
Neuroevolution of Content Layout in the
PCG: Angry Bots Video Game

William L. Raffe, Fabio Zambetta, and Xiaodong Li
School of Computer Science and Information Technology

RMIT University
Melbourne 3001, Australia

Email: {william.raffe, fabio.zambetta, xiaodong.li}@rmit.edu.au

Abstract—This paper demonstrates an approach to arranging
content within maps of an action-shooter game. Content here
refers to any virtual entity that a player will interact with
during game-play, including enemies and pick-ups. The content
layout for a map is indirectly represented by a Compositional
Pattern-Producing Networks (CPPN), which are evolved through
the Neuroevolution of Augmenting Topologies (NEAT) algorithm.
This representation is utilized within a complete procedural map
generation system in the game PCG: Angry Bots. In this game,
after a player has experienced a map, a recommender system
is used to capture their feedback and construct a player model
to evaluate future generations of CPPNs. The result is a content
layout scheme that is optimized to the preferences and skill of
an individual player. We provide a series of case studies that
demonstrate the system as it is being used by various types of
players.

I. INTRODUCTION

In game design theory, the amount of enjoyment that a
player receives from a game is often linked directly to the
challenge that they experience [1], [2]. The flow of content
throughout a game map plays an important role in the chal-
lenges that the player will face in a single-player game. In
this paper, maps are defined as the virtual environments that
a player navigates around during game-play. The term content
here refers to all virtual objects that a player interacts with
during game-play, which may include friendly and enemy
non-playable characters, item pick-ups, puzzles, or narrative
elements that can be initiated. For example, if the relationship
between the quantity of enemies and the quantity of pick-ups
is analyzed, it can be seen that with too many enemies and
not enough pick-ups the game will become more challenging.
Meanwhile, an increase in pick-ups and a reduction in enemies
will lead to less challenge.

In this paper we demonstrate a technique to procedu-
rally distribute content throughout a map to provide a player
with an appropriate challenge. This is achieved by using
a Compositional Pattern-Producing Network (CPPN) [3] to
calculate the location and quantity of content in each area
of a map. A population of CPPN candidates is optimized
through Neuroevolution of Augmenting Topologies (NEAT) [4].
NEAT has been successfully utilized in numerous Search-
based Procedural Content Generation (SBPCG) applications
[5], including the generation of art through the Picbreeder
website [6], the calculation of the path of particle weapons in
the game Galactic Arms Race [7], and the creation of flower
designs in the social media game Petalz [8]. All of these
applications also use a CPPN representation, which gives them

all distinctive visual patterns. In the Picbreeder application, a
CPPN candidate takes as input the (x,y) coordinates of a pixel
of a blank image and outputs a color for that pixel to be set
as. Similarly, in the content layout system presented here, the
coordinates of each room in a game map are used as input to
a CPPN and the output determines the quantity of each type
of content.

Generating game maps is a sub-field of SBPCG and there
exists work that has explored possible solutions that utilize
evolutionary computing [9]. Both Frade et al. [10] and Raffe
et al. [11] have proposed evolutionary techniques to creating
virtual terrain to be used in open world games. Likewise,
Ashlock et al. [12] and Cardamone et al. [13] evolve closed
world maps in the form of mazes and first-person shooter game
maps. Togelius et al. [14] generate more complete game maps
by using a multiobjective evolution algorithm to optimize both
the terrain and the location of key game objectives in maps of
Real-Time Strategy games. Similarly, in this paper we present
a system to generating both the geometry and the content
layout of a map, which are separated into two distinct, yet
interconnected, processes.

Furthermore, there has been work within the field of
Experience-driven Procedural Content Generation (EDPCG)
[15] to generate maps to suit the needs and preferences of play-
ers. Togelius et al. [16] use AI controllers that are modelled
after individual players to evaluate procedurally generated
tracks in a racing game. Shaker et al. [17] use artificial neural
networks to predict a player’s emotional state after playing a
map in the game Super Mario Bros (Nintendo, 1985). In this
paper, we frame the player modeling component of our system
as a content-based recommender system [18], building a single
model per player and using it as the fitness evaluator to the
NEAT content layout algorithm.

To summarize, this paper makes the following contribu-
tions:

• We demonstrate how a CPPN can be used to calculate
the quantity of content within an action-shooter game
map.

• We utilize a combination of NEAT and a recommender
system to generate personalized game maps.

• We show results of a recommender system being used
to learn player preferences in PCG setting.

The rest of the paper is organized as follows; in Section II
we describe the game that is used as the test bed for the

2013 IEEE Congress on Evolutionary Computation
 June 20-23, Cancún, México

978-1-4799-0454-9/13/$31.00 ©2013 IEEE 673

Figure 1. A screenshot of the game-play in PCG: Angry Bots.

experiments, as well as the general procedural map generation
system. In Section III we provide details on the algorithms
used to optimize the layout of content within a map. Case
studies of numerous players interacting with the game are
shown in Section IV and a conclusion is provided in Section
V.

II. PCG: ANGRY BOTS

The game used in the experiments in this paper has been
dubbed Procedural Content Generation: Angry Bots (PCG:
Angry Bots) and is built upon a technical demonstration that
is provided freely with the Unity Game Engine [19]. PCG:
Angry Bots is single-player, top-down action-shooting game
that pits a lone soldier against swarms of security robots. A
screenshot of the gameplay can be seen in Figure 1. The only
real objective of the game is to get from one side of a map
to the other. However, the player can choose to skip a map at
any time if they feel it to be too difficult.

PCG: Angry Bots was designed with procedural map
generation in mind and there are a few processes that the player
interacts with to achieve this. Figure 2 shows a simplification
of the game cycle, with all system processes represented as
rectangles and all player actions represented as ovals. From a
player’s perspective, they first log into the game and choose a
menu option to begin playing. They are then shown possible
map choices and are required to select a map that appeals to
them. Next, the player will see a brief loading screen and then
be able to play through the map. After they complete the map
they are required to rate it on a six point scale. The process
then repeats.

The underlying system can be broken into three major
components: geometry generation, content optimization, and
player modeling. Instead of approaching the map generation
process as a single process, as has been done in the past [20],
it is instead separated into two important entities that form a
map: the geometry and the content. Dormans and Bakkes [21]
similarly use the terms Spaces and Missions. However, we use
the term geometry to better relate to the architecture of a map.
We also do not use the term Mission because our game does
not have the type of segmented objectives that are present in
the game created by Dormans and Bakkes. Instead, the term

Login to Game

Start Game

Generate
Geometry
Population

Select Geometry

Optimize
Content

for
Selected

Geometry

Play MapRate Map
Player
Model

Updated

Figure 2. Simplified game cycle in PCG: Angry Bot. All blocks are system
processes and all clouds are player actions.

Content is used to refer to all objects that a player will interact
with during game-play.

A. Evolving Geometry

The term geometry refers to the physical layout of the
walls, floors, and doors of the map, encompassing the area
that the player navigates through while playing the game. In
PCG: Angry Bots a map is constructed as a series of rooms
connected by corridors. All of the rooms and corridors here are
pre-designed building blocks and so procedurally generating
the geometry involves connecting them in an appropriate and
valid manner. In this implementation, there are a total of 10
pre-designed rooms and 4 corridors.

The underlying genetic representation is a Fixed N-ary
Tree where each node in the tree is a room and each edge
is a corridor. Each node and edge holds a reference to a pre-
designed room or corridor to be used when rendering. It should
also be noted that as each of the 10 pre-designed rooms have
between 2 and 4 doors, the room that is used at each node will
determine how many children that node can have.

In the Fixed N-ary Tree, the root node is a starting room
where the player first enters the map. Similarly, exactly one
leaf node is an exit room, to which the player must try to
reach to complete the map. As the representation is a tree and
not a graph, there are no circular paths and there is only one
path between the start and exit. Here, a 3-ary Tree is used, so
each node can have a maximum of 3 children. This value is
set as such simply because there are no pre-designed rooms
with more than 4 doors.

The term “Fixed” means that once a node is put in the
tree, its coordinates relative to nodes at the same depth never
change, even if other nodes are removed. An example of a
map is shown in Figure 3, where node S is the starting room,
node E is the exit room, and all other nodes are labeled with
a [depth, sibling number] coordinate. With this representation,
if node [2, 0] is removed, for example, nodes [2, 1], [2, 2], and
[2, 3] do not shift left, their coordinates stay the same. This
representation is required for the content optimization process
described in Section III.

674

Figure 3. The geometry of a map represented as a Fixed N-ary Tree. Possible
nodes are marked with squares while actual instantiated nodes are indicated
as circles within the squares.

The geometry of maps is optimized through Interactive
Evolution with a population size of 8. When a new player
account is created, the first generation of maps is generated
randomly. The player is then shown a preview of all 8 maps,
as depicted in Figure 4, and they choose which map they would
like to play next. This chosen map is then the single parent
for the next generation. The offspring are generated through
mutation only. Each node in the tree of the parent map has a
random chance of mutating. If a node is to mutate, then either
a new node is added above the current node and branches are
created from it or the current node and all of its children that
do not lead to node E are removed. Validation of each offspring
is done to ensure there are no illegal intersections in the map.
The mutation and validation is quick enough such that invalid
candidates are simply discarded and mutation is attempted
again. Interactive Evolution is sufficient here to capture the
player’s preferences as the previews of the maps clearly show
the size of the map, the types of rooms that will be experienced,
and the number of branching paths.

III. CONTENT LAYOUT THROUGH NEAT

For many game genres, the placement of content in a game
map plays an important role in controlling the challenge, pace,
and fairness of the game. For example, successive areas of high
enemy density can lead to high tension and increased challenge
as the player runs out of ammo and health. Thus, this section
details the systems that we have designed to generate content
layouts that are appropriate for an individual player in a linear
single-player game.

Firstly, it is important to identify the types of content within
the game. The PCG: Angry Bots game has 6 types of content
in the two categories below:

• Enemies: Spiders, Buzz Bots, and Mechs.

• Pick-ups: Health, Ammo, and New Weapons.

Enemies will attack the player and can either be killed or
avoided in order to complete a map. Pick-ups are items
that the player can interact with to help them complete the
map. Health and Ammo pick-ups give a fixed amount of
their respective resource, while New Weapon crates provide
a randomly generated weapon.

In order to discretize the content layout system, each room
of the geometry can contain each of the 6 content types in the

Figure 4. Screenshot of the geometry selection menu.

quantity settings of None, Low, Medium, or High. For example,
the first room of a map may have a High setting of Mech
enemies, a Medium setting of Ammo, and a None setting for
all other content. The pre-designed room Geometries discussed
in Section II-A also have the content locations pre-defined, thus
the process of procedurally generating the content layout in a
room is that of removing unwanted content rather than adding
new content. This approach was chosen to reduce the need
for additional systems to choose logical and valid positions of
content within a room.

The process of evolving and optimizing maps requires
that a setting (None, Low, Medium, or High) is chosen for
each content type (Spiders, Buzz Bots, Mechs, Health, Ammo,
and Weapons) in each room of the user selected geometry.
To achieve this, the content settings of a map are indirectly
represented by a Compositional Pattern-Producing Network
(CPPN) [3]. A CPPN is an artificial neural network in which
the activation function at each neuron can be selected from
a variety of possible functions, rather than restricting every
neuron to using the same function. This property can lead to
patterns of output occurring, which can be seen visually in the
Picbreeder application [6]. In PCG: Angry Bots, the inputs to
a CPPN are a nodes depth and sibling coordinates in the Fixed
N-ary Tree, as shown in Figure 3, as well as a bias of 1.0. The
Fixed N-ary Tree representation becomes important here as a
single mutation in the geometry will not affect the coordinates
passed to the CPPN for the rest of the map.

There are 6 outputs from a CPPN, each corresponding to
a content type. Each output specifies a value between [−1, 1],
where −1 to −0.5 indicates a None setting, −0.5 to 0 indicates
a Low settings, 0 to 0.5 for a Medium setting, and 0.5 to 1 for a
High setting. A final, playable map is generated by combining
a geometry and a CPPN. That is, each node in the geometry
is passed into the CPPN and the content is set by the output.

A population of CPPN candidates is evolved using Neu-
roevolution of Augmenting Topologies (NEAT) [4]. PCG: An-
gry Bots uses the SharpNEAT [22] implementation of CPPN
and NEAT. A population size of 50 was used with a species
count of 5. An acyclic network scheme was used, as well as
an absolute complexity regulation strategy with a complexity
threshold of 50. This large complexity threshold was used
because we did not want to limit the complexity of the
networks, which was due to initial testing showing that more
complex networks led to more appropriate patterns of content
within a map. For each map that is played, 10,000 fitness
evaluations are allowed to take place in order to allow time

675

for an appropriate CPPN to be found. The fitness evaluation
method detailed in Section III-A is an efficient process and all
of the evaluations for a single map can be accomplished in
less than 5 seconds on a 3GHz CPU.

A. Fitness Evaluation

An important objective of this work is to generate game
maps that are appealing to individual players. During the
evolution of the geometry, interactive evolution was capable
of clearly representing options to the player and capturing
their feedback in an almost reflexive time frame. However,
there is no such clear representation of the content layout;
players would need to carefully study figures or variable values
carefully to properly evaluate the layouts of each map.

Therefore, the fitness evaluation is automated by creating a
player model and using it to evaluate each CPPN candidate. To
do this, the solution is framed as a content-based recommender
system [18]. A model-based approach is used, which builds a
classifier from user ratings of items and is used to predict
the ratings of items that have not yet been experienced. Here,
similarities are drawn between items, not users, and thus a
separate model is constructed for each user without influence
from the models of any other users.

In our system, after a player has finished a map, they
provide a rating for it. These ratings, along with features that
are extracted from the maps, are used to update the player
model. The player model is then used to evaluate new map
candidates within NEAT. The map candidates are not fully
rendered and instead the features are extracted directly from
the tree structure. The candidate with the highest fitness is
presented for the player to experience and the cycle continues
with the player model becoming more accurate with every new
rating.

In PCG: Angry Bots, a Naive Bayes (NB) classifier [23]
was used as the player model due to its ability to learn from
limited data samples. Initial testing with numerous classifiers
in the WEKA machine learning suite [24] also showed NB to
perform the best with our chosen features. There are a total
of 18 map features that were used in the NB model, which
included:

• Enumerated Sums - The settings {None, Low,
Medium, High} are enumerated as {0, 1, 2, 3} and a
sum of each of the six content types across the entire
map is calculated.

• Room Composition Counts - The six content types are
condensed to two categories, Enemies (E) and Pick-
ups (P), and the four settings are condensed into Low
and High. This creates 4 possible room types: LowE-
LowP, LowE-HighP, HighE-LowP, and HighE-HighE.
The quantity of each room composition is counted
throughout the map.

• Room Transition Counts - As with the Room Com-
positions, content types and settings are reduced.
However, these features determine the transitions from
one room to another. There are 4 enemy transi-
tion type: LowE-to-LowE, LowE-to-HighE, HighE-to-
LowE, and HighE-to-HighE. There are also 4 similar
transition types for pick-ups and so each edge of the

geometry tree will belong to one enemy transition type
and one pick-up transition type.

All of the above feature values are normalized by dividing
by the total number of rooms in the map. These features
were chosen as a means of understanding the flow of content
throughout a map without using a large number of features,
which would have been detrimental to the NB classifier.

After the player has finished a map, they are required to
rate it on a six point scale, from “Very Bad” to “Very Good”.
These ratings can be seen later in Figure 6. However, early
testing showed that the NB classifier did not perform well
with a multinomial class setup. An alternative is to use a rating
system of “Dislike” and “Like”, which would provide a binary
class setup. Binary classification worked well in early testing,
however, the disadvantage was that it did not capture a player’s
preferences to a fine enough granularity. For example, a player
may have enjoyed a map but not as much as they enjoyed
a prior map. Thus, a trade off was made by converting the
player’s multinomial rating into weighted binary class for the
NB classifier. The ratings {Very Bad, Bad, Poor, Fair, Good,
Very Good} were evenly divided into the classes {Dislike,
Like} and given weights in those classes of {2, 1, 0.5, 0.5, 1, 2}
respectively. This means that ratings of Very Bad and Very
Good would have the most influence over their respective
classes, while Poor and Fair have a weak influence over the
class. The fitness value for a CPPN is its predicted membership
to the “Like” class given the extracted map features.

IV. RESULTS

As of the writing of this paper, the game PCG: Angry Bots,
including all of the mechanisms described above, has recently
been released in an open experiment [25]. Invitations to partic-
ipate have been distributed through various social networking
channels and participation is anonymous. The game can be
downloaded online and requires an internet connection during
play to allow for player data to be collected and stored on
secure servers. There are no minimum or maximum limits on
the number of maps a participant can play.

As this experiment is still being conducted, the initial
results shown here do not make a claim to the overall success
of the system but rather give a qualitative analysis of the type
of experiences that players are having as a result of the CPPN
approach to content layout. Along with an initial analysis of
the learning capabilities of the player models, these results
show that, at least for these three players, the system is able
to gain an understanding of the player’s preferences and in
turn generate maps that are more appealing to them.

The results in Figures 6 and 9 show three of the longest
playing participants so far, henceforth referred to as Player
1, Player 2, and Player 3, who played 17, 18, and 16 maps
respectively. These three players were also chosen because
they demonstrate quite distinct preferences of game-play, with
Player 1 enjoying easy maps, Player 3 preferring challenging
maps, and Player 2 desiring a level of challenge somewhere
between that of the other two participants. It should be pointed
out that as participation in this experiment is anonymous, we
cannot truly know the preferences of the players and below
are only our estimations.

676

(a) Multinomial ratings

(b) Binary ratings

Figure 5. (a) The ratings provided by the player who experienced the most maps. (b) The same ratings converted to the binary scale used by the Naive Bayes
classifier.

(a) Player 1

(b) Player 2

(c) Player 3

(d) Legend for the rating plots above.

Figure 6. Plots of the ratings provided by each of the three chosen player’s
for every map that they played.

A. Raw Ratings

Firstly, Figure 6 shows the rating that each player gave to
each map they experienced. The plots show the multinomial
rating scale that is presented to the player during the game, as
oppose to the weighted binary scale used by the NB classifier.
The plot for Player 1 shows a steadily improving rating over
time, suggesting that the system is properly identifying his
preferences. Both Player 2 and 3 show an increase in rating
after a few games but a sudden drop towards the end of play.
It is believed that this trend occurs for one of the following
reasons.

• The NB classifier is pushing the NEAT evolution in a
specific direction (e.g. adding more enemies) but has
pushed the boundaries of what is acceptable too far
(e.g. too many enemies have now been added).

• The geometry tree grows in depth and the CPPN
population is not optimized for the lower levels of
the tree.

• The player has become bored of the repetitive content
layout that is a result of the NEAT algorithm being
stuck in a local optimum. Alternatively, the player’s
skill or preferences have changed and what previously
interested them no longer does. Finally, this change in
preference may also be due to player fatigue during
long sessions of play [26] that can lead to altered
decision making or a reduction in skill.

Regardless, if a player is to continue to play beyond these few
bad maps, the ratings appear to improve again shortly after the
sudden drop. The most maps played by a single player so far
is 86, with the next highest number of maps played being 18.
Figure 5a shows the ratings provided by this player. When such
a large number of maps are played, the trend of sudden drops
in ratings followed by a return to appealing maps appears to
re-occur over the lifetime of play, before remaining constantly
positive after map 62. This trend is more easily noticed in
Figure 5b, which depicts the binary ratings used by the NB
classifier.

677

Figure 7. Prediction accuracy of the three classifiers of the chosen players.
The accuracy at any map index includes the predictions of all maps before it.

B. Learning of Player Models

Figure 7 shows the prediction accuracy of each of the three
players’ classifiers. The prediction accuracy was gathered by
comparing the prediction given to a map by the player’s current
classifier and the rating that is actually given by the player.
Note that this is based upon the binary rating system used
by the Naive Bayes classifier and so it is possible to build a
confusion matrix and prediction accuracy can be calculated
as a function of true classifications over all classification
instances.

It is possible to experience True Negatives and False
Negatives because not all maps that are provided to the player
are believed to be suited for them; sometimes the system has no
choice but to provide a map that is believed to be unsuitable
for the player because the NEAT evolution was not able to
discover a map that they would like. These plots do not include
predictions for maps that were randomly generated, such as the
first map played by every player.

In Figure 7, there is a trend of positive learning for all of
the players. Both Player 1 and Player 3 experience fluctuations
in prediction accuracy. For Player 1, this is most likely due to
many of the provided ratings being either “Fair” or “Poor” and
without strong samples of either “Very Good” or “Very Bad”
the classifier is struggling to learn. The classifier for Player 2
shows the greatest strength with a maximum accuracy close to
90%. However, there is a drop in accuracy between Map 13
and 15 and by comparing this to the ratings in Figure 6 it can
be deduced that the classifier had predicted that Player 2 would
enjoy those maps but they didn’t, most likely introducing
confusion into the training data. By Map 16, however, the
classifier is beginning to learn from these new data samples
and is improving in accuracy again.

Figure 8 shows the Enumerated Sums feature values of
each map played by Player 1. These values have been summed
into two categories: Enemies and Pick-ups. For example, a
value of 9 indicates that there is the maximum setting of every
enemy type in every room of the map. This plot is an example
of feature convergence as a result of the NB classifier learning.
The features begin to stabilize in the region of Maps 5 and
7 and then again between Maps 10 and 14, especially with
respect to enemy quantities. This indicates that the classifier
has learned an Enemy to Pick-up ratio that is believed to be
suitable for the player. However, the features begin to fluctuate
again in Map 15 and this is due to the sudden drop in rating
of Map 14. A closer look at Map 13 and 14 (not shown

Figure 8. Feature values for the maps played by Player 1. The features values
are summed into Enemies and Pick-ups for clearer viewing.

in this paper) indicate that the content settings were nearly
identical but, for unknown reasons, the player chose to rate
Map 14 much worse. This contradicted the classifiers prior
knowledge and therefore causes it to promote adjustments in
feature values.

C. User Experiences

This section describes the experience of the three chosen
players by showing a sample of maps that were generated for
each of them. Figure 9d shows the color legend that is used
in Figures 9a, 9b, 9c. Each colored square in the images of
the maps represents a single piece of content. The room that
the player starts in is marked with an “S” while the exit room
is marked with an “E”. The map identification numbers match
those shown in Figure 6.

Figure 9a shows four maps that Player 1 experienced.
Player 1 appears to be a novice, preferring maps with fewer
enemies. At Map 3 there is not enough classifier data and the
maps are being optimized in a negative direction. Map 3 has
only a single Spider enemy and while Player 1 wants an easy
map, this appears to be too easy. Map 5, which is generated
randomly, gathers a positive rating to balance the knowledge
of the NB classifier. This is built upon in Map 7, which now
has a few more Spider enemies in each room. However, this
trend of optimizing towards more enemies continues and as a
result Map 9 is overly dense with enemies. By Map 15 the
system has returned to an appropriate enemy quantity.

Some of the maps that Player 2 experienced are shown in
Figure 9b. Map 2 has a high density of all content types but it is
likely that there were too many enemies for this player. Map 3
is optimized away from Map 2, receives a good rating, and thus
optimization continues towards fewer enemies. Map 6 shows
the pinnacle of this optimization, which contains one Mech
enemy in each room, a few Buzz Bot enemies, and plenty
of ammo. However, this balance is broken in Map 13 and
14, which both contain higher numbers of Mech and Spider
Enemies. In Map 18, the Spider enemies have been removed,
leaving only the Mech enemies and plenty of Ammo and
Weapon pick-ups, which seems to be an appropriate challenge
for this player.

The plot for Player 3 in Figure 6 and the maps in Figure 9c
demonstrates how the map optimization process can move in
the wrong direction and get stuck in a local optimum early on.
The first map that is shown in Figure 9c, which is randomly

678

generated, is dense with enemies but comparatively scarce with
ammo and health. In Map 2, a few of the enemies have been
removed but so has the ammo and health and is rated worse
than the first map. By Map 5 almost all content has been
removed. This behavior is a result of no positive examples
for the NB classifier to learn from. This is why the option
to completely randomly generate a map was provided to the
players. Map 6 is randomly generated and is rated highly. The
system utilizes this positive rating and the result is Map 7,
which has returned to higher densities of enemies and pick-
ups.

V. CONCLUSION

This paper presented an application of CPPN to laying
out content within a game map. This approach has been
implemented into the 3D action-shooter game PCG: Angry
Bots, in which players navigate from one end of a map to the
other. The result is a system that dictates how many enemies
and pick-ups are presented to the player in each room of the
map. A population of CPPN candidates is evolved through
NEAT, utilizing a recommender system during fitness evalua-
tions to encourage content layouts that will be appropriate to
the preferences and skill of an individual player.

While the results presented here only show initial samples
from a public user experiment, they demonstrate the potential
of this system. The results from three players were shown
as examples of how the combination of NEAT and a recom-
mender system were able to generate maps that appealed to
players with different preferences. Noticeable rating fluctua-
tions are believed to occur when the recommender system does
not have adequate data to learn from or when a player’s own
preferences change, creating conflicts in a previously strong
data set. As the public user experiment continues, it is hoped
that the trends that were observed for these three players will
be also be apparent for other participants. Also, with more
participant data we will be able to establish a clearer picture
of how well the system is working and why certain phenomena,
such as the recurrent rating drops, may occur.

ACKNOWLEDGMENT

The experiment in this paper is built upon the “Angry
Bots” technical demonstration that is provided with the Unity
Game Engine [19]. All rights to the graphical and audio assets,
as well as many core game-play scripts, belong to Unity
Technologies and are used here under a Unity Pro Educational
license.

REFERENCES

[1] T. Malone, “What makes things fun to learn? a study of intrinsically
motivating computer games.” Pipeline, 1981.

[2] E. Byrne, Game level design. Delmar Thomson Learning, 2005.
[3] K. Stanley, “Compositional pattern producing networks: A novel ab-

straction of development,” Genetic Programming and Evolvable Ma-
chines, vol. 8, no. 2, pp. 131–162, 2007.

[4] K. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary computation, vol. 10, no. 2, pp.
99–127, 2002.

[5] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne, “Search-based
Procedural Content Generation: A Taxonomy and Survey,” Computa-
tional Intelligence and AI in Games, IEEE Transactions on, no. 99, pp.
1–1, 2011.

[6] J. Secretan, N. Beato, D. D’Ambrosio, A. Rodriguez, A. Campbell, and
K. Stanley, “Picbreeder: Collaborative interactive evolution of images,”
Leonardo, vol. 41, no. 1, pp. 98–99, 2008.

[7] E. Hastings, R. Guha, and K. Stanley, “Evolving content in the
galactic arms race video game,” in IEEE Symposium on Computational
Intelligence and Games (CIG). IEEE, 2009, pp. 241–248.

[8] S. Risi, J. Lehman, D. B. D’Ambrosio, R. Hall, and K. O. Stanley,
“Combining search-based procedural content generation and social
gaming in the petalz video game,” in Eighth Artificial Intelligence and
Interactive Digital Entertainment Conference. AAAI, 2012, pp. 63–68.

[9] W. Raffe, F. Zambetta, and X. Li, “A survey of procedural terrain
generation techniques using evolutionary algorithms,” in Evolutionary
Computation (CEC), 2012 IEEE Congress on. IEEE, 2012, pp. 1–8.

[10] M. Frade, F. F. de Vega, and C. Cotta, “Evolution of artificial terrains
for video games based on obstacles edge length,” in Evolutionary
Computation (CEC), 2010 IEEE Congress on. IEEE, 2010, pp. 1–
8.

[11] W. Raffe, F. Zambetta, and X. Li, “Evolving patch-based terrains for
use in video games,” in Proceedings of the 13th annual conference on
Genetic and evolutionary computation. ACM, 2011, pp. 363–370.

[12] D. Ashlock, C. Lee, and C. McGuinness, “Search-based procedural
generation of maze-like levels,” Computational Intelligence and AI in
Games, IEEE Transactions on, vol. 3, no. 3, pp. 260–273, 2011.

[13] L. Cardamone, G. N. Yannakakis, J. Togelius, and P. L. Lanzi, “Evolv-
ing interesting maps for a first person shooter,” in Applications of
Evolutionary Computation. Springer, 2011, pp. 63–72.

[14] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelback, and
G. Yannakakis, “Multiobjective exploration of the starcraft map space,”
in Computational Intelligence and Games (CIG), 2010 IEEE Sympo-
sium on. IEEE, 2010, pp. 265–272.

[15] G. Yannakakis and J. Togelius, “Experience-Driven Procedural Content
Generation,” IEEE Transactions on Affective Computing, 2011.

[16] J. Togelius, R. De Nardi, and S. Lucas, “Towards automatic personalised
content creation for racing games,” in IEEE Symposium on Computa-
tional Intelligence and Games (CIG). IEEE, 2007, pp. 252–259.

[17] N. Shaker, G. Yannakakis, and J. Togelius, “Towards automatic per-
sonalized content generation for platform games,” in Proceedings of
the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE). AAAI Press, 2010.

[18] G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” Knowledge and Data Engineering, IEEE Transactions on,
vol. 17, no. 6, pp. 734–749, 2005.

[19] Unity Technologies. (2012) Unity Game Engine 4.0. [Online].
Available: http://unity3d.com/ Accessed: 1 January 2013

[20] J. Togelius, M. Preuss, and G. Yannakakis, “Towards multiobjective
procedural map generation,” in Proceedings of the 2010 Workshop on
Procedural Content Generation in Games. ACM, 2010, pp. 1–8.

[21] J. Dormans and S. Bakkes, “Generating missions and spaces for adapt-
able play experiences,” Computational Intelligence and AI in Games,
IEEE Transactions on, vol. 3, no. 3, pp. 216–228, 2011.

[22] C. Green. (2004) Phased Searching with NEAT: Alternating
Between Complexification and Simplification. [Online]. Available:
http://sharpneat.sourceforge.net/phasedsearch.html

[23] M. Pazzani and D. Billsus, “Learning and revising user profiles: The
identification of interesting web sites,” Machine learning, vol. 27, no. 3,
pp. 313–331, 1997.

[24] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. Witten, “The weka data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[25] W. L. Raffe. (2013) PCG: Angry Bots. [Online]. Available:
http://goanna.cs.rmit.edu.au/~wraffe/ExperimentHome.html Accessed:
1 January 2013

[26] C. Cotta and A. J. Fernández-Leiva, “Bio-inspired combinatorial opti-
mization: notes on reactive and proactive interaction,” in Advances in
Computational Intelligence. Springer, 2011, pp. 348–355.

679

Map 3 Map 7 Map 9 Map 15
(a) Player 1

Map 2 Map 6 Map 14 Map 18
(b) Player 2

Map 1 Map 2 Map 5 Map 7
(c) Player 3

(d) Color legend for the content in the maps shown above.

Figure 9. A sample of the maps played by (a) Player 1, (b) Player 2, and (c) Player 3. Each colored square in the map samples indicates a single piece of
content, corresponding to the color legend in (d).

680

