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ABSTRACT
This paper proposes a method to use reference points as
preferences to guide a particle swarm algorithm to search
towards preferred regions of the Pareto front. A decision
maker can provide several reference points, specify the ex-
tent of the spread of solutions on the Pareto front as de-
sired, or include any bias between the objectives as prefer-
ences within a single execution. We incorporate the refer-
ence point method into two multi-objective particle swarm
algorithms, the non-dominated sorting PSO, and the max-
iminPSO. This paper first demonstrates the usefulness of the
proposed reference point based particle swarm algorithms,
then compare the two algorithms using a hyper-volume met-
ric. Both particle swarm algorithms are able to converge to
the preferred regions of the Pareto front using several feasi-
ble or infeasible reference points.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Problem Solving, Con-
trol Methods, and Search

General Terms
Algorithms

Keywords
Particle swarm optimization, Multi-objective problems, User-
preference methods, Reference point method, Non-dominated
sorting, Maximin strategy

1. INTRODUCTION
The use of evolutionary algorithms in the field of multi-

objective optimization has been a very popular area of re-
search in the last decade [5]. Recently there has been an in-
creasing interest to incorporate user-preference mechanisms
seen in the Multi-Criteria Decision Making (MCDM) [11]
literature into these Evolutionary Multi-objective Optimiza-
tion (EMO) algorithms [2, 7, 8, 9, 22]. In this paper we
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describe an attempt to integrate a preference method using
reference points with Particle Swarm Optimization (PSO)
algorithms. These PSO algorithms can be used effectively
to direct the search to preferred regions of the Pareto front.
We will demonstrate how to integrate the reference point
method into two multi-objective PSO algorithms, the non-
dominated sorting PSO (NSPSO) [16] and maximinPSO [17],
and provide a comparison of their performance.

User-preference methods as described in the MCDM liter-
ature come in two forms. 1) A priori methods, where a De-
cision Maker (DM) gives preferences first then the algorithm
finds solutions considering those preferences; 2) A posteri-
ori methods, where after an algorithm provides all possible
solutions the DM selects the interesting ones [19]. The ref-
erence point method is an a priori approach, where first
the DM provides reference points in the objective-space and
the search algorithm will concentrate around those points to
find solutions. The advantage is that most computing effort
can be spent on the preferred areas, instead of the entire
search-space. This is especially important as the number of
objectives increases.

PSOs have been very successful as EMO algorithms [21].
This paper shows that using reference points as preferences,
a PSO can be guided towards desired regions of the search-
space. We also propose a comparison mechanism for user
preference based EMO algorithms using the hyper-volume
metric. This mechanism is illustrated in the comparison of
the reference point based NSPSO and maximinPSO algo-
rithms.

The paper is organized as follows. Section 2 briefly de-
scribes the background material for the study including the
formal definitions of multi-objective optimization, particle-
swarms and the reference point method. Section 3 presents
related work carried out in the field. Section 4 presents
our algorithms. The experiments used to evaluate the algo-
rithms will be provided in section 5. Finally, in section 6,
we present our conclusions and avenues for future research.

2. BACKGROUND
We will first present the background material used in this

research, then give some examples of similar work in the
field.

2.1 Multi-objective optimization
We can formally define such an optimization as; there is

a set of objective functions which need to be maximized
or minimized. Without loss of generality we assume that
the objectives are to be minimized. This can be generally
defined as a set of functions described in equation 1.
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minimize fm(~x) where m = 1, 2, . . . , M , (1)

here fm(~x) is an objective function. The solution ~x is a vec-
tor of N decision variables, which is given by ~x = (x1, x2, . . . , xN)T .
These decision variables should be between an upper and
lower bound values as defined by the problem. The objective
function provides the mapping between the decision-space
and the objective-space.

In multi-objective optimization, solutions are compared
with each other using the notion of dominance. For two
decision vectors ~x(1) and ~x(2), dominance (denoted by ≺) is
defined as follows:

~x
(1) ≺ ~x

(2) ⇔ ∀i fi(~x
(1)) ≤ fi(~x

(2)) ∧ ∃j fj(~x
(1)) < fj(~x

(2))
(2)

The decision vector ~x(1) is said to dominate ~x(2) if and
only if, ~x(1) is as good as ~x(2) in all objectives and ~x(1) is
strictly better than ~x(2) in at least one objective.

A decision vector is said to be Pareto optimal if and only
if there is no other vector in the search-space that dominates
it. This set of Pareto optimal solutions is called the Pareto
optimal set.

2.2 Particle swarms
PSO is a nature-inspired algorithm which mimics the be-

haviour of swarming bees, flocking birds or schooling fish [14].
These behaviours are modelled as rules governing the move-
ment of particles in the search-space. Each particle moves
in the search-space by adjusting its position and velocity,
which are influenced by its interaction with other particles
in its neighbourhood. The ith particle’s velocity and posi-
tion at time t are updated to time t + 1 according to the
following two equations respectively:

~vi(t + 1) = χ(~vi(t) + φ1(~pi − ~xi(t)) + φ2( ~pg − ~xi(t))) (3)

~xi(t + 1) = ~xi(t) + ~vi(t) (4)

This version of PSO is known as the Constriction Type 1”
as defined by Clerc and Kennedy [3]. Here ~vi is the velocity
of the ith particle and ~xi its position. The variables φ1

and φ2 are random numbers generated uniformly between
[0, ϕ

2
]. Here ϕ is a constant equal to 4.1 [3]. ~pi is the best

position found by the particle (also known as personal best);
~pg is the best position (also known as global best) found in
the particle’s neighbourhood. χ is called the constriction
factor, and is used to prevent a particle from exploring too
far in the search-space. We used χ = 0.7298, which was
calculated from 2

|2−ϕ−
√

ϕ2−4ϕ|
[3]. Essentially each particle

moves towards somewhere between its personal best and the
global best.

2.3 Reference point method
The classical reference point method was first described by

Wierzbicki [9, 19]. A reference point z for a multi-objective
problem is a point consisting of aspiration values for each
objective. This reference point is used to construct a single
objective function (equation 5), which is to be minimized
over the entire search-space S, where ~x ∈ S.

minimize max
i=1...M

{wi(fi(~x) − zi)} , (5)

2f

f

Solution points

Reference point in feasible
region

Reference points in infeasible region

1

Figure 1: Reference point method

where zi is the ith component of the reference point. wi is a
weight associated with the ith objective. The DM can assign
a value for this weight, which represents any bias towards
that objective.

The DM is presented with the objective-space where pre-
ferred regions can be indicated to the algorithm with the use
of reference points. Figure 1 illustrates the classical refer-
ence point method in a two-objective space. In our research
we define a reference point as an array of aspiration val-
ues. The number of elements in the array corresponds to
the number of objectives for a given problem. In the gen-
eral sense such a reference point would indicate a potential
solution point consisting of values for each objective.

A reference point could be in any region either feasible
or infeasible, because the DM might not know beforehand
where the true Pareto front is for a given problem. The
algorithm will then attempt to find a set of solution points on
the Pareto front which is closest to the given reference point.
An advantage of using an evolutionary algorithm is, unlike
a classical optimization approach where a single solution is
found, a set of solutions can be found in a single run near
the reference point.

2.4 Multi-objective PSO algorithms
In our research we used two multi-objective PSOs to find

the non-dominated particles in the search-space. We will
first present these multi-objective PSOs and then discuss
their performance.

2.4.1 Non-dominated Sorting PSO
The notion of dominance is widely used in EMO liter-

ature [6, 16]. The most representative example is Non-
dominated Sorting Genetic Algorithm II (NSGA-II), which
has been shown to be very effective in multi-objective opti-
mization [6].

NSPSO [16] employs the non-dominated sorting proce-
dure used in NSGA-II. In NSPSO, a population of N par-
ents generate N offspring to create a population of size 2N .
First, from this population, the non-dominated solutions are
extracted. This would be called the first non-dominated
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front. This front is removed temporarily from the popu-
lation. Then from the dominated set, the non-dominated
solutions are extracted again. This front is the second non-
dominated front. This process is repeated until there are a
total of N individuals in the non-dominated fronts. These
N individuals will be carried over to the next generation.

All particles in the first non-dominated front are sorted
according to the crowding distance values. Each particle
chooses its leader (global best) from a set of least-crowded
particles (top 10% of the particles in the first non-dominated
front sorted in decreasing order of crowding distance values).
Consequently, particles of the future iterations are well dis-
tributed along the Pareto front.

2.4.2 Maximin PSO
The maximin strategy originated in game theory [20].

Balling [1] first proposed a method of deriving the fitness
using the maximin approach for multi-objective problems.
The fitness of any decision vector can be computed using
Balling’s approach.

In maximinPSO [17], which also adopts the maximin strat-
egy, the minimum of the difference of each objective i be-
tween any two decision vectors ~x(k) and ~x(j) in the popula-
tion is given by mini=1...M{fi(~x

(k))− fi(~x
(j))}. The fitness

of any ~x(k) is given by the maximum of the minimum values
between ~x(k) and all other vectors in the population (other

than ~x(k)):

fitness(~x(k)) = max
j=1...pop size:j 6=k

{ min
i=1...M

{fi(~x
(k)) − fi(~x

(j))}}
(6)

The particles with fitness values less than 0.0 are consid-
ered as the non-dominated solutions. These non-dominated
solutions are in the first non-dominated front. The total
number of individuals that move onto the next generation
will consist of all individuals in the first non-dominated set.
If the non-dominated set is less than desired then dominated
individuals are chosen at random to fill the vacant positions.
A particle will choose a leader (global best), randomly from
the top 10% of least crowded particles in the non-dominated
front.

In [17], it was shown that the maximinPSO performed
better than NSGA-II on ZDT test functions [23]. How-
ever, the maximinPSO seems to be sensitive to population
sizes. The maximinPSO can only identify the first non-
dominated front, which could also be a drawback. The up-
side is that maximin fitness provides information on both
non-dominance and diversity. There is also a subtle differ-
ence between NSPSO and maximinPSO in ways of choosing
a leader for each particle. In NSPSO a particle chooses its
leader from the top 10% of the least-crowded particles ran-
domly. However, in maximinPSO this was done by choos-
ing values from all dimensions from particles with smallest
maximin fitness values. One of our aims in this study is to
investigate the effects of these differences when employing a
reference point search strategy.

2.5 Hyper-Volume metric
To compare NSPSO and maximinPSO we used the Hyper-

Volume (HV) metric [15]. HV gives the total volume bounded
by the solutions points on the Pareto front and a selected
point in the search-space. This selected point is usually
called the nadir point. At the nadir point, all objectives are
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Figure 2: HV for a two-objective problem

at their worst values simultaneously [18]. The nadir point
xnad is given as xnad = (fnad

1 (~x), fnad
2 (~x), . . . , fnad

M (~x))T ,

where fnad
i (~x) = maxj=1...pop size{fi(~x

(j))}.
In experiments where multiple runs are required to obtain

an average HV value, the population will be the sum of all
the final non-dominated particles from each run combined
together. The nadir point is computed from this combined
population, and then will be used to obtain the HV value
for each run. This method ensures a consistent nadir point
for all runs of the experiment.

The formal definition of HV according to [12] is the Lebesgue
measure (Λ) of the union of all hypercubes ai defined by a
non-dominated point bi ∈ B (B is the set of all the non-
dominated points), and the nadir point xnad (equation 7).
Figure 2 illustrates hypercubes for a two-objective problem.
The HV value is the sum of all the rectangular areas.

hv(B) = Λ({
⋃

i

ai|bi ∈ B}) = Λ(
⋃

b∈B

{x|b ≺ x ≺ xnad})

(7)
When comparing two EMO algorithms, the one which

gives a larger HV value is considered to be better. The
volume calculated by this metric gives a measure on both
the spread and the closeness of the solutions to the Pareto
front. We use the HV to compare the reference point based
NSPSO and maximinPSO. In our proposed algorithm the
HV is calculated on the solution points of the preferred re-
gions, rather than the entire Pareto front.

3. RELATED WORK
User-preference methods are used extensively in the clas-

sical optimization methods in MCDM literature [11]. A sur-
vey by Miettinen [19] shows many different a priori and a
posteriori methods for nonlinear multi-objective optimiza-
tion problems. However, most existing EMO algorithms are
a posteriori methods, since they perform a search first before
presenting a set of final solutions to the DM. This section
presents some of the early EMO algorithms incorporating a
priori methods.

Deb [4] proposed a goal programming approach with Ge-
netic Algorithms (GA) as a mechanism to find solutions to
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multi-objective problems. A modified NSGA algorithm was
used to find a set of points closest to the supplied goal, which
is a set of aspiration values for each objective. This approach
did not care if the solutions were not found on the Pareto
front. This is because; if the goal was in the feasible region
then the algorithm is directed to that solution point. If the
goal was in the infeasible region then the solution points
closest to the goal was obtained.

Branke et al. [2] proposed the Guided Multi-Objective
Evolutionary Algorithm (G-MOEA), where the definition of
dominance was modified using the preferences given by the
DM. Here the DM can provide accepted tradeoff values for
each objective in a two-objective optimization problem. The
tradeoff values for each objective gives a notion of preference
between the two objectives. This provides guidance to the
algorithm.

Thiele et al. [22] proposed an interactive EMO based on
preferences. First, a rough idea of the Pareto front is pre-
sented to the DM, who then specifies some reference points
as desired. The algorithm will then concentrate the search
around these reference points. This method is a two-step
approach since the algorithm must first find an approximate
Pareto front and then incorporate the reference points.

Most recently Deb et al. [9] presented an EMO incor-
porating the reference point method into NSGA-II. This
work was then extended to incorporate the reference direc-
tion method [7]. In a later study [8] the light beam search
method [13] was integrated into NSGA-II. These studies
showed that user-preference methods can be successfully in-
tegrated into GA. However, a performance metric for these
user-preference based EMO algorithms was yet to be pro-
posed. This paper extends the research in [9] by introduc-
ing reference point based PSOs. We use the HV metric as
a comparison mechanism for user-preference based EMO al-
gorithms.

4. REFERENCE POINT BASED PSO
The proposed reference point based PSO algorithm in-

volves the following steps:

• Step 1: Obtain the DM’s preferences for refer-

ence points, spread and bias

The DM will provide one or more reference points, in
the objective-space. The DM does not have to worry
about the feasibility of the reference points, because
the algorithm attempts to find the closest solutions on
the Pareto front to the reference points. The DM can
also specify the spread as a preference. The spread
defines the extent of the solutions on the Pareto front
near the reference point. The spread is given by a
value δ, which is defined as the maximum variance of
the distance values of the population. Figure 3 illus-
trates a small spread and a large spread for a reference
point. Here δ = 0.01 would mean that the variance of
the population’s distance values (derived from equa-
tion 8) should be less than 0.01. If the DM requires a
smaller spread then the value of δ can be set to a lower
value, as 0.001 in Figure 3. The value of δ defines the
stop criteria. When the population’s variance of the
distance values are less than δ the algorithm stops oth-
erwise the algorithm will continue until the maximum
number of iterations is reached. The DM can also pro-
vide an array of weights (wi) if any bias is required

= 0.01

f

Small spread
f

f

Reference point

Large spread

f

1

1

2

2

δ = 0.001

δ

Figure 3: Spread of solutions along the Pareto front

between the objectives. Here
∑M

i=1 wi = 1.0. If no
bias is required then the values for all weights will be
set to 1.0. The default execution of the algorithm is
with no bias.

• Step 2: Initialize the particles

The population is first initialized. Normally half the
population’s direction is reversed according to a coin
toss. The particles are evaluated according to the ob-
jective functions and fitness is assigned. Each particle
is assigned to the closest reference point. For any vec-
tor ~x the distance to a reference point z is defined by
equation 8.

dist(~x) = max
i=1...M

{wi(fi(~x) − zi)} (8)

A particle’s assigned reference point will remain un-
changed throughout the run. The particle will choose
a leader, which also has the same reference point.

• Step 3: Obtain non-dominated solutions in the

preferred regions

The non-dominated particles are extracted from the
population. The non-dominated particles are selected
by either NSPSO or maximinPSO.

• Step 4: Rank non-dominated solutions accord-

ing to the closeness to the reference points

On the first non-dominated front, each non-dominated
particle’s distance value to its assigned reference point
is derived from equation 8. Then, the non-dominated
particles assigned for each reference point are ranked
according to the ascending order of distance values.
Particles with low distance values are considered as
candidates to be leaders.

• Step 5: Choose leaders from the assigned ranked

non-dominated set and move the particles

Each particle in the population will choose a leader
(global best) from the assigned set of non-dominated
solutions on the lowest ranked front. Here we consider
a set (top 10% closest to the assigned reference point)
from the ranked non-dominated particles as the pool
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Figure 4: maximinPSO on ZDT1

to choose leaders. NSPSO will choose one leader ran-
domly, while maximinPSO will choose random values
from all dimensions of a set of potential leaders and
produce a global best. Then each particle will adjust
their velocities and positions according to equations 3
and 4.

• Step 6: Evaluate particles using the objective

functions

The entire population is evaluated and fitness values
are assigned. This fitness value will be next used to
determine the dominance.

The steps 3 to 6 are repeated until the stop criteria is
met. The algorithm will stop once it has reached the
desired spread of particles on the Pareto front near the
reference points or the maximum number of iterations
allowed.

5. EXPERIMENTS
We used two-objective problems from the ZDT test prob-

lem suite [23] and three-objective problems from the DTLZ
test problem suite [10]. We will first demonstrate that the
PSO variants can be guided using reference points and achieve
various spread and bias of objectives on the Pareto front.
Then we will compare the maximinPSO and NSPSO using
the HV metric with varying population sizes.

The following two-objective problems were used: ZDT1
(convex Pareto optimal front), ZDT2 (concave Pareto opti-
mal front), ZDT3 (disjoint convex Pareto optimal front) all
having 30 decision variables each. DTLZ6 (concave Pareto
optimal region) and DTLZ7 (disjointed Pareto optimal re-
gions) were used as the three-objective problems. There
were 12 and 22 decision variables for DTLZ6 and DTLZ7
respectively. For every decision variable xi ∈ [0.0, 1.0] in all
the test problems. We set the maximum number of itera-
tions to 500 for the two-objective problems and 750 for the
three-objective problems.

5.1 Two-objective test problems
On ZDT1, the reference points (0.2, 0.5), (0.4, 0.4) and

(0.7, 0.2) were used in a single run. (0.2, 0.5) is in the in-
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1.0

0.0 0.5 1.0

f2

f1

(0.2, 0.5)
δ = 0.001

δ = 0.01

δ = 0.05

Figure 5: maximinPSO on ZDT1 with different δ
values
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0.0 0.5 1.0

f2

f1

(0.3, 0.8)

(0.8, 0.4)

(0.6, 0.75)

Figure 6: NSPSO on ZDT2

feasible region, while the other two reference points are in
the feasible region. Figure 4 illustrates the result for max-
iminPSO at the end of 110 iterations.

Figure 5 shows different values of δ depicting the spread
of solutions near the reference point (0.2, 0.5), for the max-
iminPSO. For results in Figure 4 the spread was set to
δ = 0.001. NSPSO depicted a similar behaviour for the
solution points and spread on the Pareto front as the max-
iminPSO for the same reference points.

The results of NSPSO on ZDT2 with δ = 0.01 is given
in Figure 6 after 100 iterations. Here three reference points
(0.3, 0.8), (0.6, 0.75) and (0.8, 0.4) were used in a single run.
The first reference point is in the infeasible region, while
other two are in the feasible region. Both the maximinPSO
and NSPSO performed equally well for the same reference
points.

Figure 7 illustrates the spread of solutions for the reference
point (0.8, 0.4), δ = 0.001 and when the DM has a bias
preference between the objectives. Here we illustrate the
solutions on the Pareto front where {w1 = 0.8, w2 = 0.2}
and {w1 = 0.3, w2 = 0.7}, while {w1 = w2 = 1.0} shows no
bias.
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Figure 8: maximinPSO on ZDT3

For ZDT1 and ZDT2 we observed that both maximinPSO
and NSPSO were able to find solutions closest to feasible
or infeasible reference points in both convex and concave
problems. The DM was able to specify the required spread
(by δ) and bias (by wi) for any reference point.

We used the reference points (0.2, 0.4), (0.45, 0.0) and
(0.65, -0.2) in a single run on the ZDT3 test problem using
δ = 0.001. Figure 8 illustrates the distribution of the final
solution points at the end of 110 iterations with no bias using
maximinPSO. The NSPSO was also able to find solutions
similarly for the same reference points.

Our proposed reference point based PSO was able to find
solutions near the specified reference points using both max-
iminPSO and NSPSO in a single run. The algorithms can
also handle problems with disjoint Pareto fronts (ZDT3).

5.2 Three-objective test problems
Figure 9 shows the final solutions after 450 iterations with

the reference points (0.2, 0.4, 0.9) and (0.7, 0.7. 0.5) in a
single run on DTLZ6 using the NSPSO, δ = 0.001 and no
bias. The result was similar for maximinPSO.
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Figure 9: NSPSO on DTLZ6
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Figure 10: maximinPSO on DTLZ7

Figure 10 shows the results for reference points (0.2, 0.2,
5.5) and (0.8, 0.8, 3.5) in a single run on DTLZ7 for max-
iminPSO at the end of 550 iterations. Similar results were
observed for NSPSO.

Figure 11 shows a series of snapshots of the swarm popu-
lation on DTLZ7 using maximinPSO with reference points
(0.2, 0.2, 5.5), (0.8, 0.8, 3.5) and δ = 0.01 with no bias.

In the three-objective DTLZ7 problem the area covered by
the solutions points does not depict a circular region. The
goal of the experiments was not to achieve such results. The
main aim was to guide the PSO in finding some preferred
solutions points on the Pareto front, with some control over
the spread as the DM desires.

5.3 Effect of varying population sizes
For each test problem and the PSO variants we conducted

experiments with varying population sizes. The results were
averaged over 50 runs. We used the worst values of the
solution points from all 50 runs to determine the nadir point
for the HV calculation. The average and standard deviation
of the HV values over 50 runs are presented in Table 1 and 2.

Table 1 and 2 show the variable population sizes for the
two-objective and the three-objective problems respectively.
A fixed reference point for each test problem was used. The
reference points are: (0.2, 0.5) for ZDT1, (0.3, 0.8) for ZDT2,
(0.65, -0.2) for ZDT3, (0.2, 0.4, 0.9) for DTLZ6 and (0.2, 0.2,
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Table 1: HV values for two-objective ZDT test problems
X

X
X

X
X

X
X

XX
Problem

Pop Size
50 100 250 500

maximinPSO NSPSO maximinPSO NSPSO maximinPSO NSPSO maximinPSO NSPSO

ZDT1 0.4335

±0.0173

0.4299
±0.0176

0.4344

±0.0149

0.4173
±0.0162

0.4290
±0.0145

0.4405

±0.0124

0.4424

±0.0127

0.4279
±0.0149

ZDT2 0.0215
±0.0069

0.0337

±0.0095

0.0383

±0.0087

0.0317
±0.0080

0.4054

±0.0166

0.0468
±0.0114

0.4178

±0.0125

0.4041
±0.0184

ZDT3 0.3040
±0.0674

0.3156

±0.0565

0.2799
±0.0523

0.2895

±0.0533

0.3367

±0.0380

0.3177
±0.0471

0.3372
±0.0403

0.3865

±0.0373

Table 2: HV values for three-objective DTLZ test problems
X

X
X

X
X

X
X

XX
Problem

Pop Size
250 500 750

maximinPSO NSPSO maximinPSO NSPSO maximinPSO NSPSO

DTLZ6 0.0803

±0.0247

0.0441
±0.0093

0.0544

±0.0111

0.0542
±0.0107

0.0665

±0.0097

0.0628
±0.0125

DTLZ7 0.2167
±0.0548

0.2344

±0.0465

0.2994

±0.0073

0.2802
±0.0033

0.3846

±0.0154

0.3214
±0.0157

Iteration 1 Iteration 10

Iteration 50 Iteration 200

particles
reference points

Figure 11: Snapshots of maximinPSO on DTLZ7 at

1, 10, 50 and 200 iterations

5.5) for DTLZ7. They all had a spread δ = 0.001 with no
bias.

In the two-objective problems a population size less than
50 failed to reliably find solutions on the Pareto front near
the regions denoted by the reference points. Therefore we
set the population size to 50 and above for the two-objective
problems. Similar observation was noted for the three-objective
problem. Here the minimum population size was 250.

It can be seen in Table 1 that on average for a two-
objective problem maximinPSO was better than NSPSO.
For the three-objective problems the maximinPSO on av-
erage gave a better HV values than NSPSO (Table 2). We

also observed that a larger population is needed to find solu-
tions for a three-objective problem than for a two-objective
problem. This was the case if a better spread of solutions is
also required.

The results of this comparison experiments showed that
given the same set of reference points and spread require-
ments, the HV metric can be used to provide a meaningful
comparison between two user-preference based EMO algo-
rithms.

6. CONCLUSION AND FUTURE WORK
In this study we have shown that a reference point based

guidance can be successfully integrated into two PSO al-
gorithms. The DM can specify varying spread as desired
near multiple reference points. Bias on certain objectives
can be also achieved. Our experiments showed that the pro-
posed multi-objective PSO algorithms incorporating prefer-
ences are able to guide the search to several preferred areas
of a Pareto front for both two and three-objective prob-
lems in a single run. The HV values demonstrated to be
a useful metric for comparing user-preference based EMO
algorithms.

The reference point is just one preference method that
can be integrated into multi-objective PSO algorithms. We
plan to extend this research by integrating other approaches
like the light beam search. We also would like to investi-
gate other suitable metrics, which can be used for comparing
user-preference based EMO algorithms.
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