
Decomposing Large-Scale Capacitated Arc Routing
Problems using a Random Route Grouping Method

Yi Mei
School of Computer Science

and Information Technology

RMIT University

Melbourne, Victoria 3000, Australia

Email: yi.mei@rmit.edu.au

Xiaodong Li
School of Computer Science

and Information Technology

RMIT University

Melbourne, Victoria 3000, Australia

Email: xiaodong.li@rmit.edu.au

Xin Yao
School of Computer Science

University of Birmingham

B15 2TT Birmingham, UK

Email: x.yao@cs.bham.ac.uk

Abstract—In this paper, a simple but effective Random Route
Grouping (RRG) scheme is developed to decompose the Large-
Scale Capacitated Arc Routing Problem (LSCARP). A theoretical
analysis is given to show that the decomposition is guaranteed to
be improved by RRG along with the improvement of the best-so-
far solution during the search process. Then, RRG is combined
with a cooperative co-evolution model to solve LSCARP. The
experimental results on the EGL-G LSCARP set showed that
given the same computational budget, the proposed approach
obtained much better results than its counterpart without using
decomposition.

I. INTRODUCTION

As a practically significant and challenging problem, the
Capacitated Arc Routing Problem (CARP) has been intensively
investigated for decades [1]. Briefly speaking, given a graph
representing a road network, CARP aims to schedule the routes
of the vehicles to serve a set of edges and arcs (i.e., directed
edges) in the graph subject to certain side constraints.

CARP has many applications in the logistics field, such
as waste collection [2], winter gritting [3] and snow removal
[4]. In spite of extenstive studies on CARP in the past, there
is still a gap between the academic research and real-world
situation. In particular, the problem size considered by previous
research (e.g., less than 200 required edges) is much smaller
than the practical instances (usually have more than 1000
required edges). Since CARP is NP-hard [5], which means
that the solution space increases exponentially as the increase
of the problem size, the algorithms that perform well for small
and medium sizes may no longer retain its good performance
for the large scale ones. In fact, preliminary studies [6] [7]
[8] have shown that when the problem size increases from
less than 200 to about 350, the performance of the algorithms
deteriorate rapidly, either in solution quality [6] [7] or in
convergence speed [8]. This paper studies CARPs with more
than 300 required edges, which we refer to as Large Scale
CARP (LSCARP), since the previous studies show that the
size of 300 raises a scalability issue.

Although solving LSCARP is important, it has been over-
looked so far. Most of the previous algorithms (e.g., [9] [10]
[11] [12] [13] [14] [15]) were only evaluated on the commonly
used gdb [16], val [17], egl [18] and Beullens’s test sets [9],
whose problem sizes are less than 200. The only existing
LSCARP test set is the EGL-G set, which was generated by

Brandão and Eglese in [6]. However, there are only limited
studies about this LSCARP test set [6] [7] [8].

When solving LSCARP, an intuitive strategy is the divide-
and-conquer strategy that decomposes the original huge prob-
lem into a number of smaller-sized sub-problems that can be
solved individually. In the context of evolutionary computation,
the Cooperative Co-evolution (CC) framework is a natural
way to implement the divide-and-conquer strategy. In fact, the
CC framework has been successfully applied to large scale
continuous function optimization [19] [20] [21]. This paper
studies how to apply CC to solve LSCARP.

In the CC framework, the decision vector x is de-
composed into a number of non-overlapping subcomponents
(x1, . . . ,xg). A decomposition is called the ideal decom-
position, if there exists an optimization problem for each
subcomponent xi, ∀i = 1, . . . , g, say Pi(xi), so that the
optimal solution to the original optimization problem P(x)
can be obtained by solving the Pi(xi)’s separately. Then, the
key issue of CC is to find such an ideal decomposition.

Take the following constrained optimization problem with
equality constraints (inequalities can be transformed into e-
qualities by adding slack variables) as an example:

P(x) : min f(x) =

g∑
i=1

fi(xi)

s.t. h1(x1) = 0

. . .

hg(xg) = 0

Obviously, (x1, . . . ,xg) is an ideal decomposition and the
Pi(xi)’s are defined as follows:

Pi(xi) : min fi(xi)

s.t. hi(xi) = 0

In LSCARP, finding the ideal decomposition is quite
challenging, since the proportion of the ideal decomposition
among all the possible decompositions is very low. Basically,
the domain knowledge is not enough to obtain the ideal
decomposition for LSCARP beforehand. In this case, the
dynamic decomposition methods [19] [20] are more promising
than the static ones, as they have higher chance to obtain the
ideal decomposition.

2013 IEEE Congress on Evolutionary Computation
 June 20-23, Cancún, México

978-1-4799-0454-9/13/$31.00 ©2013 IEEE 1013

In this paper, a simple but effective Random Route Group-
ing (RRG) decomposition scheme is developed. RRG uses
the route information of the best-so-far solution so that the
decomposition is guaranteed to be improved as the best-so-
far solution is improved. RRG is combined with the CC
framework proposed in [19], and the MAENS [12] to optimize
the subcomponents. The resultant algorithm is evaluated on
the EGL-G set with various parameter settings, and the results
demonstrate the efficacy of the CC framework and RRG.

The rest of the paper is organized as follows: First, CARP
is introduced in Section II. LSCARP is a special case of CARP
which has more than 300 required edges. In Section III, the CC
framework for LSCARP is derived from the one proposed in
[19]. Then, in Section IV, RRG is developed. The experimental
studies are carried out in Section V. Finally, Section VI gives
the conclusion and future work.

II. CAPACITATED ARC ROUTING PROBLEM

CARP is defined on a connected graph G(V,E,A), where
V , E and A are the set of vertices, edges and arcs (directed
edges), respectively. There is a subset Z ⊆ E ∪ A which
is called the task set. Each element z ∈ Z is then called a
task. Each task z ∈ Z is associated with a positive demand
d(z) > 0, and a positive serving cost sc(z) > 0. Besides,
each edge (vi, vj) or arc 〈vi, vj〉 has a positive deadheading
cost dc(vi, vj) > 0, standing for the cost of traversing from
vi to vj without service. Here, the graph is assumed to be
symmetric, and thus dc(vi, vj) = dc(vj , vi) for each edge
(vi, vj). The services are finished by a fleet of vehicles with
identical capacity of Q locating at the depot v0 ∈ V . Then,
CARP aims to design the routes of the vehicles so that the
the total cost (sum of all the serving and deadheading costs)
is minimized subject to the following constraints:

• Each vehicle starts and ends at the depot;
• Each task is served exactly once;
• The total demand of the tasks served by each vehicle

cannot exceed its capacity Q.

The last constraint is often called the capacity constraint.

Here, we adopt the problem formulation used in [15].
Concretely, each edge task is assigned two IDs (say x1 and
x2), one for each direction, and each arc task is assigned one
ID x. All the IDs are unique positive integers. For an ID
x ∈ N

+, the tail node tn(x), head node hn(x), deadheading
cost dc(x), serving cost sc(x), demand d(x) and inverse ID
inv(x) are associated as follows: For an edge task (vi, vj) and
its corresponding IDs x1 and x2,

• hn(x1) = tn(x2) = vi, tn(x1) = hn(x2) = vj ;
• dc(x1) = dc(x2) = dc(vi, vj);
• sc(x1) = sc(x2) = sc(vi, vj);
• d(x1) = d(x2) = d(vi, vj);
• inv(x1) = x2, inv(x2) = x1.

For an arc task 〈vi, vj〉 and its ID x,

• hn(x) = vi, tn(x) = vj ;
• dc(x) = dc(vi, vj), sc(x) = sc(vi, vj);
• d(x) = d(vi, vj), inv(x) = −1.

v1 v2
v3 v4

v5
v6x1(x5)

s1=(0,x1,x8,0) s2=(0,x3,x6,0)v0
(depot)

v7
v8

x6(x2) x3(x7) x8(x4)

Fig. 1. An example of a CARP candidate solution.

Since all the IDs are positive, inv(x) = −1 indicates that
x has no inverse ID. Finally, the ID 0 is defined to represent
the depot loop as follows:

• tn(0) = hn(0) = v0;
• dc(0) = sc(0) = d(0) = 0;
• inv(0) = 0.

Using the above notations, a CARP candidate solution s
can be represented as a set of routes s = {s1, . . . , sm}, each
of which is a sequence of the IDs starting and ending at 0.
That is, sk = (0, xk1, . . . , xknk

, 0).

An example of the above representation is illustrat-
ed in Fig. 1, where the bold lines represent tasks Z =
{(v1, v5), (v2, v6), (v3, v7), (v4, v8)}, and the dashed lines rep-
resent the intermediate paths between the two end-nodes.
The depot is denoted by v0. Each task is assigned with two
IDs, one standing for the current direction, and the other in
the parenthesis indicating the inverse direction (e.g., ID x1

from v1 to v5, while ID x5 from v5 to v1). The candidate
solution in the figure has two routes: s1 = (0, x1, x8, 0) and
s2 = (0, x3, x6, 0). A more concise representation of s is
to combine all the routes together as a single sequence with
delimiters of 0 that distinguish different routes. For example,
in Fig. 1, s = (0, x1, x8, 0, x3, x6, 0).

Then, CARP can be represented as follows:

min
xkl

tc(s) =

m∑
k=1

nk∑
l=0

(
sc(xkl) + Δ(xkl, xk(l+1))

)
(1)

s.t. : xkl ∈ ID(Z), ∀ 1 ≤ k ≤ m, 1 ≤ l ≤ nk (2)

xk1l1 	= xk2l2 , ∀ (k1, l1) 	= (k2, l2) (3)

xk1l1 	= inv(xk2l2), ∀ (k1, l1) 	= (k2, l2) (4)
nk∑
l=1

d(xkl) � Q, ∀ 1 ≤ k ≤ m (5)

where xk0 = xk(nk+1) = 0. The function Δ(x1, x2) means the
shortest distance from tn(x1) to hn(x2) in the graph, which
can be obtained by Dijkstra’s algorithm [22]. ID(Z) stands for
the ID set assigned to Z, and the inequality (k1, l1) 	= (k2, l2)
means that at least one of the inequalities k1 	= k2 and l1 	= l2
is satisfied. The objective (1) is the total cost of all the routes.
Constraints (2)-(4) guarantee that each task is served exactly
once. Constraint (5) is the capacity constraint.

1014

III. COOPERATIVE CO-EVOLUTION FOR LSCARP

The CC framework for LSCARP is derived from the one
proposed by Yang et al. in [19], which uses a random grouping
method to decompose a large scale optimization problem. It is
described as follows:

Step 1 Set i = 1 to start a new cycle.
Step 2 Split the original n-dimensional vector x =

(x1, . . . , xn) into g non-overlapping l-dimensional
subcomponents x1, . . . ,xg (g · l = n) randomly. Here,
“randomly” means that each variable xi (i = 1, . . . , n)
has the same chance to be assigned into any of the
subcomponents.

Step 3 Optimize the subcomponent xi by an Evolutionary
Algorithm (EA) for a certain number of iterations;

Step 4 If i < g, then set i = i+ 1 and go to Step 3;
Step 5 If the stopping criteria are met, then stop. Otherwise

go to Step 1 for the next cycle.

When applying the above CC framework to LSCARP, each
task may be considered as a variable. Then, in each cycle, the
task set Z is decomposed into a number of non-overlapping
task subsets Z1, . . . , Zg at Step 2. Then, for each Zi, the
optimization problem Pi(Zi) can be defined as follows:

min
xkl

tc
(
s(Zi)

)
=

m∑
k=1

nk∑
l=0

(
sc(xkl) + Δ(xkl, xk(l+1))

)
(6)

s.t. : xkl ∈ ID(Zi), ∀ 1 ≤ k ≤ m, 1 ≤ l ≤ nk (7)

xk1l1 	= xk2l2 , ∀ (k1, l1) 	= (k2, l2) (8)

xk1l1 	= inv(xk2l2), ∀ (k1, l1) 	= (k2, l2) (9)
nk∑
l=1

d(xkl) � Q, ∀ 1 ≤ k ≤ m (10)

It is the same as Eqs. (1)–(5) except that it reduces the domain
of xkl’s by replacing Z with its subset Zi, as shown in Eq. (7).
In other words, Pi(Zi) is a smaller sized CARP with the task
set of Zi instead of Z.

Given the above Pi(Zi)’s, one can prove that there must be
an ideal decomposition (Z1, . . . , Zg) of Z, so that solving Eqs.
(6)–(10) for i = 1, . . . , g is equivalent to solving Eqs. (1)–(5).
In fact, let the optimal solution to P(Z) be s∗ = {s∗1, . . . , s∗m},
one can simply define Zi = {z|z ∈ s∗i }. In this way, s∗(Zi) =
s∗i , and thus tc(s∗) =

∑g
i=1 tc(s

∗
i) =

∑g
i=1 tc(s

∗(Zi)).
Therefore, the s∗(Zi)’s obtained from solving Eqs. (6)–(10)
lead to s∗ in the original Eqs. (1)–(5).

Next at Step 3, an EA is used to optimize each Zi. To
this end, a subpopulation p(Zi) = {p1(Zi), . . . ,pN (Zi)} is
maintained, where N is the predefined population size. Each
individual pj(Zi) ∈ p(Zi) is a candidate solution to Pi(Zi),
and is evaluated by the objective function Eq. (6). This eval-
uation is essentially the same as the one based on the context
vector [23] [24], which combines the evaluated individual
with the best-so-far individuals of the other subcomponents,
and then evaluates the combined individual. In LSCARP, let
s̄(Z \ Zi) be the best-so-far individual to the subcomponent
Z \Zi, then an individual with a smaller tc(s(Zi)) must have
a smaller tc(s(Zi) ∪ s̄(Z \ Zi)) = tc(s(Zi)) + tc(s̄(Z \ Zi)),
since tc(s̄(Z\Zi)) can be seen as a constant that is independent
from s(Zi).

0 1 5 6 8 0 2 7 4 3 0
Z’1={1,2,4,6}Z’2={3,5,7,8}

0 1 6 0 2 4 0 0 5 8 0 7 3 0

pj(Z1) ppj(Z2)

pj(Z’1) ppj(Z’2)
Aj(Z)
0 1 5 6 8 0 0 2 7 4 3 0

Z1={1,5,6,8}Z2={2,3,4,7}

Fig. 2. An example of updating pj(Z1) and pj(Z2) for the next cycle.

Finally, after all the p(Zi)’s have been evolved by the
EA, they are assembled to form an archive A(Z). That is,
Aj(Z) = {pj(Z1), . . . ,pj(Zg)}, j = 1, . . . , N . Then, in
the next cycle with the new decomposition (Z ′

1, . . . , Z
′
g), the

corresponding subpopulations p(Z ′
i)’s are obtained as follows:

Given (Z ′
1, . . . , Z

′
g), for each j ∈ {1, . . . , N}, the individual

pj(Z
′
i) is obtained by scanning the sequence of Aj(Z) from

the beginning to the end, and removing the IDs belonging to
Z \Z ′

i. In this way, the sequential structure of the subpopula-
tions is maintained when updating them for the next cycle.

An example of updating the subpopulations for the next
cycle is given in Fig. 2. Here, the current subcomponents are
Z1 = {1, 5, 6, 8} and Z2 = {2, 3, 4, 7}. First, the two individ-
uals pj(Z1) ∈ p(Z1) and pj(Z2) ∈ p(Z2) are combined to
obtain Aj(Z). Assume that the subcomponents for the next
cycle are Z ′

1 = {1, 2, 4, 6} and Z ′
2 = {3, 5, 7, 8}, then the new

individual pj(Z
′
1) (pj(Z

′
2), resp.) is obtained by scanning the

sequence of Aj(Z) and removing the tasks in Z ′
2 (Z ′

1, resp.).
The other individuals of p(Z1) and p(Z2) are updated in the
same way.

IV. RANDOM ROUTE GROUPING DECOMPOSITION

In the CC framework described in Section III, Step 2 is
the so-called random grouping. It can be directly adopted in
decomposing LSCARP, i.e., each task z ∈ Z has the same
probability to be assigned into any of Zi, ∀i = 1, . . . , g.
However, simply using the random grouping can by no means
lead to satisfactory results due to the following two reasons.
First, it is difficult to obtain the ideal decomposition by random
sampling. In LSCARP, all the tasks in the same route must
be placed in the same subcomponent. Usually, an LSCARP
has many such subcomponents, each with quite a few tasks.
As proved in [21], the probability of placing the interacting
variables in the same subcomponent dramatically decreases as
the subcomponent size increases. For example, suppose that
the problem has 300 tasks, which can be divided into 30 10-
task subcomponents, and g = 2. According to the formula in
[21], the probability of decomposing all the tasks correctly in at
least one of 50 cycles is 10−31, which is nearly zero. Second,
for each subcomponent, the optimization problem Pi(Zi) is
still NP-hard. Hence, even under the ideal decomposition, one

1015

can hardly solve the Pi(Zi)’s within such a limited iterations
in a single cycle. In this case, a more intelligent decomposition
scheme than the random grouping is needed to bias to the more
promising decompositions. Here, the effects of the constraints
on the decomposition are considered and a decomposition
scheme heuristic based on the routes of the best-so-far solution
to the original problem is developed.

Intuitively, an intelligent decomposition scheme should be
able to improve the decomposition scheme as more informa-
tion is gathered during the search process. To this end, the
evaluation of decomposition needs to be defined first. It is
obvious that the measure

∑g
i=1 tc(s

∗(Zi)) can be used to
evaluate the decomposition (Z1, . . . , Zg), where s∗(Zi) is the
optimal solution to Pi(Zi). That is, a better decomposition
should have smaller

∑g
i=1 tc(s

∗(Zi)). However, as mentioned
before, s∗(Zi) cannot be obtained as Pi(Zi) cannot be solved
exactly. Then, an alternative is to approximate the value of∑g

i=1 tc(s
∗(Zi)) by

∑g
i=1 tc(s̄(Zi)), where s̄(Zi) is the best-

so-far individual for Zi. It is clear that

tc(s∗(Zi)) ≤ tc(s̄(Zi)), ∀ Zi ⊆ Z (11)

g∑
i=1

tc(s∗(Zi)) ≤
g∑

i=1

tc(s̄(Zi)) (12)

In other words,
∑g

i=1 tc(s̄(Zi)) is an upper bound of∑g
i=1 tc(s

∗(Zi)). When comparing between two unknown
variables with no other prior information, the one with smaller
upper bound should be more likely to be smaller.

On the other hand, it is known that the best-so-far solution s̄
to the original problem keeps improving during the search pro-
cess. If the Zi’s are set in such a way that

∑g
i=1 tc(s̄(Zi)) =

tc(s̄), then the decomposition can be improved along with the
improvement of s̄. Similar to generating pj(Zi)’s from Aj(Z),
each s̄(Zi) is obtained by scanning the sequence of s̄ and
removing the tasks not belonging to Zi. For example, in Fig. 2,
one can assume that s̄ = Aj(Z). Then, pj(Z

′
1) and pj(Z

′
2) can

be seen as s̄(Z ′
1) and s̄(Z ′

2) corresponding to Z ′
1 = {1, 2, 4, 6}

and Z ′
2 = {3, 5, 7, 8}, respectively. It can be seen that the con-

straints affect the sequences of the s̄(Zi)’s (e.g., if xk(l+1) /∈
Zi, then (xkl, xk(l+1)) cannot occur in s̄(Zi)). Thus, not all the
decompositions satisfy that

∑g
i=1 tc(s̄(Zi)) = tc(s̄). A natural

way to satisfy the above condition is to divide the routes of s̄
into non-overlapping groups of routes. For example, in Fig. 2,
we can set Z̄1 = {1, 5, 6, 8} and Z̄2 = {2, 7, 4, 3} according
to the routes of s̄ = Aj(Z). In this way, ∪g

i=1s̄(Z̄i) = s̄ and
thus

∑g
i=1 tc(s̄(Z̄i)) = tc(s̄).

In summary, to guarantee that the decomposition keep-
s on improving in terms of the approximated measure∑g

i=1 tc(s̄(Zi)), one can divide the routes of the best-so-
far solution s̄ into groups. Similar to random grouping, we
adopt the Random Route Grouping (RRG) strategy here, which
means that each route of s̄ has the same chance to be assigned
into any of the subcomponents. In other words, RRG is the
same as random grouping except that it operates on the routes
of the best-so-far solution instead of the tasks directly.

In practice, when grouping the routes of the best-so-far
solution, the number of routes may not be divided exactly by
g. In this case, the size of each group is set to be as equal

Algorithm 1 (Z1, . . . , Zg) = RRG(s̄, g, t)

1: if t = 1 then
2: (Z1, . . . , Zg) = k-medoids(Δ|Z|×|Z|, g);
3: else
4: for i = 1 → g do
5: mi = �m/g�;
6: end for
7: for i = 1 → m− g · �m/g� do
8: mi ← mi + 1;
9: end for

10: for i = 1 → g do
11: Zi = {};
12: end for
13: (p1, . . . , pm) = RandPerm(m);
14: for i = 1 → g do
15: j1 =

∑i−1
k=1 mk + 1, j2 =

∑i−1
k=1 mk +mi;

16: for j = j1 → j2 do
17: for all z ∈ s̄pj

do
18: Zi ← Zi ∪ z;
19: end for
20: end for
21: end for
22: end if
23: return (Z1, . . . , Zg);

as possible. For example, suppose that there are 20 routes and
g = 3, then the groups have 7, 7 and 6 routes, respectively.

Initially, there is no best-so-far solution that can be used
to decompose the problem. Thus, the initial decomposition
needs to be decided additionally. Here, we adopt the k-medoids
heuristic [25] that clusters the tasks into k groups according
to the distance matrix between them. Intuitively, to minimize
the total cost, the tasks which are closer to each other should
be more likely to be linked, and thus be in the same route.
Thus, the k-medoids heuristic can obtain a relatively good
initial decomposition without knowing any information about
the best-so-far solution.

The pseudo code of RRG is described in Algo. 1. In line 2,
Δ|Z|×|Z| is the distance matrix between each pair of tasks. In
line 13, the function RandPerm(m) is a random permutation
of the vector (1, . . . ,m).

Finally, the CC framework with RRG is described in
Algo. 2. In line 8, each individual pj(Zi) ∈ p(Zi) is obtained
by scanning the sequence of A(Z) and removing the tasks
belonging to Z \Zi. In line 10, s̄(t)(Zi) is obtained from s̄ in
the same way.

V. EXPERIMENTAL STUDIES

The performance of the proposed CC framework may
largely depend on the following two parameters: the number
of subcomponents g and the number of cycles. First, as g
increases, the number of possible decompositions increases
dramatically (O(gm), where m is the number of routes in s).
This may make it much harder to obtain promising decom-
positions by RRG (unless the routes are clearly distributed in
g clusters). Second, the number of cycles should be neither
too small nor too large. If it is too small, the chance to
obtain promising decompositions is small. If it is too large, the
computational resources allocated for each cycle is not enough

1016

Algorithm 2 s̄ = RRGCC(P(Z), g)

1: Set tc(s̄) = ∞ and t = 1;
2: repeat
3: (Z1, . . . , Zg) = RRG(s̄, g, t);
4: for i = 1 → g do
5: if t = 1 then
6: Initialize p(Zi);
7: else
8: Obtain p(Zi) from the archive A(Z);
9: end if

10: Obtain s̄(t)(Zi) from s̄;
11: (s̄(t)(Zi),p(Zi)) = EA(s̄(t)(Zi),p(Zi));
12: end for
13: Assemble all the p(Zi)’s to form A(Z);
14: s̄(t) = ∪g

i=1s̄
(t)(Zi);

15: if tc(s̄(t)) < tc(s̄) then
16: s̄ = s̄(t);
17: end if
18: t ← t+ 1;
19: until Stopping criteria are met
20: return s̄;

to exploit the subcomponents adequately. To investigate the
effects of the above two parameters, experimental studies were
carried out by comparing the algorithms with various g values
and numbers of cycles. Note that when g = 1, there is only
one subcomponent, and thus there is no decomposition.

A. Parameter Settings

First, the algorithm to optimize each subcomponent has to
be decided. Here, we select MAENS [12], which is competitive
to solve small and medium sized CARPs. Then, the resultant
algorithm is evaluated on the EGL-G set, which consists of 10
large instances defined on a road network with 255 vertices and
375 edges in the Lancashire County, UK. Different instances
have different task sets and capacities.

The parameter settings of the proposed algorithm are given
in Table I. Here, g is set to 1, 2 and 3, and the number of cycles
is set to 25, 50 and 100. Note that the generations of MAENS
in each cycle is naturally decided by the maximal generations
and number of cycles. For example, with the maximal genera-
tions of 500 and 50 cycles, there are 500/50 = 10 generations
of MAENS for each subcomponent in each cycle.

For each parameter setting, 30 independent runs were
conducted on all the test instances. Then, the mean and
standard deviation of the 30 results were computed. The
algorithms were implemented by C++, compiled by GNU
Compiler Collection (GCC) for windows and run on the CPU
Intel Core i7-2600 @ 3.4GHz.

B. Results and Analysis

The performance of the compared algorithms are shown
in Table II, along with the features of the test instances.
The columns “|V |”, “|E|” and “|Z|” stand for the number
of vertices, edges and tasks, respectively. The column “τ” is
the minimal number of vehicles required to serve all the tasks,
which is obtained as follows:

τ =

⌈∑
z∈Z d(z)

Q

⌉
(13)

TABLE I. THE PARAMETER SETTINGS OF THE PROPOSED ALGORITHM

Parameter Description Value

g Number of subcomponents 1, 2, 3
psize Population size 30
offsize Offspring population size 6 · psize
Pls Probability of local search 0.2
gen Maximal generations 500
cycle Number of cycles 25, 50, 100

In general, a larger τ leads to a higher difficulty of the problem.

In the table, for each instance and each algorithm, the
values outside and inside the parenthesis are the mean and
standard deviation of the 30 independent results. The minimal
mean value of each row is marked with †. Besides, for each
instance, the 30 independent results of g = 1 is compared with
that of g > 1 statistically using Wilcoxon’s rank sum test [26]
under the significance level of 0.05. If the results of g = 1
are significantly smaller than that of all the algorithms with
g > 1, then the mean of g = 1 is marked in bold. Otherwise,
for each algorithm with g > 1, if its results are significantly
smaller than that of g = 1, its mean is marked in bold.

From Table II, it can be seen that for only 2 out of 10
instances, g = 1 obtained significantly better results than that
of all the algorithms with g > 1. In other words, for 8 out
of 10 the instances, there is at least one parameter setting
of the decomposition-based algorithm that can obtain statis-
tically comparable results to that of its counterpart without
decomposition. For 7 out of 10 instances, the results of g = 2
are better than that of g = 3. This is consistent with the
expectation that a larger g tends to make it more difficult
to obtain the promising decompositions. Besides, for g = 2,
cycle = 25 showed the best overall performance, while for
g = 3, cycle = 50 performed the best. This indicates that the
best number of cycles is proportional to the value of g. It can
be explained as follows: since it is harder to obtain promising
decomposition for larger g, more cycles is needed to increase
such probability.

The average runtime of the compared algorithms are given
in Table III. It is obvious that as g increases, the runtime
decreases dramatically. Besides, with the same g, the number
of cycles does not much affect the runtime.

In summary, according to Tables II and III, one can
conclude that by decomposing the problem into smaller sub-
components, statistically comparable results can be obtained
in a much shorter time.

A more illustrative comparison is made for the convergence
curves, which are shown in Figures 3–12. In the figures, the
x-axis stands for the computational time in seconds, and the y-
axis is the average total cost of the best-so-far solutions over
the 30 independent runs. For the sake of clarity, the x-axis
starts from 100 seconds without losing any accuracy of the
convergence. From the figures, it can be seen that for most of
the instances, most of the curves of g > 1 are below that of
g = 1 (except only for EGL-G2-A). This indicates that given
the same computational time budget, the decomposition-based
algorithms show obvious advantage over the counterpart with
no decomposition.

It is worth noting that for EGL-G1-D, EGL-G2-B and
EGL-G2-D, the curves of g = 3 are obviously lower than that

1017

TABLE II. THE RESULTS OF THE COMPARED ALGORITHMS ON THE EGL-G SET. FOR EACH INSTANCE, THE MINIMAL MEAN VALUE OF THE COMPARED

ALGORITHMS IS MARKED WITH † . FOR EACH ALGORITHM WITH g > 1, IF ITS RESULTS ARE STATISTICALLY SIGNIFICANTLY SMALLER THAN THAT OF

g = 1, THEN THE CORRESPONDING MEAN VALUE IS MARKED IN BOLD. OTHERWISE, IF THE RESULTS OF g = 1 ARE STATISTICALLY SIGNIFICANTLY

SMALLER THAN THAT OF ALL THE ALGORITHMS WITH g > 1, THEN THE CORRESPONDING MEAN VALUE IS MARKED IN BOLD.

Name |V | |E| |Z| τ g = 1 g = 2 g = 3

cycle = 25 cycle = 50 cycle = 100 cycle = 25 cycle = 50 cycle = 100

G1-A 255 375 347 20 1009302†(4210) 1010934(3734) 1009922(4979) 1012252(5780) 1014103(5414) 1011281(5015) 1013051(4157)

G1-B 255 375 347 25 1128114†(5552) 1129905(5550) 1130765(6509) 1132133(6528) 1136521(7197) 1136291(6845) 1135963(7206)

G1-C 255 375 347 30 1255709†(4700) 1256814(4658) 1258425(5779) 1257493(4387) 1259178(3063) 1259252(3976) 1260989(4254)

G1-D 255 375 347 35 1389399(5645) 1392409(5992) 1392228(6227) 1393108(6177) 1386444†(5147) 1388179(4637) 1388315(4376)

G1-E 255 375 347 40 1535905(7776) 1534496(6798) 1533000†(6202) 1535933(6549) 1536948(8173) 1535854(7478) 1538175(6661)

G2-A 255 375 375 22 1109376†(4672) 1112959(7223) 1113518(5801) 1113959(5442) 1117274(9514) 1116627(7645) 1116277(7408)

G2-B 255 375 375 27 1225361(5048) 1226477(6030) 1228069(4777) 1229522(6206) 1225341†(4605) 1226656(5264) 1227541(8833)

G2-C 255 375 375 32 1358398(5101) 1358374†(4117) 1358543(5724) 1359923(7239) 1365459(5379) 1364446(6627) 1365075(6853)

G2-D 255 375 375 37 1498334†(6319) 1502574(8255) 1505581(7346) 1503352(8972) 1501094(6029) 1502667(5605) 1501331(5106)

G2-E 255 375 375 42 1642124(7545) 1641750†(5467) 1642260(7558) 1643928(7760) 1642797(4825) 1643586(8155) 1646596(9223)

Overall - - - - 1315202(5657) 1316669(5782) 1317231(6090) 1318160(6504) 1318516(5935) 1318484(6125) 1319331(6408)

TABLE III. THE AVERAGE RUNTIME (IN SECONDS) OF THE COMPARED

ALGORITHMS FOR THE EGL-G SET.

Name g = 1 g = 2 g = 3

cycle cycle cycle cycle cycle cycle
= 25 = 50 = 100 = 25 = 50 = 100

G1-A 2453 1277 1280 1328 797 799 818
G1-B 2058 1199 1213 1250 761 765 786
G1-C 1841 1128 1151 1192 738 745 767
G1-D 1655 1007 1027 1080 731 741 758
G1-E 1558 930 936 983 736 743 761
G2-A 2593 1434 1447 1480 906 907 927
G2-B 2268 1375 1384 1431 855 864 891
G2-C 2016 1251 1266 1324 856 863 888
G2-D 1850 1132 1150 1205 842 847 874
G2-E 1769 1054 1069 1115 847 860 886

Overall 2006 1179 1192 1239 807 813 836

of g = 2. It may be caused by the clearly clustered distribution
of the routes. Our future studies will investigate the reasons.

VI. CONCLUSION

In this paper, the practically important LSCARP is inves-
tigated. To search effectively in the huge solution space, we
adopt the divide-and-conquer method in the form of the CC
framework. When decomposing LSCARP, the RRG scheme is
developed to bias the search to the more promising decom-
positions. It is proved that the decomposition is guaranteed to
be improved as the best-so-far solution is improved during
the search process. The experimental studies verified the
efficacy of the proposed CC framework with RRG for solving
LSCARP.

The future work includes the following aspects: First,
the random grouping of the routes in RRG is still simple.
More information such as the distance between tasks may be
employed to further improve the quality of the decomposition
scheme. Second, the effect of g on different instances is to be
investigated to decide the best g according to the characteristics
of the given instance. Finally, the tradeoff between the number
of cycles and the degree of exploitation in each cycle is to be
further investigated, which may depend on g and the size of
each subcomponent.

500 1000 1500 2000 2500

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

1.055
x 10

6 Convergence Curve for EGL-G1-A

Time (sec)

T
ot

al
 c

os
t

g=1 gen=500

g=2 gen=500 cycle=25

g=2 gen=500 cycle=50

g=2 gen=500 cycle=100

g=3 gen=500 cycle=25

g=3 gen=500 cycle=50

g=3 gen=500 cycle=100

Fig. 3. The convergence curve of the compared algorithms on EGL-G1-A.

200 400 600 800 1000 1200 1400 1600 1800 2000

1.12

1.13

1.14

1.15

1.16

1.17

1.18
x 10

6 Convergence Curve for EGL-G1-B

Time (sec)

T
ot

al
 c

os
t

g=1 gen=500

g=2 gen=500 cycle=25

g=2 gen=500 cycle=50

g=2 gen=500 cycle=100

g=3 gen=500 cycle=25

g=3 gen=500 cycle=50

g=3 gen=500 cycle=100

Fig. 4. The convergence curve of the compared algorithms on EGL-G1-B.

1018

200 400 600 800 1000 1200 1400 1600 1800

1.25

1.26

1.27

1.28

1.29

1.3

1.31

1.32
x 10

6 Convergence Curve for EGL-G1-C

Time (sec)

T
ot

al
 c

os
t

g=1 gen=500

g=2 gen=500 cycle=25

g=2 gen=500 cycle=50

g=2 gen=500 cycle=100

g=3 gen=500 cycle=25

g=3 gen=500 cycle=50

g=3 gen=500 cycle=100

Fig. 5. The convergence curve of the compared algorithms on EGL-G1-C.

200 400 600 800 1000 1200 1400 1600 1800

1.38

1.39

1.4

1.41

1.42

1.43

1.44

1.45

1.46
x 10

6 Convergence Curve for EGL-G1-D

Time (sec)

T
ot

al
 c

os
t

g=1 gen=500

g=2 gen=500 cycle=25

g=2 gen=500 cycle=50

g=2 gen=500 cycle=100

g=3 gen=500 cycle=25

g=3 gen=500 cycle=50

g=3 gen=500 cycle=100

Fig. 6. The convergence curve of the compared algorithms on EGL-G1-D.

200 400 600 800 1000 1200 1400 1600

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.6

1.61
x 10

6 Convergence Curve for EGL-G1-E

Time (sec)

T
ot

al
 c

os
t

g=1 gen=500

g=2 gen=500 cycle=25

g=2 gen=500 cycle=50

g=2 gen=500 cycle=100

g=3 gen=500 cycle=25

g=3 gen=500 cycle=50

g=3 gen=500 cycle=100

Fig. 7. The convergence curve of the compared algorithms on EGL-G1-E.

500 1000 1500 2000 2500

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17
x 10

6 Convergence Curve for EGL-G2-A

Time (sec)

T
ot

al
 c

os
t

g=1 gen=500

g=2 gen=500 cycle=25

g=2 gen=500 cycle=50

g=2 gen=500 cycle=100

g=3 gen=500 cycle=25

g=3 gen=500 cycle=50

g=3 gen=500 cycle=100

Fig. 8. The convergence curve of the compared algorithms on EGL-G2-A.

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29
x 10

6 Convergence Curve for EGL-G2-B

Time (sec)

T
ot

al
 c

os
t

g=1 gen=500

g=2 gen=500 cycle=25

g=2 gen=500 cycle=50

g=2 gen=500 cycle=100

g=3 gen=500 cycle=25

g=3 gen=500 cycle=50

g=3 gen=500 cycle=100

Fig. 9. The convergence curve of the compared algorithms on EGL-G2-B.

200 400 600 800 1000 1200 1400 1600 1800 2000

1.35

1.36

1.37

1.38

1.39

1.4

1.41

1.42

1.43
x 10

6 Convergence Curve for EGL-G2-C

Time (sec)

T
ot

al
 c

os
t

g=1 gen=500

g=2 gen=500 cycle=25

g=2 gen=500 cycle=50

g=2 gen=500 cycle=100

g=3 gen=500 cycle=25

g=3 gen=500 cycle=50

g=3 gen=500 cycle=100

Fig. 10. The convergence curve of the compared algorithms on EGL-G2-C.

1019

200 400 600 800 1000 1200 1400 1600 1800

1.49

1.5

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58
x 10

6 Convergence Curve for EGL-G2-D

Time (sec)

T
ot

al
 c

os
t

g=1 gen=500

g=2 gen=500 cycle=25

g=2 gen=500 cycle=50

g=2 gen=500 cycle=100

g=3 gen=500 cycle=25

g=3 gen=500 cycle=50

g=3 gen=500 cycle=100

Fig. 11. The convergence curve of the compared algorithms on EGL-G2-D.

200 400 600 800 1000 1200 1400 1600 1800

1.64

1.65

1.66

1.67

1.68

1.69

1.7

1.71

1.72

1.73
x 10

6 Convergence Curve for EGL-G2-E

Time (sec)

T
ot

al
 c

os
t

g=1 gen=500

g=2 gen=500 cycle=25

g=2 gen=500 cycle=50

g=2 gen=500 cycle=100

g=3 gen=500 cycle=25

g=3 gen=500 cycle=50

g=3 gen=500 cycle=100

Fig. 12. The convergence curve of the compared algorithms on EGL-G2-E.

ACKNOWLEDGMENT

This work was supported by an ARC Discovery grant (No.
DP120102205) and an EPSRC grant (No. EP/I010297/1). Xin
Yao is supported by a Royal Society Wolfson Research Merit
Award.

REFERENCES

[1] M. Dror, Arc routing: theory, solutions and applications. Boston:
Kluwer Academic Publishers, 2000.

[2] F. Chu, N. Labadi, and C. Prins, “A scatter search for the periodic
capacitated arc routing problem,” European Journal of Operational
Research, vol. 169, no. 2, pp. 586–605, 2006.

[3] H. Handa, L. Chapman, and X. Yao, “Robust Salting Route Optimiza-
tion Using Evolutionary Algorithms,” in Proceedings of the 2006 IEEE
Congress on Evolutionary Computation, vol. 1. Springer, 2006, pp.
10 455–10 462.

[4] M. Polacek, K. Doerner, R. Hartl, and V. Maniezzo, “A variable
neighborhood search for the capacitated arc routing problem with
intermediate facilities,” Journal of Heuristics, vol. 14, no. 5, pp. 405–
423, 2008.

[5] B. Golden and R. Wong, “Capacitated arc routing problems,” Networks,
vol. 11, no. 3, pp. 305–316, 1981.

[6] J. Brandão and R. Eglese, “A deterministic tabu search algorithm for the
capacitated arc routing problem,” Computers and Operations Research,
vol. 35, no. 4, pp. 1112–1126, 2008.

[7] Y. Mei, K. Tang, and X. Yao, “A Global Repair Operator for Capacitated
Arc Routing Problem,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, vol. 39, no. 3, pp. 723–734, 2009.

[8] X. Chen, “Maens+: A divide-and-conquer based memetic algorithm
for capacitated arc routing problem,” in 2011 Fourth International
Symposium on Computational Intelligence and Design (ISCID), vol. 1.
IEEE, 2011, pp. 83–88.

[9] P. Beullens, L. Muyldermans, D. Cattrysse, and D. Van Oudheusden, “A
guided local search heuristic for the capacitated arc routing problem,”
European Journal of Operational Research, vol. 147, no. 3, pp. 629–
643, 2003.

[10] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Competitive memetic
algorithms for arc routing problems,” Annals of Operations Research,
vol. 131, no. 1, pp. 159–185, 2004.

[11] Y. Mei, K. Tang, and X. Yao, “Improved memetic algorithm for
capacitated arc routing problem,” in Proceedings of the 2009 IEEE
Congress on Evolutionary Computation, 2009, pp. 1699–1706.

[12] K. Tang, Y. Mei, and X. Yao, “Memetic Algorithm with Extended
Neighborhood Search for Capacitated Arc Routing Problems,” IEEE
Transactions on Evolutionary Computation, vol. 13, no. 5, pp. 1151–
1166, 2009.

[13] L. Feng, Y. Ong, Q. Nguyen, and A. Tan, “Towards probabilistic memet-
ic algorithm: An initial study on capacitated arc routing problem,” in
Proceedings of the 2010 IEEE Congress on Evolutionary Computation,
2010, pp. 18–23.

[14] H. Fu, Y. Mei, K. Tang, and Y. Zhu, “Memetic algorithm with
heuristic candidate list strategy for capacitated arc routing problem,” in
Proceedings of the 2010 IEEE Congress on Evolutionary Computation
(CEC). IEEE, 2010.

[15] Y. Mei, K. Tang, and X. Yao, “Decomposition-based memetic algorithm
for multiobjective capacitated arc routing problem,” IEEE Transactions
on Evolutionary Computation, vol. 15, no. 2, pp. 151–165, 2011.

[16] J. DeArmon, “A comparison of heuristics for the capacitated Chinese
postman problem,” Master’s thesis, University of Maryland, 1981.

[17] E. Benavent, V. Campos, A. Corberán, and E. Mota, “The capacitated
arc routing problem: lower bounds,” Networks, vol. 22, no. 7, pp. 669–
690, 1992.

[18] R. Eglese, “Routeing winter gritting vehicles,” Discrete Applied Math-
ematics, vol. 48, no. 3, pp. 231–244, 1994.

[19] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2985–2999, 2008.

[20] M. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with
delta grouping for large scale non-separable function optimization,” in
Proceedings of the 2010 IEEE Congress on Evolutionary Computation,
2010, pp. 1762–1769.

[21] M. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution for
large scale optimization through more frequent random grouping,” in
Proceedings of the 2010 IEEE Congress on Evolutionary Computation,
2010, pp. 1–8.

[22] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[23] F. Van den Bergh and A. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Transactions on Evolutionary Com-
putation, vol. 8, no. 3, pp. 225–239, 2004.

[24] X. Li and Y. Yao, “Cooperatively coevolving particle swarms for large
scale optimization,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 2, pp. 1–15, 2011.

[25] L. Kaufman and P. Rousseeuw, “Clustering by means of medoids,”
Statistical data analysis based on the L1-norm and related methods,
vol. 405, 1987.

[26] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

1020

