
A Survey of Procedural Terrain Generation
Techniques using Evolutionary Algorithms

William L. Raffe, Fabio Zambetta, and Xiaodong Li
School of Computer Science and Information Technology

RMIT University
Melbourne 3001, Australia

Email: {william.raffe, fabio.zambetta, xiaodong.li}@rmit.edu.au

Abstract—This paper provides a review of existing approaches
to using evolutionary algorithms (EA) during procedural terrain
generation (PTG) processes in video games. A reliable PTG
algorithm would allow game maps to be created partially or
completely autonomously, reducing the development cost of a
game and providing players with more content. Specifically,
the use of EA raises possibilities of more control over the
terrain generation process, as well as the ability to tailor maps
for individual users. In this paper we outline the prominent
algorithms that use EA in terrain generation, describing their
individual advantages and disadvantages. This is followed by
a comparison of the core features of these approaches and an
analysis of their appropriateness for generating game terrain.
This survey concludes with open challenges for future research.

I. INTRODUCTION

Procedural terrain generation (PTG) has been successfully
applied in many fields and has enjoyed ongoing research by
both industry leaders and academics for almost three decades
[1]. Most existing research has been devoted to creating vast
sprawling landscapes that are typically too large and too
detailed to be created manually. These methods have been
improved in recent years and powerful commercial tools, such
as Terragen (Planetside Software), are capable of producing
renderings of detailed terrain that resemble professional pho-
tographs of landscape.

One of the most prominent applications for the Procedural
Terrain Generation is for use in video games [2]. To cater to
players who enjoy a wide variety of experiences and exploring
new environments, game developers can use PTG techniques
to provide players with large terrains to play on, as can be
seen in games such as Worms 2 (Team17, 1997), Civilization
V (Firaxis Games, 2010), Minecraft (Markus Perrson, 2009).
Alternatively, a PTG system can also be used as a creative aid
for designers or to simply streamline the map creation process
by providing a base terrain for developers to work with, as in
the game Darwinia (Inversion Software, 2005).

One of the oldest and most common PTG techniques is that
of Fractal Subdivision [3] in which the resolution of a terrain is
recursively increased and the height of each new point on the
terrain is adjusted. A typical fractal terrain is shown in Figure
1. These fractal techniques have catalyzed research interest
over many years as much as terrain simulation techniques (e.g.
Erosion Simulation [4]). However, both of these techniques
provide little control over the generation process, such as

Figure 1. A terrain generated through a fractal subdivision method

the layout of terrain features (mountains, valleys, cliffs, etc.),
and in recent years there has been a push towards techniques
with increased control. This has predominantly been achieved
by increasing the number of parameters in the generative
algorithm [5], [6], by allowing the user to provide a basic
sketch of feature layout [7], [8], or by allowing users to quickly
paint on height values [9].

More recent techniques have used Evolutionary Algorithms
(EA) to drive the terrain generation process. These techniques
fall into the broader field of Search-Based Procedural Content
Generation (SBPCG), in which search algorithms (primarily
EA) are used to procedurally generate a wide variety of game
content. An introduction to SBPCG and a taxonomy of some
approaches can be found in [10], [11]. While other techniques,
such as fractals, are well established, their random output and
the style of terrain generated means that there are few game
types that can utilize them. By using EA, more control can
be exerted over the generation process, allowing developers
to get more desirable results or for maps to be automatically
generated to meet player preferences, as was recently done in
the procedural generation of virtual race tracks [12].

The rest of this paper is organized as follows: in Section II
we first state requirements for terrain to be useful in games
followed by summaries of six algorithms that use EA in
PTG, along with advantages and disadvantages of each of the
approaches. In Section III we provide more direct comparisons
between the different algorithms, starting in Section III-A with
an analysis of visual results and then in Section III-B with a

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence 
June, 10-15, 2012 - Brisbane, Australia IEEE CEC

2090



PTG

MeshVoxel
Height-

map

ErosionFractal Evolved
Terrain

SBPCG

SBPCG
using EA

EA

Figure 2. Relationship between the fields of PTG, SBPCG, and EA.

comparison of features and capabilities. Finally, in Section IV
we state some areas for improvement within this growing field.

II. EVOLUTIONARY APPROACHES TO TERRAIN
GENERATION

The use of evolutionary techniques for PTG is an emerging
field, with the first research on this topic being carried out only
few years ago and only a handful of approaches attempted
since. Figure 2 shows the relationship between the fields
of PTG and evolutionary algorithms and shows how the
techniques in this section relate to other techniques in PTG.
It should be noted that all of the papers reviewed in this
section use height-maps, which represent the terrain as a two
dimensional array of height values and can be rendered as
a mesh. Height-maps are popular due to their computational
efficiency and their ease of use in complex algorithms. The
use of EA in terrain generation is not limited to using height-
maps but, to the best of our knowledge, there are no existing
techniques that use other terrain representations, such as voxels
or triangulated irregular networks.

In this section we first outline some basic requirements for
terrain to be useful in games that will be used extensively
when analyzing the different approaches to be reviewed. This
is followed by description of known techniques that use EA
during a PTG process.

A. Requirements for Terrain in Games

The genre of the game that a piece of virtual terrain is to
be used in will dictate the terrain features. Olsen [13] outlines
and describes some requirements in order for a PTG technique
to be useful in the Real Time Strategy genre. Primarily, Olsen
states that the terrain must contain enough flat areas for game
characters to move on realistically, as well as having a high
connectivity such that players can traverse as much of the
map as possible. However, the terrain also needs hills, cliffs,
valleys and other features to promote strategic game-play and
to make maps visually appealing. Though those criteria are
true for many game genres, each genre will still have their own
requirements for scale and feature arrangement. For example, a
First Person Shooter game, e.g. Call of Duty: Modern Warfare
3 (Infinity Ward, 2011), will typically have small scale maps,

containing high densities of terrain features and virtual objects
to impede line of sight, while Role Playing Games, e.g. The
Elder Scrolls V: Skyrim (Bathesda Game Studios, 2011), typ-
ically have large environments with dispersed townships, thus
encouraging exploration of an expansive world. Further more,
some game genres, such as Flight Simulators, have no need for
the same requirements of traversability but rather require the
terrain to appear realistic from an aerial perspective. However,
as these types of terrain can be generated well by existing
fractal algorithms, in this paper we focus on games that have
similar terrain requirements as those laid out by Olsen [13].

B. Algorithm Summaries

In this section, descriptions of six approaches to applying
EA to PTG are provided, along with general advantages and
disadvantages of each. To the best of our knowledge, these
six algorithms are the only publications in this field and each
group of authors attempts to use EA in PTG in different ways,
thus highlighting the infancy and the potential for growth in
this field. As not all of the resulting system have been given
titles, we label each approach by the authors’ names.

1) Ong et al. [14][15]: The first known proposal of using
EA in PTG was put forth by Ong et al. [14] and their
work culminated in a terrain generation program called Ter-
rainosaurus, implemented by Saunders [15]. Their algorithm
consists of two phases: the first is to generate a 2D outline
of the terrain by distorting a user-provided sketch of the
terrain boundaries. The second phase constructs the height-
map, with the initial population being created from sample
height-map data provided by the user. In order to manipulate
the terrain, numerous control points are selected on the surface
of the terrain. The genotype representation here is a list of
operators for each control point, such as raising, lowering,
and rotating the point. These control points also have an
area of influence around them, thus the operators will affect
surrounding vertices of the height-map to a lesser degree.
One-point crossover is used, whereby parents exchange parts
of their operator lists. For the fitness function in this phase,
the authors recommend measuring how similar the resulting
terrain is to the sample terrains provided by the user, thus
enforcing the behavior of candidate solutions resembling the
initial population.

Advantages and Disadvantages: The Terrainosaurus algo-
rithm is useful for making a family of similar terrains. Thus,
if an existing database of game maps for a specific genre can
be acquired then they can be used as sample terrains and this
would be an effective way to ensure that the maps that are
generated meet the requirements of the genre. It can also be
used after the game is released to provide slight variations to
map layouts. This is beneficial in genres such as multiplayer
first person shooters where exploration of new maps is not
desirable and players prefer to learn maps in-depth and develop
strategies. Thus, slight variations to a map would require
a player to alter their strategies without requiring them to
explore an entirely new map. However, this advantage can also

2091



be a disadvantage if no appropriate samples can be provided,
as it would be unlikely that a suitable terrain will be generated.

2) Ashlock et al. [16]: Ashlock et al. apply EA to L-
systems in order to generate fractal style terrains [16]. They
use an L-System that expands in two dimensions such that if
each symbol is translated into a square then an even grid of
vertices for a height-map is produced. A displacement value
is assigned to each symbol in the L-System grammar so that
when an expansion occurs, the new vertices are given height
values that are modified by the displacement values of the
symbols that they border. The authors use EA to find an
appropriate set of replacement rules and displacement values.
Two genotype representations are used; the first is a string of
replacement rules for all of the symbols in the grammar and
the second is a list of height displacement values, again one for
each symbol. A two-point crossover method is used for both
genotypes and the fitness function used in this algorithm is a
comparison to a target terrain provided by the user, measuring
the difference in height of each height-map vertex between a
candidate and the target.

Advantages and Disadvantages: The results provided by
Ashlock et al. show that an L-System can be effective at
generating fractal style terrains and in later papers these results
are improved further. However, the disadvantage, in respect to
this algorithm being used in games, is that it is not known
whether this algorithm can produce terrains that differ from
typical fractal terrains and that do not exhibit the symmetrical
qualities that are shown in results provided by Ashlock et al.
This L-System approach also suffers from the same problem
as Ong et al. where if an appropriate target terrain cannot
be provided then the system cannot perform well and even
if a target terrain is available, all resulting candidates will be
closely related and the solution space will not be explored.

3) Walsh and Gade [17][18]: In their approach, Walsh
and Gade use EA to automatically adjust parameter values
of a terrain generator [17] . The terrain parameters that are
evaluated include feature scale, feature spikiness, and water
level, as well as some atmospheric features, namely sun angle
and cloud coverage. It should be noted that this approach
does not generate an entirely new terrain; rather it adjusts the
features of an existing one. The genotype representation in
Walsh and Gade’s approach is a group of parameter values,
each being an 8 bit string. Mutation is in the form of flipping
a single bit in one or more of the strings, while one-point
crossover is used to swap segments of two parents’ bit strings
for one parameter. An interactive EA is used in which the
fitness is judged purely by the user. A tournament selection
process is then used to decide which members of the current
generation will be the parents of the next, giving a higher
probability of selection to candidates the user has chosen.
Walsh and Gade primarily use crossover operations, allowing
for fast convergence towards a desirable terrain. Walsh and
Gade have recently investigated a fitness function for their
approach that uses a measurement based on the ratio between
order and complexity of an image of a candidate terrain to
judge the aesthetic qualities of the terrain [18].

Advantages and Disadvantages: The current implementa-
tion of Walsh and Gade’s algorithm has limited applicability
to games. This is because adjusting parameters such as atmo-
spheric effects may provide a visual variety for player but will
probably have very little impact on the entertainment value of a
game map and may actually distract the player. Also, adjusting
parameters such as feature scale require a pre-designed map
to be available and the parameters used by the authors may
not provide much variety in strategic game-play or player
exploration. However, Walsh and Gade’s idea of applying EA
to parametrically controlled procedural generation techniques
holds a lot of potential if a suitable PTG is used. For example,
EA could be applied to work by Kamal and Uddin [5], who
present a parameter controlled fractal generation method, or
Doran and Parberry [6], who use highly parametrized cellular
automata to generate island terrain.

4) Frade et al. [19][20][21][22]: Frade et al. used genetic
programming to create height functions in an algorithm they
named GenTP [19]. A height function is an equation that is
applied to the value of each vertex in an existing height-map
to produce a new height-map. The genotype representation in
this approach is a tree of operators and is evolved by adding,
removing, or substituting operators through genetic program-
ming. The operators can be any basic numerical operator,
trigonometric function, or custom made terminal function. The
terminal functions create a base height-map for the rest of the
height function to operate on and in early works by Frade et
al. [19] these were stochastic noise algorithms that provided
different base height-maps with every call. However, in later
work [20] the terminal functions were changed to repeatable
number sequence generators that would allow for multiple
calls to the same height function to result in the same terrain.
The authors initially use an interactive evolution approach,
however their later work investigates two fitness functions to
generate terrain for use in games. The first was an Accessibility
measurement [20] which favored candidate terrains that have
large quantities of flat terrain for the player to traverse and
for separated areas of flat terrain to have at least one path
between them. The authors later introduced the Obstacle Edge
Length measurement [21], which would ensure that there were
obstacles in the terrain for the player to navigate around.

Advantages and Disadvantages: The advantages of the
GenTP algorithm is that the use of three different types of
mutation (adding, removing, and substituting segments of the
operator trees) leads to a good exploration of the solution
space while also doing well to prevent the height function
from becoming too long. In earlier works [19], it was possible
to generate a family of similar terrains through multiple calls
to the same height function. Also, the generated terrains were
visually intriguing and possibly useful as a development aid
for level designers. However, these earlier results do not have
much flat and connected terrain, limiting the genre they are
applicable to. Meanwhile, terrains that are generated through
the use of the two fitness functions allow for players to traverse
much of the map and the authors have used this approach in the
development of the game Chapas [22]. However, many of the

2092



results provided are overly flat and exhibit fairly predictable
patterns, which also limits their applicability to many game
genres.

5) Togelius et al. [23]: The creation of terrain for use
in video game can be seen as an inherently multi-objective
problem, balancing between interesting games and fair games.
Thus, Togelius et al. propose the use of a Multi-Objective
Evolutionary Algorithm (MOEA) in the creation of maps for
Real-Time Strategy (RTS) games [23]. In their algorithm,
Togelius et al. create terrain as a sub-component of the
overall goal of generating a complete and playable game map,
which also includes the placement of game-play elements and
objectives. To generate the terrain itself, Togelius et al. use
a flat height-map from which mountain peaks are raised out
of and ridges are constructed along Gaussian curves. The
genotype for the terrain is represented by five values: two for
the standard deviations of the Gaussian distribution, two for x
and y coordinates of the mountain peak and one that adjusts
the height of the mountain. Multiple fitness functions are used
that attempt to promote balanced game-play by favoring maps
with dispersed placement of player bases, equal access to
resources from each player, and that have traversable paths
between bases. For the genetic operators, the authors use
probability based mutation and simulated binary crossover
(SBX), which suggests that childrens’ genetic strings closely
resemble one parent or the other.

Advantages and Disadvantages: Initial results from Togelius
et al. show promise in the generation of complete maps
for RTS games and the authors have successfully applied
this approach to the well known game StarCraft (Blizzard
Entertainment, 1998) where terrain features are represented
by two dimensional textures of water and rock rather than
raised and lowered height-map data [24]. However, compared
to many of the other algorithms demonstrated in this paper,
the terrain that is produced in their initial algorithm that uses
height-maps contains only basic detail, due to the genotype
representation restricting the style of features to soft and
rounded looking peaks.

6) Raffe et al. [25]: Recently, Raffe et al. applied EA in
generating terrain that is constructed of patches of smaller
terrain height-maps [25]. In their algorithm, sample terrains
are decomposed into smaller, uniform sized patches, which
can then be recombined to make new candidate terrains. The
genotype representation in the approach by Raffe et al. is a two
dimensional array of patch identification numbers. A uniform
crossover mechanism is used where a child duplicates one of
the parent’s genetic structure and then each patch is given a
probability of being switched for the patch in the same position
on the other parent. Mutation is similar, giving each patch a
probability of being switched with a randomly chosen patch.
For fitness evaluation, Raffe et al. use a two-leveled interactive
evolution mechanism in which the user first selects parents and
then selects which patches in those parents they would like to
exclude from genetic operations.

Advantages and Disadvantages: The results provided by
Raffe et al. [25] show how by combining multiple runs

of their algorithm with different parameter settings, a user
with little experience can create terrain similar to a map
from the game Halo (Bungie, 2001). This is aided by the
Two-Level interactive evolution system that retains desirable
features in a parent and focuses mutation onto undesirable
features. However, due to the patches being extracted from
user provided sample terrains, the exploration of the solution
space of possible terrains would be limited by the patches
that are available for use. Also, due to the uniform grid based
patching approach, some features, such as the triangular shape
of a peninsula, can be difficult to achieve, especially if the
feature isn’t present in any of the sample terrains. This is
primarily due to the square shape of the patches and can only
be overcome by using smaller patch sizes.

III. DISCUSSION

A. Visual Comparisons

Figure 3 shows visual results of five out the six primary
approaches that have been reviewed. Note that each author has
used a different rendering algorithm and so when comparing
these figures to each other we should exclude texturing or
lighting effects and focus on the shape and distribution of
terrain features.

Figure 3a shows the results produced by the Terrainosaurus
program by Saunders [15], which is improved upon earlier
work with Ong et al. [14]. The terrain is divided into three
areas, each with a different terrain type that has been generated
using different sample terrains. The terrain that is produced
relies on the sample terrains provided to the program and
here the authors have used low resolution satellite imagery,
resulting in soft terrain features. Terrain is smoothed even
more by the way in which the circular area of effect around
the genetically modified control points are raised or lowered.

Unfortunately, no figure could be acquired from the work
of Ashlock et al. on evolvable L-systems for terrain generation
[16]. However, because their approach is similar to a fractal
approach, Figure 1 can be seen as an approximation of their
results, with one of the primary differences being that the
author’s focus on terrains with a dominant single feature in
the middle of the map. For more accurate results, please see
[16].

Figure 3b shows two terrains produced by Walsh and Gade’s
algorithm [17]. These two terrains are from the same base
terrain but have visibly different feature height, feature noise,
and sun angle parameter settings. This image shows how the
parameters chosen by Walsh and Gade lead to aesthetically
different terrain but would not result in many differences in
game-play.

Figure 3c and 3d are from the works of Frade et al. Figure
3c is from their earlier work that uses interactive evolution
[19] and shows that, while the terrain is visually appealing it
would be difficult to incorporate into a game without designer
intervention. Figure 3d is from Frade et al. later work with
the obstacle length and accessibility fitness functions [21][20]
and shows how the terrain is much more useful for many game
genres due to the increased quantity of playable surfaces. but

2093



also how it may suffer from overfitting the fitness function and
resulting in flat, featureless terrain.

Figure 3e shows a game map by Togelius et al. [23]. The
map contains not only terrain features but also circular markers
indicating game-play assets such as resources and player bases.
This map is immediately playable and the map layout has
been optimized to provide a balanced game for all players of
a Real-Time Strategy game. However, this figure also shows
how the terrain features are limited to softly rounded hills and
mountains.

Finally, figure 3f was produced through multiple runs of
the program created by Raffe et al. [25]. Their algorithm is
capable of a variety of terrain features, from steep cliffs, rolling
hills, and smooth playable surfaces. However, the approach is
dependent on what terrain patches are provided to the system
and struggles to produces sharp angled edges such as the cliff
peninsula on the left side of the image.

B. Feature Comparisons

Table I provides a condensed summary of the approaches
reviewed in this survey. As there is no standardized metric for
evaluating these types of PTG algorithms, the results in Table
I are stated through our own opinions, with explanations and
justifications given in this section. No time efficiency values
are provided in this table because not all of the published
papers provide reliable performance test data.

The columns of Table I list the capabilities by which the ap-
proaches are compared. The first two columns list the approach
and a synopsis of the fitness function used. The Refinement
column indicates whether an algorithm is good at creating
a family of similar terrains (exploiting the solution space),
while the Variety column evaluates how well an algorithm can
generate substantially different terrains (exploring the solution
space). The column labeled Control refers to how well the
system can be steered by user criteria. In other words, we
examine how easy it is for a user to get a desirable result
from the system, especially with regards to the arrangment
of terrain features. In the Game Integration column we give a
judgment on how easy it would be to incorporate the approach,
as they exist now, into a game. This is then followed by the
Ideal Use field that states what applications each approach
would be most suited for in interactive media.

The most suitable approaches for Refinement of terrains are
those by Ong et al., Walsh and Gade, Togelius et al., and Raffe
et al. The approach by Ong et al. [14] is seeded by the sample
terrains, with mutations only being the raising and lowering of
selected points on the height-map, while the fitness functions
used encourage candidate terrains that do not diverge much
from the samples. The parameter-based technique by Walsh
and Gade [17] is also seeded by an initial terrain and narrows
the refinement of the terrain to feature scale, rigidity, and water
level, none of which affect the overall shape of a terrain. The
use of SBX crossover means that the technique by Togelius
et al. [23] favors slight changes in candidate terrains from
one generation to the next. Meanwhile, the two-level parent
selection mechanism used by Raffe et al. [25], coupled with

the patch size parameter, allows for the user to specify small
individual patches of terrain to be mutated. Both the technique
by Frade et al. [19] and the L-system algorithm by Ashlock et
al. [16] do not perform as well in Refinement because, while
they are good at generating families of similar terrains, it is
not feasible to make minor alterations to an existing terrain.

Not many of the techniques perform well for Exploration
of the solution space. The best techniques for this are the
early approaches by Frade et al. in which the near infinite
combinations of function operators can result in some highly
varied terrains. However, this benefit appears to be reduced in
later works as the candidate terrains become more flat. Both
the technique by Togelius et al. and that of Raffe et al. allow
for good exploration of their individual solution space but are
limited in exploring the overall solution space due to their
genotype representation restricting the types of terrain features
that can be produced. The approaches by Ong et al., Walsh
and Gade, and Ashlock et al. all use an idealized terrain, either
for seeding or to drive the fitness function, and are therefore
limited in their ability to deviate from that style of terrain.

The algorithms presented by Walsh and Gade and by Raffe
et al. score the highest in the area of Control. This is primarily
due to their use of interactive evolution that gives the user full
control over the feature layout or appearance in the respective
genotype spaces. Ong et al. and Ashlock et al. use a fitness
function that compares candidate terrains to a target terrain
and thus if a target terrain exists a user can generate a suitable
feature layout. However, as mentioned before, if a target terrain
cannot be provided, the user’s ability to generate a suitable
terrain is limited. The early approaches by Frade et al. also
use interactive evolution, however, a small mutation in the
genotype height function can result in extensive changes to
the phenotype terrain, which means it can be quite difficult
for a user to start a run with a desired goal in mind and for
them to achieve it. On the other hand, the technique from
Togelius et al. evolves towards terrains that provide specific
game-play but precise control over terrain features is limited.

When analyzing the feasibility of integrating these ap-
proaches into games, it is important to recognize that Frade
et al. and Togelius et al. are in fact the only authors to have
their terrains tested in an actual game. The difference between
these approaches however is that Frade et al. only generate
the terrain, requiring a designer to populate the world with
virtual objects, while Togelius et al. include the placement
of game-play objectives as part of the map generation process
and thus require very little intervention from a designer before
being used in a game. It has been shown that the patch-based
approach by Raffe et al. is capable of generating terrain similar
to that used in commercial games, however these terrains have
not been tested in an actual game and the use of interactive
evolution requires designer interaction. While we can imagine
ways that systems by Ong et al., Ashlock et al., and Walsh
and Gade can be extended for use in games, no research has
yet been conducted to show the feasibility of this.

The Ideal Use column does not indicate the original authors’
intention for the use of their algorithm but rather how we feel

2094



(a) Ong et al. and Saunders [15] (b) Walsh and Gade [17]

(c) Frade et al. [19] (d) Frade et al. [21]

(e) Togelius et al. [23] (f) Raffe et al. [25]

Figure 3. Visual results from five of the reviewed papers. All images used with permission from the respective authors.

it can be used in relation to games and other interactive media.
The technique by Togelius et al. is currently the most suitable
for use in games due to a focus on the real-time strategy genre
of games. Both the height function and patch-based techniques
by Frade et al. and Raffe et al. are targeted at being used in
games, however both techniques would benefit from a genre
focus so that the algorithm, primarily the fitness evaluation
method, can be designed to make maps for certain types of
games. Finally, the approaches used by Ong et al., Ashlock et
al., and Walsh and Gade create large terrains that may only

be suitable for genres such as flight simulators, however it
is currently acceptable in these types of games to use basic
fractal terrain generation methods.

IV. OPEN CHALLENGES

Through the analysis of the existing techniques we were
able to identify future challenges for the field of PTG using
EA. Three of these challenges are to:

• Develop a genotype representation that can explore much
of the solution space for a chosen game genre.

2095



Table I
ALGORITHM COMPARISON

Approach Fitness Evaluation Refinement Variety Control Game Integration Ideal Use
Ong et al. [14], [15] Compared to example ter-

rains.
High Low Medium Low Simulated natural terrain. Could be

used in games such as flight sim-
ulators that need large, natural ter-
rain.

Ashlock et al. [16], [26] Compared to idealized ter-
rain.

Medium Low Medium Low Where single feauture terrains and
fractal terrains are applicable. Sim-
ulation applications.

Walsh and Gade [17] Interactive evolution. High Low High Low Evolutionary art where a single
screen capture is more desirable
then a playable game.

Frade et al. [27] - [22] Interactive evolution. Ac-
cessibility metric. Obsta-
cle length metric.

Medium High Low Medium Early approaches for evolutionary
art or games with eccentric terrain.
Later appraoches for games that
require prodominately flat terrain.

Togelius et al. [23], [24] Multiobjective evolution
for base and resource
distances and asymmetry
of terrain.

High Medium Low High Real-time strategy games that use
player bases and collectable re-
sources.

Raffe et al. [25] Two-leveled interactive
evolution.

High Medium High Medium As a development aid for game
maps of all sizes.

• Further investigate fitness evaluation methods for PTG,
with more emphasis placed on techniques that evaluate
the map based on how the player interacts with it.

• Investigate metrics to allow for direct comparisons
between PTG techniques.

All of the techniques mentioned in this survey paper have
very different genotype representations. As of the writing of
this paper, none of these genotype representations have yet
been proven to be substantially better than the others; they
each come with their own advantages and disadvantages and
no technique has yet shown to be reliable enough to be used in
commercial games. For a representation to be useful to game
developers it should be able to generate a variety of terrains,
at least within the same game genre, and also allow for small,
controlled changes to be made to terrains. Having both of these
features would allow players to experience entirely new maps
as well as refined or slightly modified version of their favorite
maps. With no existing techniques being able to achieve this
delicate balance of features yet, the primary challenge in
coming years will be to find a suitably powerful genotype
representation and we expect to see the emergence of new
approaches as well as improvements to existing ones.

Another important challenge is to find an appropriate fitness
evaluation method. Nearly half of the approaches mentioned in
this survey have used interactive evolution in early prototypes.
However, the uses for such a system are limited to devel-
opment aids and we believe that the future of this field lies
within automating the fitness evaluation process. Togelius et
al. [11] describe three categories of automated fitness evalua-
tion methods for Search-based Procedural Content Generation
(SBPCG). From these three categories we believe that the most
useful for PTG algorithms would be a combination of a Direct
fitness function that measure the terrain itself on an appropriate

metric, as can be seen with the accessibility measure used by
Frade et al., and Interactive fitness functions that utilizes data
on how a player interacts with the terrain when it is used in a
game. The combination of these two types of fitness measures
should ensure that maps are playable and, once they have been
evaluated in a game, evolve towards being more entertaining
for players.

A major limitation of all PTG research is a lack of solid
metrics to analyse the performance of individual algorithms.
The most common methods for reporting PTG research is to
present visual results, which are influenced by the rendering
technique used, and time performance results. Smith and
Whitehead have suggested the use of an Expressive Range
metric for two dimensional level generators [28]. In this
approach, an algorithm is tested to see how much of a two
dimensional solution space can be generated and how often
each area of the solution space is likely to be visited. The
solution space here is defined by two or more custom metrics,
for example the amount of flat area on a terrain and the
connectivity of the terrain, and is independent of the fitness
measures used. Thus, if appropriate metrics can be found, the
Expressive Range technique can be used for PTG algorithms
and may even be extended for use with many Search-based
Procedural Content Generation algorithms.

V. CONCLUSION

Evolutionary algorithms (EA) can add control to the process
of procedural generation of terrain (PTG), providing an alter-
native to the typically stochastic traditional approaches. This
allows for not only a wide variety of terrains to be generated
but also for families of similar terrains to be created and
refined. Many PTG techniques for creating game maps aim at
automating the terrain generation process to provide players
a wide range of maps to play on. EA techniques have been
applied to the generation of other game content with success

2096



and have demonstrated how they can be used to tailor content
to individual players and thus its use in PTG should be further
investigated.

There are currently six known approaches to using EA in
PTG, each one with its own advantages and disadvantages.
While none of these approaches has yet been able to generate
suitable terrain for use in games, each of them provides new
ideas and highlights new challenges to overcome. The main
challenge facing this body of research is to find a robust
genotype representation, capable of working well with an
EA and also of being translated into a detailed terrain. The
second most important challenge is to find a fitness evaluation
method, focused on the use of generating terrain for games.
Finally, further investigation will need to be undertaken into
metrics that can be used by authors to better evaluate their
PTG algorithms.

ACKNOWLEDGMENT

The authors would like to thank R. Saunders, P. Walsh, M.
Frade, and J. Togelius for their permission to use figures from
their respective papers.

REFERENCES

[1] R. Smelik, K. de Kraker, S. Groenewegen, T. Tutenel, and R. Bidarra, “A
Survey of procedural methods for terrain modelling,” in Proceedings of
the CASA Workshop on 3D Advanced Media In Gaming And Simulation
(3AMIGAS), 2009.

[2] A. Doull. (2008) Death of the Level Designer: Proce-
dural Content Generation in Games. ASCII Dreams. [On-
line]. Available: http://roguelikedeveloper.blogspot.com/2008/01/death-
of-level-designer-procedural.html

[3] A. Fournier, D. Fussell, and L. Carpenter, “Computer rendering of
stochastic models,” Communications of the ACM, vol. 25, no. 6, pp.
371–384, 1982.

[4] F. Musgrave, C. Kolb, and R. Mace, “The synthesis and rendering of
eroded fractal terrains,” in Proceedings of the 16th annual conference
on Computer graphics and interactive techniques. ACM, 1989, pp.
41–50.

[5] K. Kamal and Y. Uddin, “Parametrically controlled terrain generation,”
in Proceedings of the 5th international conference on Computer graphics
and interactive techniques in Australia and Southeast Asia. ACM, 2007,
p. 23.

[6] J. Doran and I. Parberry, “Controlled procedural terrain generation using
software agents,” Computational Intelligence and AI in Games, IEEE
Transactions on, vol. 2, no. 2, pp. 111–119, 2010.

[7] H. Zhou, J. Sun, G. Turk, and J. Rehg, “Terrain synthesis from digital
elevation models,” IEEE Transactions on Visualization and Computer
Graphics, pp. 834–848, 2007.

[8] H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, and E. Galin, “Feature
based terrain generation using diffusion equation,” in Computer Graph-
ics Forum, vol. 29, no. 7. Wiley Online Library, 2010, pp. 2179–2186.

[9] G. de Carpentier and R. Bidarra, “Interactive GPU-based procedural
heightfield brushes,” in Proceedings of the 4th International Conference
on Foundations of Digital Games. ACM, 2009, pp. 55–62.

[10] J. Togelius, G. Yannakakis, K. Stanley, and C. Browne, “Search-based
procedural content generation,” Applications of Evolutionary Computa-
tion, pp. 141–150, 2010.

[11] ——, “Search-based Procedural Content Generation: A Taxonomy and
Survey,” Computational Intelligence and AI in Games, IEEE Transac-
tions on, no. 99, pp. 1–1, 2011.

[12] J. Togelius, R. De Nardi, and S. Lucas, “Towards automatic personalised
content creation for racing games,” in IEEE Symposium on Computa-
tional Intelligence and Games (CIG). IEEE, 2007, pp. 252–259.

[13] J. Olsen, “Realtime procedural terrain generation,” Department of
Mathematics And Computer Science (IMADA) University of Southern
Denmark, 2004.

[14] T. Ong, R. Saunders, J. Keyser, and J. Leggett, “Terrain generation using
genetic algorithms,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2005, pp. 1463–1470.

[15] R. Saunders, “Realistic terrain synthesis using genetic algorithms,” Ph.D.
dissertation, Citeseer, 2006.

[16] D. Ashlock, S. Gent, and K. Bryden, “Evolution of l-systems for
compact virtual landscape generation,” in Evolutionary Computation,
2005. The 2005 IEEE Congress on, vol. 3. IEEE, 2005, pp. 2760–
2767.

[17] P. Walsh and P. Gade, “Terrain generation using an Interactive Genetic
Algorithm,” in Evolutionary Computation (CEC), 2010 IEEE Congress
on. IEEE, 2010, pp. 1–7.

[18] ——, “The use of an aesthetic measure for the evolution of fractal
landscapes,” in Evolutionary Computation (CEC), 2011 IEEE Congress
on. IEEE, 2011, pp. 1613–1619.

[19] M. Frade, F. F. de Vega, and C. Cotta, “Breeding terrains with genetic
terrain programming: the evolution of terrain generators,” International
Journal of Computer Games Technology, 2009.

[20] ——, “Evolution of artificial terrains for video games based on acces-
sibility,” Proceedings of the European Conference on Applications of
Evolutionary Computation, vol. 6024, pp. 90–99, 2010.

[21] M. Frade, F. de Vega, and C. Cotta, “Evolution of artificial terrains
for video games based on obstacles edge length,” in Evolutionary
Computation (CEC), 2010 IEEE Congress on. IEEE, 2010, pp. 1–
8.

[22] M. Frade, F. F. de Vega, and C. Cotta, “Development of Chapas an open
source video game with genetic terrain programming,” in VII Congreso
Espanol sobre Metaheuristicas, Algoritmos Evolutivos y Bioinspirados
(MAEB), 2010.

[23] J. Togelius, M. Preuss, and G. Yannakakis, “Towards multiobjective
procedural map generation,” in Proceedings of the 2010 Workshop on
Procedural Content Generation in Games. ACM, 2010, pp. 1–8.

[24] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelback, and
G. Yannakakis, “Multiobjective exploration of the starcraft map space,”
in Computational Intelligence and Games (CIG), 2010 IEEE Symposium
on. IEEE, 2010, pp. 265–272.

[25] W. Raffe, F. Zambetta, and X. Li, “Evolving patch-based terrains for
use in video games,” in Proceedings of the 13th annual conference on
Genetic and evolutionary computation. ACM, 2011, pp. 363–370.

[26] D. Ashlock, S. Gent, and K. Bryden, “Embryogenesis of artificial
landscapes,” Design by Evolution, pp. 203–221, 2008.

[27] M. Frade, F. F. de Vega, and C. Cotta, “Modelling video games’
landscapes by means of genetic terrain programming: a new approach
for improving users’ experience,” in Proceedings of the 2008 conference
on Applications of evolutionary computing. Springer-Verlag, 2008, pp.
485–490.

[28] G. Smith and J. Whitehead, “Analyzing the expressive range of a level
generator,” in Proceedings of the 2010 Workshop on Procedural Content
Generation in Games. ACM, 2010, p. 4.

2097




