
SEAL'06, Hefei, China 1

Particle Swarm Optimization

A tutorial prepared for SEAL’06

Xiaodong Li, School of Computer Science and 
IT, RMIT University, Melbourne, Australia

An introduction and its recent developments
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Swarm Intelligence
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Swarm Intelligence

Swarm intelligence (SI) is an artificial intelligence technique based 
around the study of collective behavior in decentralized, self-organized 
systems. 

SI systems are typically made up of a population of simple agents 
interacting locally with one another and with their environment. Although 
there is normally no centralized control structure dictating how individual 
agents should behave, local interactions between such agents often lead 
to the emergence of global behavior. Examples of systems like this can 
be found in nature, including ant colonies, bird flocking, animal herding, 
bacteria molding and fish schooling (from Wikipedia).
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Swarm Intelligence

Mind is social…

Human intelligence results from social interaction:
Evaluating, comparing, and imitating one another, learning from experience and 
emulating the successful behaviours of others, people are able to adapt to 
complex environments through the discovery of relatively optimal patterns of 
attitudes, beliefs, and behaviours. (Kennedy & Eberhart, 2001).

Culture and cognition are inseparable consequences of human sociality:
Culture emerges as individuals become more similar through mutual social 
learning. The sweep of culture moves individuals toward more adaptive 
patterns of thought and behaviour.
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Swarm Intelligence

To model human intelligence, we should model individuals in a social 
context, interacting with one another.
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Swarm Intelligence applications
§ Swarm-bots, an EU project led by Marco Dorigo, aimed to study new approaches to 

the design and implementation of self-organizing and self-assembling artifacts
(http://www.swarm-bots.org/).

§ A 1992 paper by M. Anthony Lewis and George A. Bekey discusses the possibility of 
using swarm intelligence to control nanobots within the body for the purpose of killing 
cancer tumors.

§ Artists are using swarm technology 
as a means of creating complex 
interactive environments. 

- Disney's The Lion King was the 
first movie to make use of swarm 
technology (the stampede of the 
bisons scene). 
- The movie "Lord of the Rings" 
has also made use of similar 
technology during battle scenes. 

(Some examples from Wikipedia)
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Novel about swarm

“… Within hours of his arrival at the 
remote testing center, Jack discovers 
his wife's firm has created self-
replicating nanotechnology--a literal 
swarm of microscopic machines. 
Originally meant to serve as a 
military eye in the sky, the swarm 
has now escaped into the 
environment and is seemingly intent 
on killing the scientists trapped in the 
facility.” (Michael Crichton, 2002)  
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Particle Swarm Optimization

Russell EberhartJames Kennedy

The inventors:
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Particle Swarm Optimization

PSO has its roots in Artificial Life and social psychology, as well as 
engineering and computer science.

The particle swarms in some way are closely related to 
cellular automata (CA):

a) individual cell updates are done in parallel 

b) each new cell value depends only on the old values of 
the cell and its neighbours, and 

c) all cells are updated using the same rules (Rucker, 

1999).

Individuals in a particle swarm can be conceptualized as cells in a CA, 
whose states change in many dimensions simultaneously.

Blinker

Glider
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Particle Swarm Optimization

As described by the inventers James 
Kennedy and Russell Eberhart, “particle 
swarm algorithm imitates human (or insects) 
social behavior. Individuals interact with one 
another while learning from their own 
experience, and gradually the population 
members move into better regions of the 
problem space”. 

Why named as “Particle”, not “points”? Both 
Kennedy and Eberhart felt that velocities and 
accelerations are more appropriately applied 
to particles.
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Particle Swarm Optimization
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PSO Precursors

Reynolds (1987)’s simulation Boids – a simple flocking model consists of 
three simple local rules: 

n Collision avoidance: pull away before they crash into one another;

n Velocity matching: try to go about the same speed as their 
neighbours in the flock;

n Flock centering: try to move toward the center of the flock as they 
perceive it.

Heppner (1990) interests in rules 
that enabled large numbers of 
birds to flock synchronously.  

A demo: http://www.red3d.com/cwr/boids/

With just the above 3 rules, Boids show 
very realistic flocking behaviour.
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Its links to Evolutionary Computation

n Both PSO and EC are population based.
n PSO also uses the fitness concept, but, less-fit particles do not 

die. No “survival of the fittest”.
n No evolutionary operators such as crossover and mutation.
n Each particle (candidate solution) is varied according to its past 

experience and relationship with other particles in the 
population.

n Having said the above, there are hybrid PSOs, where some EC 
concepts are adopted, such as selection, mutation, etc.

“In theory at least, individual members of the school can profit from 
the discoveries and previous experience of all other members of 
the school during the search for food. This advantage can become
decisive, outweighing the disadvantages of competition for food 
items, whenever the resource is unpredictably distributed in 
patches” (by Sociobiologist E. O. Wilson)

4/10/2006 15

PSO applications

Problems with continuous, discrete, or mixed search 
space, with multiple local minima.

§ Evolving neural networks:
• Human tumor analysis;
• Computer numerically controlled milling optimization;
• Battery pack state-of-charge estimation;
• Real-time training of neural networks (Diabetes among Pima Indians);
• Servomechanism (time series prediction optimizing a neural network); 

§ Reactive power and voltage control;
§ Ingredient mix optimization;
§ Pressure vessel (design a container of compressed air, with many

constraints);
§ Compression spring (cylindrical compression spring with certain 

mechanical characteristics);
§ Moving Peaks (multiple peaks dynamic environment); and more

PSO can be tailor-designed to deal with specific real-world problems.
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Pseudocode of a basic PSO

Randomly generate an initial population

repeat

for i = 1 to population_size do

if f(  ) < f(  ) then   =   ;       

= min(        );

for d =1 to dimensions do

velocity_update();

position_update();

end

end

until termination criterion is met.
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Parameters
Tendency to explode. 

To prevent it, a parameter Vmax can be used. Basically if the velocity 
value exceeds ±Vmax, it gets reset to ±Vmax accordingly.

Control parameter                            for the d-th dimension, called “acceleration 
constant”: 

§ if it is set too small, the trajectory of a particle falls and rises slowly;

§ As its value is increased, the frequency of the particle oscillating around the 
weighted average of       and      is also increased.   

ddmd 21 ϕϕϕ +=

idp
gdp
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To further control the search, Shi and Eberhart (1998) proposed to use 
an “inertia weight” parameter:

Eberhart and Shi suggested to use the inertia weight which decreasing 

over time, typically from 0.9 to 0.4, with      = 2.0. It has the effect  of 

narrowing the search, gradually changing from an exploratory to an 

exploitative mode.
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Visualizing PSO
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By using the constriction coefficient, the amplitude of the particle’s oscillation 
decreases, resulting in its convergence over time.

Clerc and Kennedy (2000) suggested a more generalized PSO, where 
a constriction coefficient (Type 1’’ coefficient) is applied to both terms of 
the velocity formula. Clerc shows that the constriction PSO can 
converge without using Vmax:

where        is a positive number, often set to 2.05; and the constriction factor      
set 0.7289 (Clerc and Kennedy 2002).

χ2

ϕ
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Fully Informed PSO (FIPS)
The two terms in the constriction PSO are of the same form, hence can be 
condensed to the following (Mendes & Kennedy, 2004):
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This shows that that a particle tends to converge towards a point determined 
by       , which a weighted average of its previous best      and the 
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Essential particle swarm(1)

Kennedy (2006) describes PSO in the following form:

New Position = Current Position +
Persistence +
Social Influence.

If we substitute                             in FIPS, then we have:  1−−= ttt xxv
rrr

Persistence Social influence

Persistence indicates the tendency of a particle to persist in moving in the 
same direction it was moving previously.
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Essential particle swarm(2)
The social influence term can be further expanded:

New Position = Current Position +
Persistence +
Social Central Tendency +
Social Dispersion

Social central tendency can be estimated, for example by taking the 
mean of previous bests relative to the particle’s current position (still 
open-ended questions)

Social dispersion may be estimated by taking the distance of a particle’s 
previous best to any neighbor’s previous best; or by averaging pair-wise 
distances between the particle and some neighbors.

Some distributions such as Gaussian, double-exponential and 
Cauchy were used by Kennedy (2006).
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Bare Bones PSO

What if we drop the velocity term? Is it necessary?

Kennedy (2003) carried out some experiments using a PSO variant, which 
drops the velocity term from the PSO equation.

2/)( gdid pp +
|| gdid pp −

This bare bones PSO produces normally distributed random numbers
around the mean                     (for each dimension d), with the standard 
deviation of the Gaussian distribution being                   .

pi pg

If pi and pg were kept constant, a 
canonical  PSO samples the search 
space following a bell shaped 
distribution centered exactly 
between the pi and pg. 
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Some PSO variants
§ Tribes (Clerc, 2006) – aims to adapt population size, so that it does not have to be 

set by the users;

§ ARPSO (Riget and Vesterstorm, 2002) – uses a diversity measure to alternate 
between 2 phases;

§ Dissipative PSO (Xie, et al., 2002) – increasing randomness; 

§ PSO with self-organized criticality (Lovbjerg and Krink, 2002) – aims to improve 

diversity;

§ Self-organizing Hierachicl PSO (Ratnaweera, et al. 2004);

§ FDR-PSO (Veeramachaneni, et al., 2003) – using nearest neighbour interactions;

§ PSO with mutation (Higashi and Iba, 2003; Stacey, et al., 2004)

§ Cooperative PSO (van den Bergh and Engelbrecht, 2005) – a cooperative 
approach

§ DEPSO (Zhang and Xie, 2003) – aims to combine DE with PSO;

§ CLPSO (Liang, et al., 2006) – incorporate learning from more previous best 
particles.
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Test functions

Note: Demos on some test functions using a PSO.
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Communication topologies (1)

Two most common models: 

§ gbest: each particle is influenced by the best found from the entire swarm.

§ lbest: each particle is influenced only by particles in local neighbourhood.
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Communication topologies (2)

7

6

5

1

3

2

4 Graph of influence of a 
swarm of 7 particles. For 
each arc, the particle origin 
influence (informs) the end 
particle (Clerc, 2006)

This graph of influence can 
be also expanded to include 
previous best positions.
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Communication topologies (3)

Global Island model Fine-grained
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Communication topologies (4)

Which one to use?

Balance between exploration and exploitation…

gbest model propagate information the fastest in the population; while the 
lbest model using a ring structure the slowest. For complex multimodal 
functions, propagating information the fastest might not be desirable. 
However, if this is too slow, then it might incur higher computational cost.

Mendes and Kennedy (2002) found that von Neumann topology (north, 
south, east and west, of each particle placed on a 2 dimensional lattice) 
seems to be an overall winner among many different communication
topologies. 
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Speciation and niching
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Speciation and niching

The definition of a species is still debatable. 

Most researchers believe either the morphological species concept 
(ie., members of a species look alike and can be distinguished from
other species by their appearance), or the biological species concept 
(a species is a group of actually or potentially interbreeding individuals 
who are reproductively isolated from other such groups). Both 
definitions have their weaknesses. 

Biological species concept: a species is a group of actually or 
potentially interbreeding individuals who are reproductively isolated 
from other such groups.
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Speciation and niching

The notion of The notion of speciesspecies::
§§ A population is classified into groups according to their similaA population is classified into groups according to their similarity measured rity measured 

by Euclidean distance.  by Euclidean distance.  

§§ The definition of a species also depends on another parameter The definition of a species also depends on another parameter rrss ,,which which 

denotes the radius measured in Euclidean distance from the centedenotes the radius measured in Euclidean distance from the center of the a r of the a 

species to its boundary.species to its boundary.

§§ Kennedy (2000) proposed a Kennedy (2000) proposed a kk--means clustering technique;means clustering technique;

§§ ParsopoulosParsopoulos and and VrahitisVrahitis (2001) used a stretching function;(2001) used a stretching function;

§§ Brits et al. (2002) proposed a Brits et al. (2002) proposed a NichePSONichePSO;;

§§ Many other Many other nichingniching methods developed for Evolutionary Algorithms, such as methods developed for Evolutionary Algorithms, such as 

Crowding methodCrowding method, , fitnessfitness--sharingsharing, , clearingclearing, etc.  , etc.  

§§ PetrowskiPetrowski (1996) introduced a clearing procedure, and later on Li, et al.(1996) introduced a clearing procedure, and later on Li, et al. (2002) (2002) 

introduced a species conserving genetic algorithm (SCGA) for mulintroduced a species conserving genetic algorithm (SCGA) for multimodal timodal 

optimization.optimization.
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Clustering-based PSO
f

x

Cluster A Cluster B

Cluster A’s center performs better than all members of cluster A, whereas 
cluster B’s center performs better than some and worse than others.
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Speciation-based PSO
f

x

s2

s1

s3

2rs

p

An example of how to determine the species seeds from the population at each 
iteration. s1, s2, and s3 are chosen as the species seeds. Note that p follows s2.
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Speciation-based PSO

Step 1: Generate an initial population with randomly generated particles;

Step 2: Evaluate all particle individuals in the population;

Step 3: Sort all particles in descending order of their fitness values (i.e., from 

the best-fit to least-fit ones);

Step 4: Determine the species seeds for the current population;

Step 5: Assign each species seed identified as the      to all individuals 

identified in the same species;

Step 6: Adjusting particle positions according to the PSO velocity and position 

update equation (1) and (2);

Step 7: Go back to step 2), unless termination condition is met.

gp
r
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Multimodal problems
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Multimodal functions
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Simulation runs

Refer to Li (2004) 
for details.
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Optimization in a dynamic environment

Many real-world optimization problems are dynamic and require 
optimization algorithms capable of adapting to the changing 
optima over time.

In contrast to optimization towards a static optimum, in a dynamic 
environment the goal is to track as closely as possible the dynamically 
changing optima.

E.g., Traffic conditions in a city 
change dynamically and 
continuously. What might be 
regarded as an optimal route at 
one time might not be optimal in 
the next minute.
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Optimization in a dynamic environment

Three peak multimodal environment, before (above left) and after (above 
right) movement of optima. Note that the small peak to the right of the figure 
becomes hidden and that the highest point switches optimum (Parrott and Li, 
2006). 
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Why PSO?

§ With a population of candidate solutions, a PSO algorithm can maintain  
useful information about characteristics of the environment.

§ PSO, as characterized by its fast convergence behaviour,  has an in-built 
ability to adapt to a changing environment.

§ Some early works on PSO have shown that PSO is effective for locating 
and tracking optima in both static and dynamic environments.

Two major issues must be resolved when dealing with dynamic problems: 

§ How to detect that a change in the environment has actually occurred? 
§ How to respond appropriately to the change so that the optima can still be 

tracked?
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Related work
§ Tracking the changing optimum of a unimodal parabolic function (Eberhart

and Shi, 2001).
§ Carlisle and Dozier (2002) used a randomly chosen sentry particle to 

detect if a change has occurred.
§ Hu and Eberhart (2002) proposed to re-evaluate the global best particle 

and a second best particle.
§ Carlisle and Dozier (2002) proposed to re-evaluate all personal bests of all 

particles when a change has been detected.
§ Hu and Eberhart (2002) studied the effects of re-randomizing various 

proportions of the swarm.

electron

neutron

proton

§ Blackwell and Bentley (2002) introduced 
charged swarms. 

§ Blackwell and Branke (2004, 2006) 
proposed an interacting multi-swarm PSO 
(using quantum particles) as a further 
improvement to the charged swarms.
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Set the scope

Assumption: 
Here we assume that changes are only slight in a dynamic environment. It 
would be beneficial to use knowledge about the old environment to help 
search in the new environment.

§ Speciation-based PSO is able to identify peaks and converge onto these 
peaks in parallel and adaptively.

§ It can be further enhanced by other techniques (eg., quantum swarms) to 
better track changing optima.

Many complex scenarios are possible:
§ Small and continuous changes;
§ Large, random and infrequent changes;
§ Large and frequent changes.
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SPSO with quantum particles

|s|

|sq|

In this quantum swarm model, a swarm is made up of neutral (ie., 
conventional and quantum particles. Quantum particles are positioned as a 
cloud centered around the     , providing a constant level of particle diversity 
within a species (Li et al., 2006).

gp
r
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SPSO with quantum particles

a)

b)

dp

dp

dp=0 dp=0

To see if a species has converged, 
we check if the particle diversity, 
dp, of a species is smaller than a 
threshold.

To regain diversity, all particles 
except the species seed in the 
converged species are replaced by 
the same quantity of particles, 
centered around the species seed, 
with 50% as neutral particles and 
the remaining 50% as quantum 
particles.
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Test functions for dynamic optimization

Juergen Branke’s Moving peak test functions - The moving peak benchmark 
(MPB) is widely used in the EC community. A few recent PSO works also 
adopted it (Clerc, 2006; Blackwell and Branke, 2004; Li et al., 2006). For more 
information, refer to:

http://www.aifb.uni-karlsruhe.de/~jbr/MovPeaks/

Morrison and De Jong’s DF1 function generator – one of the early dynamic 
test function generator proposed (Morrison, 2005). A few authors have used it 
(Parrott and Li, 2006).

A few other dynamic test functions have also been proposed in recent years.

A demonstration run of SPSO tracking the global peak in a 10 peaks dynamic 
environment (Moving peaks Scienario2). Refer to (Li, et al. 2006) for details.
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Multiobjective optimization

Many real-world problems involve multiple 
conflicting objectives, which need to be optimized 
simultaneously. The task is to find the best possible 
solutions which still satisfy all objectives and 
constraints. This type of problems is known as 
multiobjective optimization problems.

"The great decisions of human life have as a rule far more to do with the instincts 

and other mysterious unconscious factors than with conscious will and well-

meaning reasonableness. The shoe that fits one person pinches another; there is 

no recipe for living that suits all cases. Each of us carries his own life-form - an 

indeterminable form which cannot be superseded by any other."

Carl Gustav Jung, Modern Man in Search of a Soul, 1933, p. 69
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Multiobjective optimization
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Concept of domination

A solution vector x is said to dominate the other solution vector y if the 
following 2 conditions are true:

§ The solution x is no worse than y in all objectives; 
§ The solution x is strictly better than y in at least one objective.  

f2

f1

(minimize)

(minimize)

0

1

4

5

3

2

Solution 1 and 3 are non-dominated with each other.

Non-dominated front
6

Pareto-optimal front

Solution 6 dominates 2, but not 4 or 5.
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PSO for Multiobjective Optimization

Two major goals in multiobjective optimization:
§ To obtain a set of non-dominated solutions as closely as possible to 

the true Pareto front;
§ To main a well-distributed solution set along the Pareto front.

MOPSO (Coello et al., 2002) – dominance comparison for each particle with its 
personal best; diversity is maintained using a grid-based approach.

Aggregation approaches (Parsopoulos and Vrahatis, 2002) – 3 different aggregation 
functions used.

Fieldsend and Sigh (2002) – use “dominated tree” to store non-dominated solutions.

Dynamic neighbourhood (Hu and Eberhart, 2002, 2003) – One objective optimized at a 
time, later enhanced with an “extended memory”. 

Sigma method (Mostaghim & Teich, 2003) – a method to better choose local guides

Non-dominated Sorting PSO (Li, 2003) – dominance comparison for all particles 
including personal bests; non-dominated sorting is used, similar to NSGA II.

Some earlier PSO models using different techniques:
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Better dominance comparison for PSO

f2

f1

)( 1
t

PF

)(
1

1
+t

XF

)(
1

2
+t

XF

)( 2
t

PF

Dominance relationships among 4 particles, including the personal bests of 
two particles, and their potential offspring, assuming minimization of f1 and f2.
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NSPSO Algorithm
The basic idea:

§ Instead of comparing solely on a particle's personal best with its potential 
offspring, the entire population of N particles' personal bests and N of these 
particles' offspring are first combined to form a temporary population of 2N
particles. After this, domination comparisons among all the 2N individuals in 
this temporary population are carried out. 

§ Sort the entire population in different non-domination levels (as in NSGA II).  
This type of sorting can then be used to introduce the selection bias to the 
individuals in the populations, in favour of individuals closer to the true 
Pareto front. 

§ At each iteration step, we choose only N individuals out of the 2N to the 
next iteration step, based on the non-domination levels, and two niching
methods. 
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Non-dominated Sorting PSO

f2

Front 1

Front 2

Front 3

Front 4

True Pareto-

optimal front 

1

2

1

3

76

5

4

9

8

10

f1

Selection pressure towards the true Pareto-optimal front.
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Niching techniques

f2

f1

A

B

A will be preferred over B, since A has a smaller niche count than B.

Selection pressure
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Selecting better guides

f2

f1

A

B

Particles in the “less-crowded’ area of the non-dominated front is more likely to be 
chosen as        for particles in the population, eg., A is more likely than B. gp

r

…
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Performance metrics

n Diversity of the solutions along the Pareto front in 
the final population:

n Number of non-dominated solutions found;

n Closeness to the true Pareto-optimal front:
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Test functions (ZDT series)

Two objectives are to be minimized:

)).(),(()()(
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=

In all problems except ZDT5, the Pareto-optimal front is formed with g(x) = 1

Note that more scalable test functions, such as the DTLZ functions (with more 
than 2 objectives) were also proposed.
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ZDT series

Note: n= 30 (30 variables); xi in the range [0,1], except 
for ZDT4, where x2- x30 lie in the range [-5, 5].
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Experimental results

NSPSO NSGA II

Non-dominated solutions found for ZDT1.
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Experimental results

NSPSO NSGA II

Non-dominated solutions found for ZDT4.
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Snapshots of a NSPSO run on ZDT4

Step 1 Step 3

Step 15Step 9
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Constraint handling

Non-stationary penalty functions (Parsopoulos and Vrahatis, 2002):
A penalty function is used, and the penalty value is dynamically modified during a 
run. This method is problem dependent, however, its results are generally 
superior to those obtained through stationary functions.

Preservation of feasible solutions (Hu and Eberhart, 2002):

During initialization, all particles are repeatedly initialized until they satisfy all 
constraints; when calculating personal best and global best, only those positions 
in feasible space are counted. 

Based on closeness to the feasible region (Toscano and Coello, 2004):

If both particles compared are infeasible, then the particle that has the lowest 
value in its total violation of constraints wins.

The most common approach for solving constrained problems is the use of a 
penalty function. The constrained problem is transformed into an unconstrained 
one, by penalizing the constraints and creating a single objective function.

Please see A/Prof. Ponnuthurai Suganthan’s tutorial for further information on 
PSO for constraint handling.
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More information
Particle Swarm Central: http://www.particleswarm.info

Visitors’ hits since 12 June 2006 (updated daily).
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