entries for functions f4,f5,f6,f8 in Table VII confirms

that high success rate of delta method in capturing interacting

variables has direct relationship to its better performance

compared to MLCC. Table V also shows the success rate

for grouping at least 5 interacting variables. For example

the success rate of f11 is approximately 53% which means

in 53 out of 100 cycles at least 5 variables are captured

amongst the first 50 variables. In order to compare this

results with random grouping we calculated the probability

of grouping 5 variables for more than 1 cycle using Equation

(1). We use 7000 cycles for this example because none of the

experiments with DECC-DML used more than 7000 cycles.

It is also assumed that there are on average 10 different

subcomponents so given n = 1000, m = 10, N = 7000
and v = 5, using Equation (1) we have:

P (X ≥ 1) = 1−P (X = 0) = 1−
(

1− 1
105−1

)7000

= 0.5034

which means that the probability of grouping 5 variables

for at least two cycle is approximately 0.5. In the worst

case of f5 more than 5 interacting variables are grouped for

exactly 182 cycles which is considerably higher than what is

achievable using random grouping. It is also noteworthy that

the results of Tables IV, and V are based on the number of

interacting variables captured only in the first 50 variables. It

is highly possible that more interacting variables are grouped

TABLE IV

MAXIMUM NUMBER OF INTERACTING VARIABLES CAPTURED BY DELTA

METHOD FOR AT LEAST 2 CYCLES.

Function f4 f5 f6 f7 f8
Captured Interacting Vars 46 32 50 31 49

Cycles 6 3 506 4 4

Function f9 f10 f11 f12 f13
Captured Interacting Vars 7 9 13 11 10

Cycles 7 5 4 2 3

Function f14 f15 f16 f17 f18
Captured Interacting Vars 9 9 13 8 9

Cycle 2 2 2 9 5

TABLE V

SUCCESS RATE OF DELTA METHOD ON GROUPING AT LEAST 5

INTERACTING VARIABLES. THE NUMBERS ARE DRAWN FROM THE SAME

RUN AS IT WAS USED IN TABLE IV.

Function f4 f5 f6 f7 f8
Success Rate 99.87% 3.45% 99.76% 97.92% 99.84%

Function f9 f10 f11 f12 f13
Success Rate 6.98% 84.89% 53.85% 22.04% 21.71%

Function f14 f15 f16 f17 f18
Success Rate 7.42% 9.07% 14.92% 10.97% 18.53%

within the next subcomponents. This is especially true for

functions f9-f18 where there are more than one group of

interacting variables[12]. Another interesting pattern that can

be seen from Tables IV and V is that delta method is highly

effective for those set of non-separable functions that has

only one group of interacting variables. Functions f4 − f8

have this property.

TABLE VII

COMPARISON OF DIFFERENT ALGORITHMS ON CEC’2010 FUNCTIONS

WITH 1000 DIMENSIONS. NUMBERS SHOW THE MEAN OF THE BEST

FITNESS OVER 25 RUNS. BEST RESULTS ARE SHOWN IN BOLD.

Functions DECC-DML DECC-G DECC-D MLCC

f1 1.925263e-25 2.93e-07 1.013417e-24 1.53e-27

f2 2.169774e+02 1.31e+03 2.995242e+02 5.57e-01

f3 1.180922e-13 1.39e+00 1.813305e-13 9.88e-13

f4 3.580284e+12 1.70e+13 3.994117e+12 9.61e+12

f5 2.985220e+08 2.63e+08 4.162337e+08 3.84e+08

f6 7.932774e+05 4.96e+06 1.356873e+07 1.62e+07

f7 1.387946e+08 1.63e+08 6.578934e+07 6.89e+05

f8 3.463122e+07 6.44e+07 5.392069e+07 4.38e+07

f9 5.918405e+07 3.21e+08 6.187354e+07 1.23e+08

f10 1.246898e+04 1.06e+04 1.156625e+04 3.43e+03

f11 1.800515e-13 2.34e+01 4.764118e+01 1.98e+02

f12 3.795382e+06 8.93e+04 1.527193e+05 3.49e+04

f13 1.144516e+03 5.12e+03 9.867780e+02 2.08e+03

f14 1.890322e+08 8.08e+08 1.983536e+08 3.16e+08

f15 1.540041e+04 1.22e+04 1.531490e+04 7.11e+03

f16 5.078991e-02 7.66e+01 1.880495e+02 3.76e+02

f17 6.536997e+06 2.87e+05 9.030164e+05 1.59e+05

f18 2.472471e+03 2.46e+04 2.123339e+03 7.09e+03

f19 1.586111e+07 1.11e+06 1.332509e+07 1.36e+06

f20 9.906186e+02 4.06e+03 9.912724e+02 2.05e+03

V. CONCLUSION

In this paper we proposed a new technique called delta

method for a more systematic way of grouping interacting

variables of a non-separable problem into several subcompo-

nents based on their sorted delta values. Delta values measure

the averaged difference in a certain variable across the entire

1767

TABLE VI

EXPERIMENT RESULTS OF CEC’2010 FUNCTIONS FOR 25 INDEPENDENT RUNS WITH 1000 DIMENSIONS.

1000D f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
Best 2.28e+08 5.51e+03 8.22e+00 3.80e+13 1.43e+08 1.25e+06 2.65e+09 2.23e+09 4.09e+09 1.32e+04

Median 2.85e+08 5.76e+03 9.71e+00 6.40e+13 2.85e+08 1.96e+06 5.50e+09 4.92e+09 4.91e+09 1.39e+04

1.2e5 Worst 7.02e+08 5.96e+03 1.01e+01 1.20e+14 5.21e+08 2.00e+07 1.17e+10 1.35e+10 5.54e+09 1.45e+04

Mean 4.09e+08 5.75e+03 9.51e+00 6.76e+13 3.00e+08 2.70e+06 5.97e+09 5.57e+09 4.89e+09 1.38e+04

StDev 1.75e+08 1.35e+02 5.55e-01 2.02e+13 9.31e+07 3.62e+06 2.49e+09 2.56e+09 3.77e+08 3.24e+02

Best 6.95e+01 2.51e+03 1.06e-02 7.92e+12 1.42e+08 4.59e+01 3.14e+08 4.19e+07 2.82e+08 1.25e+04

Median 4.63e+02 2.64e+03 1.83e-02 1.51e+13 2.85e+08 1.09e+02 5.42e+08 1.15e+08 3.85e+08 1.30e+04

6.0e5 Worst 1.22e+03 2.78e+03 2.20e-02 3.29e+13 5.20e+08 1.98e+07 9.17e+08 2.38e+08 4.21e+08 1.36e+04

Mean 6.02e+02 2.64e+03 1.81e-02 1.61e+13 2.99e+08 7.94e+05 5.84e+08 1.24e+08 3.73e+08 1.30e+04

StDev 4.11e+02 5.88e+01 3.08e-03 6.19e+12 9.31e+07 3.97e+06 1.68e+08 5.40e+07 3.13e+07 2.93e+02

Best 9.05e-27 1.62e+02 1.10e-13 1.38e+12 1.42e+08 3.55e-09 7.09e+07 7.34e+05 4.51e+07 1.21e+04

Median 1.22e-25 2.12e+02 1.14e-13 3.32e+12 2.85e+08 7.11e-09 1.23e+08 1.57e+07 5.97e+07 1.24e+04

3.0e6 Worst 7.12e-25 2.94e+02 1.35e-13 6.89e+12 5.20e+08 1.98e+07 4.82e+08 1.21e+08 7.09e+07 1.30e+04

Mean 1.93e-25 2.17e+02 1.18e-13 3.58e+12 2.99e+08 7.93e+05 1.39e+08 3.46e+07 5.92e+07 1.25e+04

StDev 1.86e-25 2.98e+01 8.22e-15 1.54e+12 9.31e+07 3.97e+06 7.72e+07 3.56e+07 4.71e+06 2.66e+02

1000D f11 f12 f13 f14 f15 f16 f17 f18 f19 f20
Best 1.02e+02 4.07e+06 1.09e+08 1.26e+10 1.58e+04 3.22e+02 7.48e+06 1.56e+09 1.77e+07 2.04e+09

Median 1.22e+02 4.68e+06 1.82e+08 1.37e+10 1.65e+04 3.73e+02 8.77e+06 3.30e+09 2.23e+07 3.93e+09

1.2e5 Worst 1.70e+02 5.35e+06 3.72e+08 1.51e+10 1.73e+04 4.28e+02 1.01e+07 4.06e+09 2.72e+07 5.09e+09

Mean 1.24e+02 4.70e+06 2.11e+08 1.37e+10 1.65e+04 3.75e+02 8.81e+06 3.08e+09 2.20e+07 3.84e+09

StDev 1.38e+01 2.99e+05 9.68e+07 6.86e+08 3.61e+02 3.60e+01 6.86e+05 7.84e+08 2.36e+06 7.72e+08

Best 4.00e-01 3.64e+06 8.29e+02 9.82e+08 1.53e+04 3.46e+00 6.50e+06 5.64e+03 1.54e+07 1.43e+03

Median 7.09e-01 4.22e+06 1.71e+03 1.18e+09 1.59e+04 8.65e+00 7.29e+06 1.48e+04 1.84e+07 1.67e+03

6.0e5 Worst 1.72e+00 4.65e+06 1.47e+04 1.29e+09 1.67e+04 4.28e+02 7.99e+06 3.96e+04 2.46e+07 2.02e+03

Mean 7.66e-01 4.19e+06 3.15e+03 1.17e+09 1.59e+04 4.47e+01 7.27e+06 1.74e+04 1.87e+07 1.69e+03

StDev 2.81e-01 2.18e+05 3.09e+03 8.20e+07 3.63e+02 1.16e+02 3.77e+05 8.26e+03 1.99e+06 1.58e+02

Best 1.63e-13 3.46e+06 6.19e+02 1.54e+08 1.48e+04 2.74e-13 5.65e+06 1.64e+03 1.30e+07 9.69e+02

Median 1.78e-13 3.81e+06 1.06e+03 1.89e+08 1.53e+04 3.20e-13 6.55e+06 2.21e+03 1.59e+07 9.75e+02

3.0e6 Worst 2.03e-13 4.11e+06 2.09e+03 2.22e+08 1.62e+04 1.27e+00 7.63e+06 7.52e+03 2.16e+07 1.10e+03

Mean 1.80e-13 3.80e+06 1.14e+03 1.89e+08 1.54e+04 5.08e-02 6.54e+06 2.47e+03 1.59e+07 9.91e+02

StDev 9.88e-15 1.50e+05 4.31e+02 1.49e+07 3.59e+02 2.54e-01 4.63e+05 1.18e+03 1.72e+06 3.51e+01

population. Experimental results confirmed that this new

technique is capable of grouping interacting variables. For

the class of non-separable problems with a single group of

interacting variables, delta method have shown great perfor-

mance and managed to group more than 80% of interacting

variables.

Delta method seems to be a promising technique for

large scale non-separable optimization problems but this new

technique is still in its infancy and further research is required

in order to fully understand its underlying mechanics. For

example it is not clear why DECC-DML is less efficient on

non-separable functions with more than one group of rotated

variables. Further investigation is also required in order to

understand the reason for good performance of DECC-ML.

As it was briefly mentioned earlier this might be due to the

fact that most CEC’2008 benchmark functions are mostly

separable and DECC-DML might pay off when applied to

CEC’2010 functions. This calls for a separate study for

comparing the performance of DECC-DML and DECC-ML

on CEC’2010 test suite.

ACKNOWLEDGMENT

The authors would like to thank Mr. Zhenyu Yang for

providing us with the source code of DECC-G and SaNSDE

algorithms. This work was partially supported by an EPSRC

grant (No. EP/G002339/1) on “Cooperatively Coevolving

Particle Swarms for Large Scale Optimisation”.

REFERENCES

[1] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution
for large scale optimization through more frequent random grouping,”

in Proc. of IEEE World Congress on Computational Intelligence, 2010,
in press.

[2] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, pp.
2986–2999, August 2008.

[3] T. Ray and X. Yao, “A cooperative coevolutionary algorithm with
correlation based adaptive variable partitioning,” in Proc. of IEEE

Congress on Evolutionary Computation, May 2009, pp. 983–989.
[4] R. Salomon, “Reevaluating genetic algorithm performance under coor-

dinate rotation of benchmark functions - a survey of some theoretical
and practical aspects of genetic algorithms,” BioSystems, vol. 39, pp.
263–278, 1995.

[5] M. A. Potter and K. A. D. Jong, “A cooperative coevolutionary
approach to function optimization,” in Proc. of the Third Conference

on Parallel Problem Solving from Nature, vol. 2, 1994, pp. 249–257.
[6] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary

programming with cooperative coevolution,” in Proc of the 2001

Congress on Evolutionary Computation, 2001, pp. 1101–1108.
[7] D. Sofge, K. D. Jong, and A. Schultz, “A blended population approach

to cooperative coevolution fordecomposition of complex problems,” in
Proc. of IEEE World Congress on Computational Intelligence, 2002,
pp. 413–418.

[8] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach
to particle swarm optimization,” IEEE Transactions on Evolutionary

Computation 8 (3), pp. 225–239, 2004.
[9] Y. Shi, H. Teng, , and Z. Li, “Cooperative co-evolutionary differential

evolution for function optimization,” in Proc. of the First International

Conference on Natural Computation, 2005, pp. 1080–1088.
[10] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution

for large scale optimization,” in Proc. of IEEE World Congress on

Computational Intelligence, June 2008, pp. 1663–1670.
[11] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M.

Chen, , and Z. Yang, “Benchmark functions for the cec’2008 special
session and competition on large scale global optimization,” Nature
Inspired Computation and Applications Laboratory, USTC, China,
Tech. Rep., 2007, http://nical.ustc.edu.cn/cec08ss.php.

[12] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark
functions for the cec’2010 special session and competition on large-
scale global optimization,” NICAL, USTC, China, Tech. Rep., 2009,
http://nical.ustc.edu.cn/cec10ss.php.

1768

 100

 1000

 10000

 100000

 0 10000 20000 30000 40000 50000 60000

Evaluations

DECC-DML
DECC-D

(a) f2

 1e+08

 1e+09

 1e+10

 0 10000 20000 30000 40000 50000 60000

Evaluations

DECC-DML
DECC-D

(b) f5

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 1e+14

 1e+15

 1e+16

 1e+17

 1e+18

 0 10000 20000 30000 40000 50000 60000

Evaluations

DECC-DML
DECC-D

(c) f8

 10000

 100000

 0 10000 20000 30000 40000 50000 60000

Evaluations

DECC-DML
DECC-D

(d) f10

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 0 10000 20000 30000 40000 50000 60000

Evaluations

DECC-DML
DECC-D

(e) f13

 10000

 100000

 0 10000 20000 30000 40000 50000 60000

Evaluations

DECC-DML
DECC-D

(f) f15

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 0 10000 20000 30000 40000 50000 60000

Evaluations

DECC-DML
DECC-D

(g) f18

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 0 10000 20000 30000 40000 50000 60000

Evaluations

DECC-DML
DECC-D

(h) f20

Fig. 3. Convergence plots of f2, f5, f8, f10, f13, f15, f18, and f20(All variants of Rastrigin and Rosenbrock functions) for DECC-D and DECC-DML.
Each point on the graph is the average over 25 independent runs.

1769

