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ABSTRACT
This paper presents four rotatable multi-objective test prob-
lems that are designed for testing EMO (Evolutionary Multi-
objective Optimization) algorithms on their ability in deal-
ing with parameter interactions. Such problems can be
solved efficiently only through simultaneous improvements
to each decision variable. Evaluation of EMO algorithms
with respect to this class of problem has relevance to real-
world problems, which are seldom separable. However, many
EMO test problems do not have this characteristic. The
proposed set of test problems in this paper is intended to
address this important requirement. The design principles
of these test problems and a description of each new test
problem are presented. Experimental results on these prob-
lems using a Differential Evolution Multi-objective Opti-
mization algorithm are presented and contrasted with the
Non-dominated Sorting Genetic Algorithm II (NSGA-II).

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Numerical Analy-
sis—Optimization

General Terms
Experimentation, Performance, Measurement

Keywords
Parameter interactions, Multi-objective Optimization

1. INTRODUCTION
Traditionally, multi-objective problems have been solved

using classical techniques, but such approaches typically have
many limitations with respect to the types of problems they
can solve, and may not even be able to find optimal solu-
tions for problems which have no known functional repre-
sentation. A relatively recent approach to solving multi-
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objective problems has been the application of population
based Evolutionary Algorithms (EAs). There is a natural
synergy between a population based evolutionary approach,
which searches a number of points in the decision space si-
multaneously, and a multi-objective problem, which has a
Pareto-optimal set of solutions. Evolutionary approaches
can provide a set of solutions which closely approximates
the Pareto-optimal set. Despite their apparent successes,
there is a disparity between how we evaluate EMO algo-
rithms with test problems with specified properties, and the
characteristics of many real-world problems.

1.1 Test problems for EMO Algorithms
Typically, in order to assess the performance of EMO al-

gorithms in a variety of fitness landscapes, test problems
with a variety of characteristics are employed. For instance,
one may wish to evaluate the performance of an algorithm
with respect to the concavity of the Pareto-optimal front, or
one may employ test problems with discontinuous Pareto-
optimal fronts, sparsely distributed solutions near the Pareto-
optimal front, or non-uniform mappings between the de-
cision and objective space. The ZDT series of test prob-
lems [13], built on the framework proposed in [1], exhibit
some of these characteristics. In [1] the problem features
that may cause difficulty for an EMO algorithm are dis-
cussed, and a framework is proposed for construction of test
problems exhibiting such features. Recently, there has been
further progress in the construction of test problems for
multi-objective optimization. Although many approaches
have focussed on the construction of only two-objective prob-
lems, other approaches deal with the construction of test
problems with more than two objectives in [6] and [3]. A
framework is also proposed in [9] for constructing arbitrary
user specified Pareto-optimal sets in the decision space, which
map to Pareto-optimal fronts in the objective space. In the
area of multi-objective combinatorial optimization, instance
generators have been proposed for the quadratic assignment
problem [8]. These generators are useful for studying para-
meter interactions in combinatorial problems.

1.2 Problems with parameter interactions
Before discussing the previous work in the area of test

problems with parameter interactions, it is necessary to de-
fine what we mean by a linearly separable problem. Parame-
ter interactions occur in a problem because the parameters
in the problem are not linearly separable. The geometric
interpretation of what constitutes a linearly separable prob-
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lem is where the n parameters of a problem in n-dimensional
space can be separated by an n−1 dimensional hyperplane.
We will see in Section 2 how linear separability occurs with
a simple ellipsoid function, and how rotation can make the
function non-separable.

Previous work in [12] demonstrated the importance of
evaluating single objective Evolutionary Algorithms on rota-
ted problems in order to test their rotationally invariant be-
haviour, the contention being that evaluations of EAs should
be independent of any coordinate system. Furthermore, in
the EMO domain, NSGA-II was demonstrated to perform
poorly on a simple rotated problem [2] and the importance
of parameter interactions in multi-objective problems was
discussed in [7]. If EMO algorithms can fail on such a sim-
ple problem, but succeed when the problem is aligned with
the principle coordinate system of the decision space, then
obviously many reported results on such test problems are
potentially misleading. In [12] a strong case is presented for
all EA evaluations to be independent of a particular coordi-
nate system, and our contention is that this should equally
be true for the evaluation of EMO algorithms.

Recently, the issue of parameter interactions in multi-
objective problems has garnered more interest; in [3] the
non-separability of multi-objective problems is demonstrated
to be an important characteristic lacking in existing multi-
objective test suites, and a method is described for con-
structing problems with parameter interactions for an arbi-
trary number of objectives. In [11] a differential evolution
multi-objective algorithm was evaluated on a number of the
proposed non-separable and separable problems proposed
in [3].

1.3 Overview
Each of the real-coded ZDT test problems has a Pareto-

optimal set in the decision space which is aligned with the
principle coordinate system. This makes the problem easier,
because the objectives can be solved in stages. The purpose
of this paper is to propose a complementary series of test
problems to the ZDT series of problems, using the approach
described in [1], and to provide some further insight into
rotated multi-objective problems. The primary motivation
for this is that most real world problems have parameter
interactions, and ideally we would also like a variety of test
problems which have parameter interactions as well. The
framework employed for constructing the ZDT problems is
commonly used by practitioners, and it is easily employed
in the construction of test problems.

The proposed problems in this paper can be arbitrarily
rotated on any axis of the decision space. Through a ro-
tation of the coordinate system, parameter interactions can
be introduced to the problem. When the proposed problems
are rotated in the decision space, the Pareto-optimal set is
rotated accordingly. In Section 2.1 we will see that when any
solution in the set is perturbed independently with respect
to any of the decision variables, it can only be perturbed to
non-dominated solutions which are not Pareto-optimal.

The proposed series of rotated problems presented in this
paper will provide a means of assessing the performance of
EMO algorithms which is not biased towards a particular
orientation of the problem with respect to the coordinate
axes. This provides EMO practitioners with a reliable indi-
cation of the performance of their algorithm irrespective of
the orientation of the problem in the decision space.

In the following section we will describe in more detail how
rotation makes single objective and multi-objective prob-
lems harder to optimize. In Section 3 we describe the pro-
posed problem suite, and how the problems were constructed.
For a comparison with the NSGA-II algorithm, a new Dif-
ferential Evolution approach to EMO is briefly introduced
in Section 4 along with the experiments conducted. This is
followed by a discussion of the results and the utility of the
proposed problem suite in Section 5 and concluding remarks
in Section 6.

2. ROTATED PROBLEMS
Parameter interactions can be introduced in other types

of problems, such as combinatorial problems. For the pur-
poses of this study, we are only considering multi-objective
problems with real-valued decision variables, where one or
more objectives have non-linear parameter interactions.

Before elucidating upon rotated multi-objective problems,
we will first consider the effect of rotation on a simple single
objective ellipsoid minimization problem defined in Equa-
tion (1). Figure 1(a) also presents a contour plot of the
function.

f(x1, x2) = x2
1 + a0x

2
2 (1)

f(x1, x2) = x2
1 + a1x1x2 + a0x

2
2 (2)

The ellipsoid problem in Equation (1) has a global mini-
mum located at x1 = 0 and x2 = 0, at the origin O, of the
principle coordinate axes. It is apparent from the contour
plot in Figure 1(a), that this function is aligned with the
principle coordinate axes, and is linearly separable with re-
spect to the two decision variables. The two components,
x2

1 and a0x
2
2, of Equation (1), can be solved as independent

minimization problems. A search algorithm only needs to
perturb the variables x1 and x2 independently in order to
find the global optimum for this problem. If the ellipsoid
function from Equation (1) is rotated away from the prin-
cipal coordinate axes (Figure 1(b)), the decision variables
become non-separable through the introduction of parame-
ter interactions in Equation (2). Parameter interactions are
introduced through the term a1x1x2. Progress towards the
global optimum can only proceed efficiently by making si-
multaneous improvements with respect to all parameter val-
ues.

In Figure 1, the contour represents a region of constant
fitness. The point A in Figure 1(a) can be perturbed along
the x1 and x2 axes, and any location along the dashed lines
will be an improvement over any point along the contour. In
Figure 1(b) it is apparent that progress from perturbing the
rotated point A′ will be lower. This is because the interval
of potential improvement for each of the decision variables is
reduced, and as a result, the progress of the search through
independent perturbations will be reduced.

Furthermore, the search can easily be trapped on the line
segment that bisects the ellipsoid lengthwise, as can be seen
in Figure 2. Any point on this line segment can only move to
another point which evaluates to a better solution, by mak-
ing simultaneous improvements on each decision variable.
For example, in Figure 2(a), the point A can be indepen-
dently perturbed on the x1 axis to find the global minimum
located at the origin of the coordinate system. The same
point A′, in Figure 2(b), after rotation cannot progress to a
point of improved fitness by only moving along the direction
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Figure 1: The contour plots demonstrate how rota-
tion can reduce the interval of possible improvement
represented by the dashed line segments. Point A
in (a) and A′ in (b) represent the same point on the
contour plot before and after rotation respectively.
The contour represents a region of constant fitness.

x2

x1

x2

x1

A′
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Figure 2: The contour plots demonstrate how rota-
tion can trap points along the line segment bisecting
the ellipsoid. Point A in (a) and A′ in (b) represent
the same point on the contour plot before and after
rotation respectively.

of the principle coordinate axes because any such perturba-
tion will be to a point of lower fitness in the objective space.
Typically the basin of attraction can be found comparatively
easily, but the search can become trapped when the problem
is non-separable. Only a simultanenous improvement in all
parameters will result in the discovery of fitter solutions in
this situation. On these types of problems, the small muta-
tion rates frequently used in Genetic Algorithms are known
to be even less efficient than a random search [12]. Evolu-
tionary Strategies have been relatively successful at solving
these types of problems, but they require the learning of ap-
propriate correlated mutation step sizes and it can be rather
computationally expensive when the decision space dimen-
sion becomes large [10].

2.1 Rotated Multi-objective Problems
Although one might intuitively expect that in the multi-

objective domain the situation encountered is the same, the
situation is not quite as simple. In order to highlight the dif-
ference between rotated single-objective and multi-objective
problems, we will consider a simple multi-objective problem.
This will also facilitate our understanding of the effect of
rotation on multi-objective problems where non-dominated
solution sets are sought by a search algorithm. The situation
is analogous to the single objective domain, where a search
algorithm with independent perturbations on each decision
variable will have trouble finding more optimal solutions.

(a)
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Figure 3: The effect of a 45-degree rotation on the
x1x2 plane of problem R1. Before rotation, the func-
tions are aligned with the coordinate system ((a)
and (c)), and after rotation they are not ((b) and
(d)).

Figure 3 shows a simple bi-objective optimization problem
with a 2-dimensional decision space. This is problem R1,
defined in Section 3.2.

The problem is characterised by a slightly inclined trough
in objective f2. Objective f1 is a plane with a gradient slop-
ing in an opposing direction to the incline of objective f2.
The Pareto-optimal set is represented by a line segment bi-
secting the decision space in objective f2 and f1 respectively.
The decision space is subject to a rotation matrix R.

Consider the contour plot of a non-rotated version of this
problem in Figure 4, where a point, O, is a member of the
Pareto-optimal set. If the point O is perturbed in the direc-
tion of �OA, it is towards points which evaluate lower with
respect to objective f1 (Figure 4(a)) and higher with re-
spect to objective f2 (Figure 4(b)). If it is perturbed in

the direction of �OD, it will be towards points which evalu-
ate higher with respect to objective f1 and lower with re-
spect to objective f2. Such perturbations are with respect
to the parameter x1 only, and this is the only such pertur-
bation required in order to discover other Pareto-optimal
solutions which are located on the line segment bisecting
the contour plots for objectives f1 and f2. It is apparent
that such a Pareto-optimal solution can easily be perturbed
towards other Pareto-optimal solutions when the problem
is aligned with the principle coordinate axes. However, af-
ter the problem has been rotated, it becomes more difficult
to find Pareto-optimal solutions through independent per-
turbations of individuals. Consider Figure 5, where point
O′ represents the point O after rotation. Through indepen-
dent perturbations of decision space parameters, the point
O can perturb to other non-dominated solutions in the di-
rection of �O′A′, �O′B′, �O′C′, and �O′D′. A perturbation in
the direction of �O′A′ leads to points which evaluate lower
on objective f1, but higher on objective f2. This is similarly
true for perturbations in the direction of �O′B′. A perturba-
tion in the direction of �O′C′ leads to points which evaluate
higher on objective f1, but lower on objective f2. This is
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Figure 4: The contour plot of non-rotated R1 in
(a) represents function f1, and the contour plot in
(b) represents objective function f2. The dashed
lines represent regions of constant value with respect
to the objective function evaluation. Smaller dash
sizes represent lower evaluations on the objective
functions. The point O, in the Pareto-optimal set,
can be perturbed to other Pareto-optimal points by
perturbing the decision variable x1.

also true for perturbations in the direction of �O′D′. Unfor-
tunately each of these perturbations leads to non-dominated
solutions which skew away from the Pareto-optimal set. The
situation becomes even worse if the perturbation extends to

�C′E′ or �C′F ′, because individuals in this region evaluate
higher with respect to objective f1 and objective f2, and
are dominated by the point at O′, as a result. In actuality,
the problem in Figure 3 that this analysis is based on, has an
extremely small region relative to the feasible space, where
non-dominated solutions can be located in the direction of

�O′C′ and �O′D′. Non-dominated solutions in these direc-
tions only becomes increasingly likely as the orientation of
the problem approaches alignment with the principle coor-
dinate axes. As the orientation of the Pareto-optimal front
aligns with the axis x1, the line vector �O′C′ extends further
and more non-dominated solutions can be discovered in this
region more easily. Secondly, such non-dominated solutions
will be close to the Pareto-optimal set. This is similarly true
for the line vector �O′D′, as the Pareto-optimal front aligns
with the axis x2. In other words, a rotation of the problem
which results in the Pareto-optimal set not being aligned
with any principle coordinate axis, makes it difficult to dis-
cover other Pareto-optimal solutions when only independent
perturbations of decision variables can occur.

In the presence of only independent perturbations, there
is a tendency for points to be discovered in the direction of
lower f1 evaluations, and higher f2 evaluations, pushing the
non-dominated solution set away from the Pareto-optimal
set and degrading the search over time. As a result of this
behaviour, the search can become trapped in the Pareto-
optimal region and fail to find more non-dominated solu-
tions in the Pareto-optimal set. Progress in covering the
Pareto-optimal front becomes extremely slow. This effect
was also apparent in [4] and [2], where the NSGA-II pro-
duced poor coverage of the Pareto-optimal front on the rota-
ted uni-modal multi-objective problem. Any multi-objective
optimization algorithm which is not rotationally invariant,
will exhibit such behaviour.
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D′O′

(b)

Pareto-optimal set
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Pareto-optimal set
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x1

x2

Figure 5: The contour plot of rotated R1 in (a) rep-
resents function f1, and the contour plot in (b) rep-
resents objective function f2. After rotation, the
point O′, in the Pareto-optimal set, can be per-
turbed to other Pareto-optimal points by perturbing
the decision variables x1 and x2 simultaneously along
the line segment which bisects both feasible regions.

3. CONSTRUCTION OF ROTATED TEST
PROBLEMS

Each of the test problems proposed was designed using the
frame work proposed in [1]. The g function is responsible
for affecting convergence to the Pareto-optimal front. The
h function specifies the shape of the Pareto-optimal front,
whether the problem is rotated or not. The Pareto-optimal
set can be determined by setting the g function to 1.0, and
evaluating f1 over the range of feasible solutions. Diversity
is also affected by the f1 function.

In order to construct a problem with parameter interac-
tions, the problem must have at least one non-linear func-
tion. With this consideration, the rotatable test problems
we have proposed in this paper will have at least one non-
linear function in at least one of the objective functions.
Each of the test problems also sets f1 and f2 to large val-
ues if f1 is outside the ranges specified in the problem de-
scriptions. This is important because rotation may push a
function evaluation outside the range desired by the exper-
imenter [1].

In order to construct a rotated problem, one must also be
careful that under rotation the problem can still evaluate to
a meaningful result. One should avoid situations where a
rotation transformation results in decision variables which
take negative values, and are then subjected to a square
root function for instance. This can be achieved by avoid-
ing functions which would result in such a situation, or by
offsetting the variable value within the function so a neg-
ative value never results. It should also be noted that the
methodology for performing a rotation can be applied to
other problems from the literature, and is not limited to
the ZDT problems. The only considerations that need to
be addressed are related to making sure the evaluation of
the rotated vector yields a result that can still be evaluated.
The Pareto-optimal set can still be determined by the means
specified within the test problem construction methodology
employed by the user.
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3.1 Generating uniform random rotations
In order to achieve a completely unbiased assessment of

an algorithm on a problem which is rotated, one must guar-
antee a uniformly distributed random rotation. Algorithm
1 outlines the procedure for generating a random orthnor-
mal basis which is used to introduce parameter interdepen-
dencies into a problem by rotating the parameter vector.
This is a transformation which does not change the fitness
landscape of the problem domain because it is an isometry
transformation; it preserves distances between points, and
as a result it also preserves angles. A uniform distribution

Algorithm 1 Algorithm for generating a uniformly random
rotation matrix. R is an m × m rotation matrix, where Ri

is the ith row of R, and R(j) is the j th column of R. N (0, 1)
is a normal distribution with a mean of 0 and variance of 1.

for i = 0 to m do
for j = 0 to m do

R
(j)
i = N (0, 1)

end for
for j = 0 to m do

R
(j)
i =

R
(j)
i

‖Ri‖
end for
�d = Ri

for all j such that 0 ≤ j ≤ i do

n =
‚‚‚�d

‚‚‚
p = �d · Rj

for k = 0 to m do

dk =
dk−p·R(k)

j

n2

end for
end for
Ri =

�d

‖�d‖
end for

of points on the surface of a hypersphere are possible when
the orthonormal basis R1 , ..., Rm ∈ R

m, is used to rotate a
point in m-dimensional space. This technique also makes it
possible to randomly and uniformly rotate a decision space
vector �x, by using matrix multiplication R�x, so that there
is no bias for any particular coordinate axis. The rotation
matrix is used to rotate about the origin of the principle
coordinate axes, in the decision space.

3.2 Rotated Test Problems
In this section, four rotated test problems are introduced.

These problems can be arbitrarily rotated in the decision
space. Each of these problems has at least one objective
which is non-linear, and through a rotation of the coordinate
system, parameter interactions can be introduced.

Problem R1 was first proposed by Deb [1]. It is charac-
terised by a valley in objective f2. The Pareto-optimal set
is situated along the length of this valley as well, and when
the problem is subject to a rotation the valley can trap a
non-rotationally invariant search from progressing along it,
as was explained in Section 2.1. The function f1 is linear

 0

 1

 2

 3

 4

 5

-1 -0.5  0  0.5  1

f
2

f1

R2

Figure 6: R2 Pareto-optimal front and feasible re-
gion

and f2 is non-linear.

f1(y)= y1

f2(y) = g(y)h(f1(y), g(y))

h(f1(y), g(y)) = exp

„−f1(y)

g(y)

«

g(y) = 1 + 10(m − 1) +

mX
i=2

ˆ
y2

i − 10 cos(4πyi)
˜

y = Rx, −0.3 ≤ xi ≤ 0.3, for i = 1, 2, ..., m

|f1| ≤ 0.3

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

R1

Problem R2 is similar to the ZDT3 problem, and has a
Pareto-optimal front which is not continuous. R2 presents
a difficulty to an optimization algorithm, because it has to
locate a number of discontinuous Pareto-optimal fronts, and
maintain solutions in each of those fronts. When R2 is ro-
tated, an optimization algorithm which only searches inde-
pendently along the principle coordinate axes will generate
non-dominated solutions which skew away significantly from
the Pareto-optimal front. The reason for this behaviour is
that perturbed solutions have to travel quite far along the
principle coordinate axes before an independent perturba-
tion can generate a solution which dominates the current
non-dominated set. The function f1 is linear and f2 is non-
linear. The g function is not multi-modal over the specified
range. The feasible space and Pareto-optimal front of this
problem is shown in Figure 6.

f1(y)= y1

f2(y) = g(y)h(f1(y), g(y))

h(f1(y), g(y)) = 1.0 + exp

„−f1(y)

g(y)

«
+

„
f1(y) + 1.0

g(y)

«
(sin(5πf1(y)))

g(y) = 1 + 10(m − 1) +

mX
i=2

ˆ
y2

i − 10 cos(πyi)
˜

y = Rx, −1.0 ≤ xi ≤ 1.0, for i = 1, 2, ..., m

|f1| ≤ 1.0

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

R2

Decision space variables which increment at a regular in-
terval, evaluate with non-regular intervals in the objective
space on Problem R3, making it hard to find a uniform dis-
tribution along the Pareto-optimal front. The density of
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Figure 7: R3 Pareto-optimal front and feasible re-
gion

solutions is lower towards lower f1 values. Problem R3 is
similar to the ZDT6 problem. f1 and f2 are non-linear func-
tions. The g function is not multi-modal over the specified
range. The feasible space and Pareto-optimal front of this
problem is shown in Figure 7.

f1(y) = 1.0 − exp(2.0y1) sin6(6πy1)/9.0

f2(y) = g(y)h(f1(y), g(y))

h(f1(y), g(y)) = 1.0 −
„

f1(y)

g(y)

«2

g(y) = 1 + 10(m − 1) +
mX

i=2

ˆ
y2

i − 10 cos(πyi)
˜

y = Rx, −1.0 ≤ xi ≤ 1.0, for i = 1, 2, ..., m

0.3 ≤ f1 ≤ 1.0

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

R3

Problem R4 is based on the Schwefel function [12], where a
local front is located far from the global minimum. Points
are easily trapped by this deceptive front. R4 is difficult, and
objective f2 is characterised by a number of valleys, includ-
ing the highly deceptive valleys far from the true Pareto-
optimal front. These valleys correspond to the modalities
generated by function g. Each of these valleys can trap
points in a sub-optimal non-dominated front. The feasible
space and Pareto-optimal front of this problem is shown in
Figure 8.

f1(y)= y1

f2(y) = g(y)h(f1(y), g(y))

h(f1(y), g(y)) = exp

„−f1(y)

g(y)

«

g(y) = 1.0 + 0.015578(m − 1.0)+
mX

i=2

(y2
i − 0.25(yi sin(32.0

p
|yi|)))

y = Rx, −1.0 ≤ xi ≤ 1.0, for i = 1, 2, ..., m

|f1| ≤ 1.0

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

R4

4. EXPERIMENTS
An algorithm for optimizing a multi-objective problem

which is not aligned with the principle coordinate axes must
have the property of rotational invariance. Secondly, like
other EMO algorithms it must maintain good coverage and
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Figure 8: R4 Pareto-optimal front and feasible re-
gion

spread as well as convergence towards the Pareto-optimal
front.

We have used a rotationally invariant Non-dominated Sort-
ing Differential Evolution algorithm with Directional Con-
vergence and Spread (NSDE-DCS) for the purposes of con-
trasting the performance of NSGA-II on the proposed ro-
tated problems [5]. Each of the test problems described in
the previous section used a 10 dimensional decision space
for this study. For the NSDE-DCS, F was set to 0.8 and K
was set to 0.4. These settings were also employed in a pre-
liminary study of rotational invariance [4]. The NSGA-II1

experiments used a mutation rate of 0.1 and crossover rate
of 0.9. ηc and ηm are parameters within the NSGA-II which
control the distribution of the crossover and mutation prob-
abilities and were assigned values of 10 and 50 respectively.
For both algorithms, a population size of 100 individuals was
employed, and 50 runs of each algorithm were conducted, for
each test problem.

Experiments were conducted on each of the test prob-
lems. Rotations were performed in the decision space, us-
ing a random uniform rotation matrix generated using the
technique described in Section 3.1. In 10-dimensions there
are 45 planes of rotation, introducing parameter interactions
between each parameter with every other. A new random
uniform rotation matrix was generated for each run of each
algorithm.

5. DISCUSSION
The results of our experiments are presented in Figures 9

and 10. For each run of the NSGA-II and NSDE-DCS
we have plotted the final non-dominated solutions set af-
ter 1000 generations. The purpose of presenting these plots
is to demonstrate the type of behaviour one can expect from
two types of algorithms; a rotationally invariant EMO and
a non-rotationally invariant EMO, on a variety of rotated
multi-objective problems. The plots demonstrate the diffi-
culty in convergence towards the Pareto-optimal front, as
well as the discovery of non-dominated solutions which are
not Pareto-optimal, which occurs when the EMO algorithm
is not rotationally invariant.

From Figure 9 it is apparent that the majority of runs, of
the rotationally invariant NSDE-DCS, converge and cover

1The variant of NSGA-II used in this study is the origi-
nal NSGA-II available from the Kanpur Genetic Algorithms
Laboratory site at http://www.iitk.ac.in/kangal/
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the Pareto-optimal front of R1. For the discontinuous R2,
and the non-uniformly mapped R3, some runs closely ap-
proximated the Pareto-optimal front more or less. The dif-
ference in performance, with the NSGA-II, is striking on
each of these problems. In Figure 10 it is apparent that
of the 50 runs of the NSGA-II algorithm, not a single run
succeeded in covering the Pareto-optimal front of R1. For
R2, and R3, only a few runs managed to find near Pareto-
optimal solutions. Non-dominated solutions had a tendency
to skew away from the Pareto-optimal front on R2 when
the NSGA-II was employed, which is consistent with the
description in Section 3. In particular, complete coverage of
the Pareto-optimal front of R2 was not possible with NSGA-
II over the 50 runs. Problem R3 was the only proposed
problem which had a non-linear f1 and f2 function, and it
presented significant difficulties for NSGA-II with respect to
convergence to the Pareto-optimal front, and the spread of
solutions generated.

R4 is a highly deceptive multimodal problem, with a lo-
cal front which is close to the Pareto-optimal front with
respect to fitness. This local front maps to a region of the
decision space which is far from the global optimal Pareto-
optimal front. Over the 50 runs of each algorithm, the
NSDE-DCS demonstrated far better coverage of this front
than the NSGA-II, although both demonstrated difficulty in
converging to the Pareto-optimal front, and had a tendency
to become trapped in a local front.

6. CONCLUSION
EMO algorithms should be invariant under a coordinate

rotation in order to efficiently optimize complex multi-objective
problems with many parameter interactions. Many current
results reported in the literature are with respect to prob-
lems which do not exhibit complex parameter interactions,
although such interactions are characteristic of many real-
world problems [7].

We have demonstrated four problems with different char-
acteristics which maintain the same fitness landscape un-
der an arbitrary rotation in the decision space. We have
compared NSGA-II with a rotationally invariant algorithm,
NSDE-DCS, in order to contrast the difference in behaviour.
It is apparent that a rotationally invariant scheme, such
as the NSDE-DCS, demonstrates superior performance on
problems with significant parameter interactions, compared
with the NSGA-II. The primary reason for the poor perfor-
mance of NSGA-II on the problems presented in this paper,
is that NSGA-II uses a non-rotationally invariant crossover
operator.

Although we have demonstrated a small range of prob-
lems, many others are conceivable, including problems with
more than two objectives. Increasing the number of ob-
jectives results in rotated problems which are potentially
more challenging for non-rotationally invariant EMO algo-
rithms, because there will be more non-dominated solutions
to choose from which are not optimal. It is relatively easy to
find such non-dominated solutions, but it is harder to find
the Pareto-optimal set.

This paper has proposed a starting point for re-evaluating
many current EMO algorithms, and new algorithms which
have yet to be proposed. with respect to the important topic
of rotational invariance.
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Figure 9: 50 runs of NSDE-DCS (Generation 1000)
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