
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014 435

Cooperative Coevolution With Route Distance
Grouping for Large-Scale Capacitated

Arc Routing Problems
Yi Mei, Member, IEEE, Xiaodong Li, Senior Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—In this paper, a divide-and-conquer approach is
proposed to solve the large-scale capacitated arc routing problem
(LSCARP) more effectively. Instead of considering the problem
as a whole, the proposed approach adopts the cooperative coevo-
lution (CC) framework to decompose it into smaller ones and
solve them separately. An effective decomposition scheme called
the route distance grouping (RDG) is developed to decompose
the problem. Its merit is twofold. First, it employs the route
information of the best-so-far solution, so that the quality of
the decomposition is upper bounded by that of the best-so-
far solution. Thus, it can keep improving the decomposition by
updating the best-so-far solution during the search. Second, it
defines a distance between routes, based on which the potentially
better decompositions can be identified. Therefore, RDG is able
to obtain promising decompositions and focus the search on the
promising regions of the vast solution space. Experimental studies
verified the efficacy of RDG on the instances with a large number
of tasks and tight capacity constraints, where it managed to
obtain significantly better results than its counterpart without
decomposition in a much shorter time. Furthermore, the best-
known solutions of the EGL-G LSCARP instances are much
improved.

Index Terms—Capacitated arc routing problem, cooperative
coevolution, memetic algorithm, route distance grouping, scala-
bility.

I. Introduction

THE CAPACITATED arc routing problem (CARP) [1]
is a well known combinatorial optimization problem,

which has a lot of applications in the logistics area, such as
winter gritting [2]– [5], waste collection [6]– [8], and snow
removal [9], [10]. The problem requires designing an optimal
schedule to finish the service of a set of edges and arcs (i.e.,
directed edges) in a given network map subject to predefined
constraints so that the total cost is minimized.

Manuscript received January 3, 2013; revised July 21, 2013; accepted July
30, 2013. Date of publication September 11, 2013; date of current version
May 27, 2014. This work was supported in part by the ARC Discovery under
Grant DP120102205 and in part by the EPSRC under Grant EP/I010297/1.
The work of X. Yao was supported by the Royal Society Wolfson Research
Merit Award.

Y. Mei and X. Li are with the Evolutionary Computation and Machine
Learning Research Group, School of Computer Science and Information
Technology, RMIT University, Melbourne VIC 3000, Australia (e-mail:
yi.mei@rmit.edu.au; xiaodong.li@rmit.edu.au).

X. Yao is with the Centre of Excellence for Research in Computational
Intelligence and Applications, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

Digital Object Identifier 10.1109/TEVC.2013.2281503

In real-world situations, the problem size of CARP is
usually very large. For example, for the urban waste collection
problem, there may be hundreds or even thousands of streets
in the city for which waste is to be collected. Therefore, it is
important to study how to solve large-scale CARP (LSCARP).
Here, LSCARP is a CARP with more than 300 edges (i.e., the
required edges) to be served. The size of 300 is chosen because
previous studies have shown that it is large enough to pose a
scalability challenge [11]– [14], where the tested algorithms
either failed to obtain competitive results [11], [12], [14] or
required too much computational time [13].

LSCARP was first considered in [11], where an LSCARP
test set named the EGL-G set was generated to evaluate the
performance of algorithms. In contrast with the commonly-
used benchmark sets (the gdb, [15], val, [16], egl, [17]–[19]
and Beullens’ test sets [20]), in which the number of required
edges ranges from 11 to 190, all the instances in the EGL-G
set have more than 300 required edges. Nevertheless, most of
the algorithms for CARP that showed competitive performance
on the small and medium-sized test sets [21]–[26] were not
examined on the EGL-G test set. Clearly, LSCARP has been
overlooked so far, with only a few exceptions [11]–[14].

Solving LSCARP is much more challenging than solving
ones of small and medium size. This is because the solution
space increases exponentially as the problem size increases.
Given n required edges and m vehicles, the size of the solution
space is O(2n(n+m)!/m!). It becomes much more difficult for
the algorithm to locate the promising regions in such a vast
solution space. Hence, all the previously tested algorithms that
neglected the issue of scalability showed poor performance on
the EGL-G set.

In order to search more efficiently in the large solution
space, one can use the divide-and-conquer strategy to de-
compose the original large problem into a number of smaller
subcomponents, and then solve each subcomponent separately.
In this way, the solution space can be much reduced, and
the search can focus only on the regions defined by the
subcomponents. When decomposing the problem, the key
issue is to ensure that the solution spaces of the subcomponents
are promising regions, and thus, solving the subcomponents
separately can lead to a good result of the overall problem.
Nevertheless, in practice, the information known a priori
is often not enough to obtain the ideal decomposition. For
LSCARP, it is difficult to develop a good decomposition

1089-778X c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

436 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

beforehand, since the problem is very complex and the quality
of the decomposition depends not only on the mutual distance
between the vertices, but also on the satisfaction of the
capacity constraint.

In this case, one alternative is to dynamically change the
ingredients of the subcomponents during the search process so
that the quality of the decomposition can be improved continu-
ously as more information about the solution space is gathered.
Here, we use the cooperative coevolution (CC) framework to
achieve this, as it has been successfully applied to solving
large-scale function optimization problems [27]–[30]. The
CC framework divides the whole evolutionary optimization
process into several cycles. In each cycle, the elements of the
subcomponents are reassigned by some decomposition scheme
(e.g., random grouping [27] and delta grouping [28]).

The performance of the CC framework largely depends on
the decomposition scheme. Thus, it is important to identify the
promising decompositions. However, this is not a trivial task
for LSCARP due to two difficulties. First, the large problem
size leads to an enormous number of possible decompositions,
and the proportion of promising decompositions within all the
possible decompositions is very low. Second, after the de-
composition, each subcomponent is still NP-hard, and cannot
be solved exactly. Therefore, the decompositions cannot be
accurately evaluated. To the best of our knowledge, the above
issues for decomposing LSCARP have not been considered
before, and this paper is the first attempt to address them.

In contrast to LSCARP, there has been quite a lot of work
focused on solving large-scale vehicle routing problem (VRP)
with decomposition strategies. Taillard et al. [31] introduced
a route-clustering scheme based on the gravity of the routes
and combined it with tabu search and variable neighborhood
search. Bent and Van Hentenryck [32] developed a decoupling
strategy of the routes for large-scale VRP with time windows
(VRPTW) by considering the customer region as a circle
and dividing it into wedges based on the coordinates of
the customers. Mester et al. [33] proposed a route-clustering
method that divides the entire area into smaller rectangles.
Qi et al. [34] designed a clustering strategy of the customers
for large-scale VRPTW that uses the k-medoid approach to
combine the customers that are close to each other in terms
of both Euclidean distance and time window. Note that one
can transform LSCARP to the corresponding VRP by problem
reformulation and adopt the existing decomposition strategies.
However, this will lead to a much larger problem size. The best
reformulations [35], [36] double the problem size. However,
further changes are needed on the algorithms for VRP when
applying them to solve these formulations. The best-so-far
reformulation without modifying the algorithms [37] still
triples the problem size. Additionally, in LSCARP, the distance
between two vertices is not necessarily proportional to the
Euclidean distance between their coordinates, but the shortest
traversing distance obtained by Dijkstra’s algorithm [38]. For
example, two geographically close vertices may be discon-
nected in the graph, and have a much larger traversing distance
than the Euclidean distance between them. For this reason, the
geographic-based decomposition strategies for VRPs may not
perform well for LSCARP. Therefore, in this paper, we will

focus on developing decomposition strategies for LSCARP
directly based on the distances between the vertices rather
than the geographic information.

In this paper, an effective decomposition scheme named the
route distance grouping (RDG) is proposed for LSCARP. RDG
has two main merits. First, it uses the route information of
the best-so-far solution. That is, in each cycle, it decomposes
the problem by dividing the routes of the best-so-far solution
into multiple groups. In this way, the quality of the obtained
decomposition is upper bounded by that of the best-so-far
solution, and can be continuously improved as the best-so-
far solution is updated during the search. Second, it defines
a distance between two routes, and divides the routes based
on such distance so that the routes that are closer to each
other are more likely to be placed in the same subcomponent.
Therefore, RDG can identify the promising decompositions
without using the geographic information. Then, to solve the
subcomponents effectively, the proposed CC framework is
combined with the memetic algorithm with extended neigh-
borhood search (MAENS) [23], which has been demonstrated
to be competitive in solving small and medium-sized CARPs.
The resultant algorithm, which is named RDG-MAENS, is
evaluated on a number of test sets with various parameter
settings. The experimental studies verified the efficacy of
RDG for solving the large and difficult EGL-G instances, on
which RDG-MAENS managed to obtain significantly better
solutions in a much shorter time than its counterpart without
decomposition (MAENS).

The rest of the paper is organized as follows. First, CARP
is introduced in Section II. Note that LSCARP is essentially
CARP with large problem size (i.e., more than 300 required
edges). After that, the CC framework for LSCARP is described
in Section III. Then, in Section IV, the difficulties in develop-
ing a decomposition scheme for LSCARP are addressed and
RDG is developed. Afterward, the experimental studies are
carried out in Section V. Finally, the conclusion and future
work are provided in Section VI.

II. Capacitated Arc Routing Problem

In CARP, a graph G(V, E, A) is given, where V , E, and
A are the set of vertices, edges, and arcs of the graph. For
both E and A, there are subsets ZE ⊆ E and ZA ⊆ A, which
are also called tasks, that need to be served. For the tasks in
ZE, service from either direction is acceptable, while for the
tasks in ZA, only the same direction as the arc is allowed.
The services are done by a number of vehicles located at a
depot vertex v0 ∈ V . Let the set of all the tasks be denoted as
Z = ZE ∪ ZA. Each task z ∈ Z has a positive demand d(z) >

0 and a positive serving cost sc(z) > 0. Besides, traversing
from any vertex vi to a different vertex vj induces a positive
deadheading cost dc(vi, vj) > 0. If vi and vj are disconnected,
then dc(vi, vj) = ∞. Each vehicle has a limited capacity Q of
the demand, which is smaller than the total demand of all
the tasks. Hence, multiple vehicles are needed. CARP aims at
designing a routing plan to finish the service of the task set Z

with the minimal total cost (deadheading plus serving costs)
subject to the following constraints.

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs 437

1) Each vehicle must start and end at the depot.
2) Each task is served exactly once.
3) The total demand of the tasks served by each vehicle

cannot exceed its capacity Q.

The mathematical formulation of CARP has been inten-
sively investigated. Baldacci and Maniezzo [35] formulated
the undirected CARP with n tasks as a VRP with 2n + 1
customers. Belenguer and Benavent [39] proposed a math-
ematical formulation of CARP based on the cut constraints,
and designed a cutting plane method to solve it. Bartolini et al.
[40] and Martinelli et al. [14] developed relaxed mathematical
CARP models and obtained the best-so-far lower bounds for
the benchmark instances with exact methods. For the sake of
brevity, the details of the mathematical CARP models are not
described here, since they can be found in [39], [40] and [14].

III. Cooperative Coevolution for LSCARP

The concept of CC was first proposed by Potter and De Jong
[41] to solve a problem by dividing the decision variables
into smaller subcomponents and evolving them separately.
In their framework (CCGA-1), the original n-dimensional
decision vector is predecomposed into n one-dimensional
subcomponents before the optimization process. Then, in each
generation, the subcomponents are evolved in turn. Subsequent
to CCGA-1, there are a number of works on the static
decomposition (e.g., the 1-D [42], split-in-half [43] strategies
and the more general one dividing into k s-dimensional
subcomponents where k × s = n [44]). However, they did not
consider the interdependency between the variables and fixed
the subcomponents throughout the search process. Yang et al.
[27] considered the interaction between variables and proposed
a new CC framework, which divides the whole optimization
process into a number of cycles. In each cycle, the variables
are randomly reassigned into the subcomponents to increase
the probability of placing the interacting variables in the same
subcomponent. It is obvious that the variables of LSCARP
interact with each other, and thus, Yang et al.’s CC framework
is quite suitable for solving LSCARP. It can be described as
follows.

Step 1 Set i = 1 to start a new cycle.
Step 2 Split the original n-dimensional decision vector x =

(x1, . . . , xn) into g non-overlapping l-dimensional
subcomponents x1, . . . , xg (g · l = n) randomly. Here,
randomly means that each variable xi (i = 1, . . . , n)
has the same chance to be assigned into any of the
subcomponents.

Step 3 Evolve the subcomponent xi by an EA for a prede-
fined number of iterations.

Step 4 If i < g, then set i = i + 1 and go to Step 3.
Step 5 If the stopping criteria are met, then stop. Otherwise

go to Step 1 for the next cycle.

The random assignment of the variables in Step 2 is called the
random grouping scheme.

When adopting the above CC framework in LSCARP, the
decision variables are the tasks z ∈ Z. However, unlike
function optimization, which is to determine the optimal value

Algorithm 1 CC framework for LSCARP

1: procedure CC(LSCARP, g)
2: Initialize population p(Z);
3: s̄(Z) = arg mins(Z)∈p(Z)

(
tc(s(Z))

)
;

4: t ← 1
5: repeat
6: (Z1, . . . , Zg) = Decompose(Z);
7: for i = 1 → g do
8: p(Zi) = Pop2Subpop

(
p(Z), Zi

)
;

9: s̄(Zi) = arg mins(Zi)∈p(Zi)
(
tc(s(Zi))

)
;

10: (s̄(Zi), p(Zi)) = Evolve
(
s̄(Zi), p(Zi)

)
;

11: end for
12: p(Z) = Subpop2Pop

(
p(Z1), . . . , p(Zg)

)
;

13: s̄(t)(Z) = {s̄(Z1), . . . , s̄(Zg)};
14: if tc

(
s̄(t)(Z)

)
< tc

(
s̄(Z)

)
then

15: s̄(Z) = s̄(t)(Z);
16: end if
17: t ← t + 1;
18: until t reaches to a predefined upper bound
19: return s̄(Z);
20: end procedure

for each decision variable of the vector x, LSCARP is to
cluster all the tasks into different routes, and sort the tasks
within each route, both in an optimal way, so that the total
cost (denoted as tc) of the routes is minimized.

To decompose a LSCARP, the task set Z is essentially
decomposed into nonoverlapping subsets Z1, . . . , Zg. Then,
at Step 3 of the above CC framework, evolving the subcom-
ponent Zi is defined as finding a solution s(Zi) that serves all
the tasks in Zi with least total cost tc (s(Zi)) so that

1) each route of s(Zi) starts and ends at the depot;
2) each task in Zi is served exactly once, while all the tasks

in Z \ Zi are not served;
3) the total demand of each route of s(Zi) cannot exceed

Q.

It is obvious that given the feasible solutions s(Z1), . . . , s(Zg)
for the subcomponents, concatenating their routes ∪g

i=1s(Zi)
will lead to a feasible solution for the overall problem.

The pseudo code of the CC for LSCARP is given in
Algorithm 1. It maintains the population p(Z) and the best
feasible solution s̄(Z) of the overall problem throughout the
search process, and finally outputs s̄(Z). In each cycle, Z

is first decomposed into (Z1, . . . , Zg) by Decompose(). Af-
terward, for each Zi, a subpopulation p(Zi) is generated by
Pop2Subpop(). Then, p(Zi) is evolved by Evolve() and the
corresponding best feasible solution s̄(Zi) is updated. Finally,
p(Z) is updated from p(Z1), . . . , p(Zg) by Subpop2Pop().
Besides, the best feasible solution s̄(t)(Z) found in this cycle is
obtained by concatenating s̄(Z1), . . . , s̄(Zg) (the same as the
context vector [30], [44]), and replaces s̄(Z) if it is better.

Decompose() is the most important and difficult part of
the CC, and thus, will be described separately in Section IV.
In contrast, Pop2Subpop() and Subpop2Pop() are rather
straightforward. Given p(Z) and Zi, to obtain the jth indi-
vidual pj(Zi) from pj(Z), Pop2Subpop() scans each route

438 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

of pj(Z), and removes all the tasks in Z \ Zi. Conversely,
given p(Z1), . . . , p(Zg), Subpop2Pop() simply update each
individual pj(Z) by concatenating all the pj(Zi)’s routes.

IV. Route Distance Grouping

The objective of Decompose() is to obtain the optimal
decomposition (Z∗

1, . . . , Z
∗
g) of Z, so that the union of the

optimal solutions s∗(Z∗
1), . . . , s∗(Z∗

g) of the subcomponents is
equivalent to the optimal solution s∗(Z) of the overall problem,
i.e., tc

(∪g
i=1s∗(Z∗

i)
)

= tc (s∗(Z)). In other words, the objective
is to minimize tc

(∪g
i=1s∗(Zi)

)
.

It is obvious that an optimal decomposition can be obtained
by dividing the routes of the optimal solution s∗(Z) into sub-
sets of routes. However, in practice, the route information of
s∗(Z) cannot be known in advance. Therefore, we approximate
the route information of s∗(Z) with that of the best-so-far
solution s̄(Z). That is, the tasks in the same route of s̄(Z)
are considered more likely to be in the same route of s∗(Z).
This idea is similar to grouping solutions with respect to
route instead of customer; the latter as in VRP [31]– [33].
Here, we give the theoretical analysis to show that as long
as the subcomponents (Z1, . . . , Zg) are obtained by dividing
the routes of the best-so-far solution s̄(Z), one can guarantee
that the quality of the decomposition must improve along
with the improvement of s̄(Z) in terms of upper bound of
tc

(∪g
i=1s∗(Zi)

)
. The analysis is as follows.

First, we define s̄(Zi) as the subset of routes of s̄ placed in
subcomponent Zi. Then, it is obvious that

tc
(∪g

i=1s̄(Zi)
)

= tc (s̄(Z)) . (1)

On the other hand, since the total cost of a set of routes is the
sum of the total costs of each route in the set, we have

tc
(∪g

i=1s∗(Zi)
)

=
g∑

i=1

tc
(
s∗(Zi)

)
(2)

tc
(∪g

i=1s̄(Zi)
)

=
g∑

i=1

tc (s̄(Zi)) . (3)

Therefore, we have

tc
(∪g

i=1s∗(Zi)
)

=
g∑

i=1

tc
(
s∗(Zi)

)

≤
g∑

i=1

tc (s̄(Zi)) = tc
(∪g

i=1s̄(Zi)
)

= tc (s̄(Z)) . (4)

That is, tc
(∪g

i=1s∗(Zi)
)

is upper bounded by tc (s̄(Z)). Thus,
tc

(∪g
i=1s∗(Zi)

)
improves along with the improvement of

tc (s̄(Z)) during the search process.
When grouping the routes of s̄(Z), we can leverage on the

domain knowledge and develop heuristics to favor potentially
better groupings over other groupings. Since the objective is to
minimize the total cost, the optimal solution tends to link the
tasks that are close to each other, and place them in the same
route. Therefore, the tasks that are closer to each other should
be more likely to be placed in the same subcomponent. Based
on such domain knowledge, it is better to combine the routes

whose tasks are closer to each other. For VRP, the closeness
between routes was defined based on geographic information,
i.e., coordinates [31]– [33]. However, such a definition may
not be proper for LSCARP, because the distance between the
nodes is not the Euclidean distance between their coordinates,
but the shortest traversing distance obtained by Dijkstra’s
algorithm. Then, the nodes that are geographically closer do
not necessarily have smaller traversing distance. In this case,
it is more proper to define the closeness directly based on the
distance matrix rather than the coordinates.

To define the closeness between routes for LSCARP, we
first define the distance �task(z1, z2) between two tasks z1 and
z2 as follows:

�task(z1, z2) =

2∑
i=1

2∑
j=1

�
(
vi(z1), vj(z2)

)

4
(5)

where �
(
vi(z1), vj(z2)

)
is the traversing distance between the

ith end-node vi(z1) of the task z1 and the jth end-node vj(z2)
of the task z2. Hence, �task(z1, z2) is defined as the average
distance of the four possible links between z1 and z2.

Based on the task distance, the distance �route(s1, s2) be-
tween two routes s1 and s2 can be defined as follows:

�route(s1, s2) =

∑
z1∈s1

∑
z2∈s2

�task(z1, z2)

|s1| · |s2| . (6)

Therefore, �route(s1, s2) is the average distance of all the pairs
of the tasks so that one is from s1 and the other from s2.

Finally, �route(s1, s2) needs to be normalized with respect
to �route(s1, s1) and �route(s2, s2). To this end, we define
the following normalized distance to represent the closeness
between s1 and s2:

�̂route(s1, s2) =
�route(s1, s2)

�route(s1, s1)
· �route(s1, s2)

�route(s2, s2)
. (7)

An example of computing the �̂route matrix is given in Figs.
1 and 2. First, the graph is shown in Fig. 1, where the tasks
z1, . . . z7 are represented by the solid lines. v0 is the depot.
The deadheading costs of the edges of the graph are all one.
Thus, the distance matrix � between the vertices is

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0 v1 v2 v3 v4 v5 v6

v0 0 1 2 2 2 1 1
v1 1 0 1 2 2 2 1
v2 2 1 0 1 2 2 1
v3 2 2 1 0 1 2 1
v4 2 2 2 1 0 1 1
v5 1 2 2 2 1 0 1
v6 1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, Fig. 2 shows three routes s1 = (0, x1, x3, x5, 0) (the
inner circle), s2 = (0, x2, x4, x6, 0) (the outer circle), and s3 =
(0, x7, 0) to serve all the tasks, where xi is the ID assigned to
the current direction of the task zi, ∀ i = 1, . . . , 7. Each route
starts and ends at the depot loop indexed by 0. The services are
represented by solid arrows, while the deadheading paths are
represented by dashed arrows. It can be seen that s1 and s2 are
more tangled with each other than with s3, and thus, should
be more likely to be placed in the same subcomponent. In

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs 439

Fig. 1. Example graph of computing the �̂route matrix.

Fig. 2. Given three routes for the example graph.

fact, if we have a capacity constraint that prohibits each route
from serving more than three tasks, then, combining s1 and s2

together can lead to two improved routes s′
1 = (0, x1, x2, x3, 0)

and s′
2 = (0, x4, x5, x6, 0). When calculating the total cost, we

have

tc(s1) = tc(s2) =
4∑

i=0

�(vi, vi+1) + �(v5, v0) = 6 (8)

tc(s′
1) =

2∑
i=0

�(vi, vi+1) + �(v3, v0) = 5 (9)

tc(s′
2) = �(v0, v3) +

4∑
i=3

�(vi, vi+1) + �(v5, v0) = 5. (10)

Then, tc(s′
1) + tc(s′

2) < tc(s1) + tc(s2). However, combining
s1 (or s2) and s3 cannot lead to improvement. According to
(5), the distance matrix between the tasks is

�task =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1 z2 z3 z4 z5 z6 z7

z1 1/2 1 7/4 2 7/4 1 3/4
z2 1 1/2 1 7/4 2 7/4 5/4
z3 7/4 1 1/2 1 7/4 2 3/2
z4 2 7/4 1 1/2 1 7/4 3/2
z5 7/4 2 7/4 1 1/2 1 5/4
z6 1 7/4 2 7/4 1 1/2 3/4
z7 3/4 5/4 3/2 3/2 5/4 3/4 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, the distance matrix between the routes in Fig. 2 is
computed by (6) and the results are

�route =

⎛
⎝

s1 s2 s3

s1 4/3 4/3 7/6
s2 4/3 4/3 7/6
s3 7/6 7/6 1/2

⎞
⎠.

Then, based on (7), we have

�̂route =

⎛
⎝

s1 s2 s3

s1 1 1 49/24
s2 1 1 49/24
s3 49/24 49/24 1

⎞
⎠.

It can be seen that �̂route(s1, s2) is much smaller than
�̂route(s1, s3) and �̂route(s2, s3), which is consistent with the
intuition that s1 and s2 should be more likely to be combined
together. On the other hand, if there is no normalization, then
�route(s1, s2) is larger than �route(s1, s3) and �route(s2, s3). This
indicates the importance of normalization for identifying the
more tangled routes.

Based on the above definition, if two routes have smaller
�̂route(s1, s2), they are considered to be closer to each other,
and it should be more promising to place them in the same
subcomponent. Following this understanding, we can define
the decomposition as a clustering problem of the routes based
on the normalized distance matrix

(
�̂route(sk1 , sk2)

)
m×m

, where
m is the number of routes in the solution s. If two routes have
a smaller normalized distance, they are more likely to be in
the same cluster.

Here, we define the clustering problem as a fuzzy k-medoids
[45], which can be stated as follows:

min
c⊆s

Jα(c; s) =
∑

si∈s\c

∑
cj∈c

Mα(si, cj) · �̂route(si, cj). (11)

Given
(
�̂route(sk1 , sk2)

)
m×m

and the predefined number of
groups g, the aim of the fuzzy k-medoids problem is to select
a subset of the routes c = {c1, . . . , cg}, which are called the
medoids, out of the entire set of routes s = {s1, . . . , sm},
so that the sum of the fuzzy distances between all the pairs
of the medoids and nonmedoids is minimized. The function
Mα(si, cj), which is called the membership of si to cj , is used
to obtain the fuzzy distances. Generally, Mα(si, cj) is larger
if �̂route(si, cj) is smaller. Here, it is defined as follows:

Mα(si, cj) =

(
1

�̂route(si,cj)

)α

∑g

k=1

(
1

�̂route(si,ck)

)α . (12)

The parameter α ∈ [0, ∞) controls the degree of fuzziness.
When α = 0, the fuzziness is maximized and the membership
of a nonmedoid to each medoid is the same as 1/g regardless
of the distance between them. When α = ∞, there is no
fuzziness. The membership is 1 to the closest medoid, and 0 to
the other medoids. In this case, the fuzzy k-medoids problem
is reduced to the k-medoids problem [46].

To solve the fuzzy k-medoids problem, we employ the
partitioning around medoids (PAM) algorithm [46], which
is a simple and commonly used method. It is described in

440 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

Algorithm 2 PAM algorithm for fuzzy k-medoids problem

1: procedure PAM(
(
�̂route(sk1 , sk2)

)
m×m

, g, α)
2: Randomly choose c ⊆ s;
3: Compute Jα(c; s) based on Eqs. (11) and (12);
4: repeat
5: cold ← c, c∗ ← c;
6: Set Jα(c∗; s) = Jα(c; s);
7: for j = 1 → g do
8: for si ∈ s \ c do
9: c′ ← c;

10: Swap c′
j and si;

11: Compute Jα(c′; s);
12: if Jα(c′; s) < Jα(c∗; s) then
13: c∗ ← c′;
14: end if
15: end for
16: end for
17: c ← c∗;
18: until cold = c
19: return c;
20: end procedure

Algorithm 2. At the beginning, the medoids c = {c1, . . . , cg}
are randomly chosen. Then, at each iteration, all the swaps
between the medoids cj ∈ c and the nonmedoids si ∈ s \ c are
evaluated in terms of the new objective value Jα(c′; s) after
the swap, and the one with the minimal Jα(c′; s) is selected to
be conducted on c. The swap is repeated until no improvement
is obtained on Jα(c; s).

After applying the PAM algorithm to the routes s, the output
is a number of the medoids c = {c1, . . . , cg}, each representing
a group. Then, it is necessary to assign all the nonmedoid
routes to the groups. Here, we adopt the simple roulette
wheel method based on the memberships of the nonmedoids
to the medoids. The probability of assigning a nonmedoid to
the group of each medoid is proportional to its membership
to the medoid. Such an assignment process is described in
Algorithm 3.

Finally, the decomposition (Z1, . . . , Zg) of the task set Z

can be obtained directly from the grouping of the routes.
Specifically, if a task is in a route of Gi, then it is put into
Zi. This can be depicted in Algorithm 4.

In summary, at the beginning of each cycle of the CC
framework, the normalized distance matrix of the routes of
the best-so-far solution is computed, and the corresponding
decomposition is then obtained by the aforementioned route
grouping method. This decomposition is called the RDG, as
it uses a grouping scheme of the routes based on the distance
between them. It is described in Algorithm 5, and replaces
Decompose(Z) in line 6 of Algorithm 1.

Compared with existing clustering methods [31]–[34] for
VRP, RDG has the following advantages. First, it is based on
a rigorous theoretical analysis so that the decomposition can
be guaranteed to be improved along with the improvement of
the best-so-far solution. Second, a normalized distance matrix
of the routes for LSCARP is defined to reflect the closeness

Algorithm 3 Assignment of the non-medoids

1: procedure NonMedAssign(Mα(si, cj))
2: for i = 1 → g do
3: Gi = {ci};
4: end for
5: for si ∈ s \ c do
6: Sample the random variable r ∈ [0, 1] uniformly;
7: ϕ = 0;
8: for k = 1 → g do
9: ϕ ← ϕ + Mα(ck; si);

10: if ϕ ≥ r then
11: break;
12: end if
13: Gk ← Gk ∪ si;
14: end for
15: end for
16: return (G1, . . . ,Gg);
17: end procedure

Algorithm 4 Task decomposition from route grouping

1: procedure TaskDecomp((G1, . . . ,Gg))
2: for i = 1 → g do
3: Zi = {};
4: for sk ∈ Gi do
5: for z ∈ sk do
6: Zi ← Zi ∪ z;
7: end for
8: end for
9: end for

10: return (Z1, . . . , Zg);
11: end procedure

Algorithm 5 Route distance grouping decomposition

1: procedure RDGDecompose(s̄, g, α)
2: Compute

(
�̂route(s̄k1 , s̄k2)

)
m×m

by Eqs. (5)–(7);
3: c̄ = PAM(

(
�̂route(s̄k1 , s̄k2)

)
m×m

, g, α);
4: (Ḡ1, . . . , Ḡg) = NonMedAssign(Mα(s̄i, c̄j));
5: (Z1, . . . , Zg) = TaskDecomp((Ḡ1, . . . , Ḡg));
6: return (Z1, . . . , Zg);
7: end procedure

between the routes, and a fuzzy route clustering problem that
is directly based on the normalized distance matrix is defined.
In this way, one does not need to assume that geographically
closer nodes must have smaller traversing distance and the
coordinates of the nodes are known. Finally, the introduced
fuzziness parameter α can control the degree of freedom
during the route clustering, and help the decomposition to
jump out of the local optima.

V. Experimental Studies

For the proposed CC algorithm with RDG for LSCARP,
the performance mainly depends on two parameters: g and
α. First, it is obvious that g influences the performance of
the algorithm in the same way as the number of clusters

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs 441

influences the quality of solutions in the clustering problem.
g also determines the number of possible decompositions and
thus the probability of obtaining ideal decompositions. Second,
α controls the degree of freedom of the route grouping. If α

is too small, then the route grouping is too random and there
is not enough bias to the promising decompositions. If α is
too large, the grouping may be too deterministic to jump out
of the local optima. To investigate the effect of g and α, we
evaluated the performance of the proposed algorithm under
different values of g and α.

Finally, the algorithm to solve each subcomponent is to be
decided. Here, we adopt MAENS [23] due to its competi-
tiveness for small and medium-sized CARP in terms of the
quality of the final solution. Note that Chen extended MAENS
to MAENS+ [13] to address the scalability issue. However,
the experimental studies only showed marginal improvement
on the quality of solution. For the sake of simplicity, the
standard version of MAENS is adopted. Together with RDG,
the proposed algorithm is called RDG-MAENS.

A. Parameter Settings

The parameter settings are given in Table I, where g and
α are the parameters of RDG, and the remaining are the
parameters of MAENS and the CC framework. Here, g = 2
and 3 and α = 1, 5 and 10 are tested. Therefore, there are,
in total, 2 · 3 = 6 versions of RDG-MAENS to be compared.
For the sake of simplicity, we refer to the different versions
of RDG-MAENS (g, α) hereafter. For example, (2, 5) refers to
the RDG-MAENS with g = 2 and α = 5. The number of cycles
is arbitrarily set to 50 given 500 total generations to achieve a
relatively good tradeoff between the number of cycles and the
exploitation of the subcomponents in each cycle. To verify the
efficacy of RDG, RDG-MAENS is compared with MAENS,
which is its counterpart without RDG decomposition, under
the same parameter settings and computational platform. To
this end, we obtained the source code of MAENS1 and ran
it again under the same computational platform as RDG-
MAENS on all the test instances.

The Beullens’C, D, E, F sets [20], egl [17]–[19], and EGL-G
[11] test sets are selected to evaluate RDG-MAENS. Beullens’
sets are based on the intercity road network in Flanders,
Belgium, each containing 25 different instances with 28–121
tasks. The D and F instances share the same networks with
the C and E instances, respectively, but with a larger capacity.
The egl set is the largest commonly used CARP test set in the
literature. It was derived from a winter gritting application in
Lancashire, U.K., which has 24 instances with the number of
tasks ranging from 51 to 190. The EGL-G set was also based
on the road network of Lancashire, U.K., consisting of TEN
LSCARP instances with 347 to 375 tasks. In summary, the test
sets consist of small, medium, and large scale CARP instances.
Although RDG-MAENS is proposed specifically for solving
LSCARP, one may still be interested in its performance on the
small and medium sized instances. The gdb [15] and val [16]
test sets are not selected here, since all the gdb instances have

1The code was obtained from the website .

TABLE I

Parameter Settings of RDG-MAENS

been solved optimally, and the problem size of the val set is
covered by that of Beullens’ sets.

For the test sets, the state-of-the-art algorithms are selected
for comparison. To be specific, for Beullens’ sets, GLS [20]
and Ant-CARP (the version with 12 move types) [25] are taken
into account. For the egl set, Ant-CARP and VNS (the 3.6 GHz
version) [10] are selected, and for the EGL-G set, ILS-RVND
[14] is chosen.

For each parameter setting, 30 independent runs of RDG-
MAENS and MAENS were conducted on all the test instances.
The code of the MAENS part was directly obtained from the
one provided in the original reference [23], and the other parts
were implemented in C++. RDG-MAENS and MAENS were
compiled by GNU Compiler Collection (GCC) for Windows
and run on the CPU Intel Core i7-2600 @3.4 GHz, using only
one core.

B. Results and Discussions

First, the average performance and runtime of RDG-
MAENS are evaluated. Tables II–VII show the mean of
the 30 total costs and computational time of RDG-MAENS
and MAENS, along with the average performance of each
compared algorithm and the features of the test instances. |V |,
|E|, and |Z| refer to the number of vertices, edges, and tasks,
respectively. τ is the minimal number of vehicles required to
serve all the tasks, which is obtained as follows:

τ =

⌈∑
z∈Z d(z)

Q

⌉
. (13)

In general, a larger τ indicates a tighter capacity constraint
and, thus, a higher level of difficulty of the problem.

In the tables, the average performance and computational
time of the compared algorithms were obtained directly from
the original references except MAENS. For GLS, the column
labelled “Cost” indicates the total cost of the final solution,
since it was run only once. For Ant-CARP, the median total
cost and average computational time of five independent runs
are provided. For VNS and ILS-RVND, the mean total cost
and computational time of ten independent runs are given. For
Beullens’ sets, the past results were presented in the form of
either total cost or total deadheading cost, i.e., total cost minus
total serving cost. For the sake of consistency, all the results
have been transformed to total deadheading cost.

It is difficult to conduct a fair comparison on computational
time as there is no common computational platform, includ-
ing CPU frequency, RAM, operating system, implementing
language, compiler, etc. Here, the computation time of each

442 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

TABLE II

Average (Mean or Median) Total Cost and Computational Time of the Compared Algorithms on Beullens’ C Test set. For Each

Instance, the Minimal Total Cost of MAENS and RDG-MAENS is Marked With
†
. For Each Version of RDG-MAENS, If Its Mean

Total Cost Is Statistically Significantly Smaller Than That of MAENS, Then, It Is Marked in Bold. Otherwise, the Mean Total

Cost of MAENS Is Marked in Bold If It Is Statistically Significantly Smaller Than That of All the Versions of RDG-MAENS

compared algorithm is simply normalized with respect to the
CPU frequency, as has been done in the previous studies [12],
[14], [23], [25]. The normalized computational time of each
compared algorithm is obtained as follows:

ρ̄(algorithm) = ρ(algorithm) · ψ(algorithm)

ψ(RDG-MAENS)
(14)

where ρ̄(algorithm) and ρ(algorithm) are the normalized com-
putational time and original computational time obtained from
publications, and ψ(RDG-MAENS) and ψ(algorithm) are the
CPU frequency of RDG-MAENS and the algorithm, respec-
tively. In the experiments, RDG-MAENS and MAENS were
run on an Intel Core i7-2600 @3.4 GHz, using only one core.
GLS was run on Intel Pentium II @500 MHz. Ant-CARP
was run on Intel Pentium III @1 GHz. VNS was run on
Intel Pentium IV @3.6 GHz. ILS-RVND was run on Intel
Core i5 @3.2 GHz. Thus, the computational time of GLS,
Ant-CARP, VNS, and ILS-RVND are multiplied by 0.5/3.4,
1/3.4, 3.6/3.4, and 3.2/3.4, respectively. Normalization is not
needed for MAENS as it was run on the same computational
platform as RDG-MAENS. As shown in [47], even identical
CPUs may perform radically differently under different cache
or RAM capacities. Therefore, the above normalization is
only indicative. However, since MAENS and RDG-MAENS

were run on the same computational platform, the comparison
between them is guaranteed to be fair and thus provides a
meaningful comparison on computational time.

In the tables, for each instance, the minimal mean total
cost between MAENS and RDG-MAENS is marked with †.
Besides, for each instance and each version of RDG-MAENS,
the 30 total costs are compared with that of MAENS using
Wilcoxon’s rank sum test [48] at the significance level of 0.05.
If they are significantly smaller, then the corresponding mean
total cost is marked in bold. Otherwise, the mean total cost of
MAENS is marked in bold if it is significantly smaller than that
of all the versions of RDG-MAENS. Note that for Beullens’
D16, D22, and E25 instances, τ = 2 and there are not enough
routes to be divided into three groups. Hence, RDG-MAENS
with g = 3 were not applicable to them, and the corresponding
results were marked with −.

From Tables II–V, it can be seen that on almost all Beullens’
instances, MAENS showed better average performance than
RDG-MAENS. It obtained smaller mean total cost than RDG-
MAENS on 92 out of the total 100 Beullens’ instances (21 C,
24 D, 22 E, and 25 F instances), 63 of which were statistically
significant (12 C, 19 D, 13 E, and 19 F instances). There are
only two instances (C01 and C15) on which (2, 5) performed
significantly better than MAENS. Overall, MAENS obtained

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs 443

TABLE III

Average (Mean or Median) Total Cost and Computational Time of the Compared Algorithms on Beullens’ D Test Set. For Each

Instance, the Minimal Total Cost of MAENS and RDG-MAENS is Marked With
†
. The Mean Total Cost of MAENS Is Marked in

Bold If It Is Statistically Significantly Smaller Than That of All the Versions of RDG-MAENS

similar average performance with Ant-CARP in terms of the
average mean or median total cost over all Beullens’ instances.
This implies that MAENS is still one of the best performing
algorithms on Beullens’ sets. Additionally, it is observed that
MAENS showed better performance than RDG-MAENS on
more D and F instances. Note that the D and F instances have
smaller τ’s than the C and E instances. Therefore, MAENS
performed better on the instances with smaller τ’s. For RDG-
MAENS, smaller g and α generally have better performance.

On Beullens’ instances, RDG-MAENS did not always have
a smaller computational time than MAENS. In fact, for
many instances (e.g., C06 and C17), MAENS had a smaller
computational time than RDG-MAENS. The reason can be
explained as follows: most Beullens’ instances are small or
medium scaled instances. When the problem size is not large,
the computational effort for solving each subcomponent is
nearly the same as solving the overall problem. In this case, the
total computational time for solving all the g components can
be larger than that of solving the problem itself. Therefore, the
decomposition strategy is not effective when the problem size
is not large. Finally, the computational time of RDG-MAENS
was much larger than that of the compared state-of-the-art
algorithms. The reason is likely to be that RDG-MAENS
did not employ the lower bound, and thus, always stopped
after the maximal number of generations. However, the other

Fig. 3. Average computational time versus the number of tasks over all the
test instances for each compared algorithm.

algorithms may stop much earlier than the maximal number
of generations when reaching the lower bound, especially for
the simple instances.

On the egl instances, which are shown in Table VI, the
average performance of RDG-MAENS became much better,
especially on the second half of the set. More specifically,

444 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

TABLE IV

Average (Mean or Median) Total Cost and Computational Time of the Compared Algorithms on Beullens’ E Test Set. For Each

Instance, the Minimal Total Cost of MAENS and RDG-MAENS Is Marked With
†
. The Mean Total Cost of MAENS Is Marked in

Bold If It Is Statistically Significantly Smaller Than That of All the Versions of RDG-MAENS

Fig. 4. Convergence curves of RDG-MAENS on Beullens’ C15.

from s2-A to s4-C, at least one version of RDG-MAENS
showed significantly better performance than MAENS. On
these nine instances, all the versions of RDG-MAENS with
g = 2 performed no worse than MAENS and other state-of-the-
art algorithms. In other words, RDG-MAENS outperformed
MAENS and other state-of-the-art algorithms on the instances

Fig. 5. Convergence curves of RDG-MAENS on Beullens’ D15.

with |Z| ≥ 147 and τ ≥ 14. In addition, there is an obvious
trend that the computational time decreases when g increases.

Finally, as shown in Table VII, on the EGL-G instances, it
is obvious that RDG-MAENS performed significantly better
than MAENS and ILS-RVND. In terms of the average results
and computational time over the ten EGL-G instances, (3, 5)
performed the best, as it obtained nearly the best average

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs 445

TABLE V

Average (Mean or Median) Total Cost and Computational Time of the Compared Algorithms on Beullens’ F Test Set. For Each

Instance, the Minimal Total Cost of MAENS and RDG-MAENS Is Marked With
†
. The Mean Total Cost of MAENS Is Marked in

Bold If It Is Statistically Significantly Smaller Than That of All the Versions of RDG-MAENS

results (only slightly worse than that of (2, 10)) with the
smallest computational time. It is also obvious that a larger
g leads to a much smaller computational time.

In summary, the average performance of RDG-MAENS
improves as |Z| and τ increases in terms of both solution
quality and speed. When |Z| and τ are large (e.g., |Z| ≥ 147,
τ ≥ 14), RDG-MAENS can obtain significantly better solu-
tions in a much shorter time than MAENS. On the other hand,
the previous studies have shown that larger |Z| (problem size)
and τ (tightness of the capacity constraint) lead to a higher
level of difficulty of the problem. Therefore, the efficacy of
the RDG decomposition scheme in solving large and difficult
CARP instances has been verified.

To better understand the scalability of RDG-MAENS, we
plot the average computational time versus the number of tasks
over all the test instances for MAENS and each version of
RDG-MAENS. The results are shown in Fig. 3, where the x-
axis represents the number of tasks, and the y-axis indicates
the average computational time in seconds. Note that there
are multiple instances with the same number of tasks (x-axis
value). In this case, the average of the y-axis values of these
instances is computed to represent the average computational
time for the corresponding number of tasks. From the figure,
it is obvious that as g increases, the scalability improves
significantly. When the number of tasks is no larger than

50, the average computational time of RDG-MAENS is not
different from that of MAENS. Then, as the number of tasks
increases, the effect of g on the computational time increases.
As a result, the curve of MAENS is the steepest, while the
versions of RDG-MAENS with g = 3 have the flattest curves.
Given the same g, different values of α lead to similar curves.
This implies that the scalability of RDG-MAENS depends
largely on g, but not much on α.

Table VIII shows the mean of the best total costs of RDG-
MAENS and the other state-of-the-art algorithms over the
instances of each test set. One can see that on Beullens’ sets,
the best performance of MAENS is no worse than that of
the other state-of-the-art algorithms. The best performance of
(2, 1) is also as good as that of the state-of-the-art algorithms
on Beullens’ C, E, and F sets. On the egl set, all the versions
of RDG-MAENS showed nearly the same best performance
as the state-of-the-art results. However, on the EGL-G set, all
the versions of RDG-MAENS performed much better than the
state-of-the-art results in the best case.

Table IX shows the results on the instances where the
best-known solutions were updated by RDG-MAENS. BK
represents the previously best-known results of the instances,
which were obtained from [10], [14], [25], [40]. For each
instance, the new best-known result is marked in bold. One can
see that the best-known results were updated for all the EGL-G

446 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

TABLE VI

Average (Mean or Median) Total Cost and Computational Time of the Compared Algorithms on the Egl Test Set. For Each

Instance, the Minimal Total Cost of MAENS and RDG-MAENS Is Marked with
†
. For Each Version of RDG-MAENS, if its Mean

Total Cost Is Statistically Significantly Smaller than that of MAENS, then it is Marked in Bold. Otherwise, the Mean Total

Cost of MAENS Is Marked in Bold If It Is Statistically Significantly Smaller Than That of All the Versions of RDG-MAENS

Fig. 6. Convergence curves of the compared algorithms on egl-e4-C.

instances. The other instances (C11, E09, E11, s2-B and s4-B)
also have larger |Z| and τ than most instances in their own
test sets. Therefore, the best performance of RDG-MAENS
showed a similar pattern as that of its average performance.
That is, RDG-MAENS showed its competitiveness on the
instances with large |Z|’s and τ’s.

Fig. 7. Convergence curves of the compared algorithms on egl-s2-B.

A more illustrative comparison is also made on the con-
vergence curves of MAENS and RDG-MAENS for some
representative instances, which are shown in Figs. 4–9. In
the figures, the x-axis represents the computational time in
seconds, and the y-axis is the average total cost of the best-
so-far solutions over the 30 independent runs. Figs. 4 and 5
show the results on Beullens’ C15 and D15 instances, which

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs 447

TABLE VII

Mean Total Cost and Computational Time of the Compared Algorithms on the EGL-G Test Set. For Each Instance, the Minimal

Total Cost of MAENS and RDG-MAENS Is Marked With
†
. For Each Version of RDG-MAENS, If Its Mean Total Cost Is

Statistically Significantly Smaller Than That of MAENS, Then, It Is Marked in Bold

TABLE VIII

Mean of Best Total Cost of the Compared Algorithms Over the Instances of Each Test Set

have the same graph. However, C15 has a larger τ. One can see
that the curves of RDG-MAENS tend to be closer to that of
MAENS on C15 than D15, which implies that RDG-MAENS
performed better on C15 than D15. Figs. 6 and 7 are the results
on the egl e4-C and s2-B, which have the similar τ’s. However,
the number of tasks is much larger in s2-B than in e4-C. It is
obvious that RDG-MAENS performed much better on s2-B.
Figs. 8 and 9 give the results on EGL-G2-A and EGL-G2-D,
both are LSCARP with larger τ’s. On these instances with
large τ’s, there is a clear advantage of RDG-MAENS over
MAENS as well. However, the best versions of RDG-MAENS
are different. On EGL-G2-A, (2, 10) performed the best, while
on EGL-G2-D, (3, 10) showed the best performance. In short,
the representative illustrations show that RDG performed
better on instances with larger number of tasks and τ.

In summary, the competitiveness of the proposed RDG
decomposition scheme was demonstrated by the substantially
improved performance of RDG-MAENS on the instances
with large |Z|’s and τ’s in terms of both solution quality
and computational time. In addition, it is shown that both
parameters g and α affect the performance of RDG-MAENS.
For example, on the EGL-G set, if g = 2, then α = 10 is the
best value among all the compared α’s. When g = 3, α = 5 is
the best option. This implies the necessity of including both
g and α to achieve better decomposition performance.

TABLE IX

Best Total Cost Obtained by the RDG-MAENS on the Instances

Where the Best-Known Results Were Updated. For Each

Instance, the New Best-Known Result Is Marked in Bold

448 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

Fig. 8. Convergence curves of the compared algorithms on EGL-G2-A.

Fig. 9. Convergence curves of the compared algorithms on EGL-G2-D.

VI. Conclusion

The practically important LSCARP is investigated in this
paper, and a competitive decomposition-based approach is
proposed for solving it. The proposed approach is a combi-
nation of the CC framework and an effective RDG decom-
position scheme. The major contribution of this paper is the
development of the RDG decomposition scheme. It takes the
best-so-far solution as a guide, and defines a distance matrix
between the routes to make the routes closer to each other
more likely to be placed in the same subcomponent. In this
way, more promising decompositions can be identified as the
search continues. The final algorithm is named RDG-MAENS.
The experimental studies demonstrated the efficacy of RDG-
MAENS on the large and difficult CARP instances, such as all
the EGL-G LSCARP instances and the egl instances with large
|Z|’s and τ’s. Furthermore, the best-known results of the EGL-
G instances have been much improved by RDG-MAENS.

The performance of RDG-MAENS largely depends on g

and α. In this paper, the effects of g and α were briefly
investigated by comparing RDG-MAENS with different g’s
and α’s, and the experimental results showed that the best g

and α values are different for different instances. For example,
Figs. 8 and 9 show that the best version of RDG-MAENS is
(2, 10) on EGL-G2-A, and (3, 10) on EGL-G2-D. In addition,
the tradeoff between the number of cycles and the generations
in each cycle may also influence the performance of the
algorithm. In the future, the relationship between the best
parameter values and the problem characteristics, such as |Z|,
τ, and the graph topology will be investigated, in an attempt
to develop an adaptive parameter setting scheme to further
enhance the performance of the algorithm.

References

[1] M. Dror, Arc Routing: Theory, Solutions and Applications. Boston, MA,
USA: Kluwer Academic, 2000.

[2] H. Handa, L. Chapman, and X. Yao, “Robust salting route optimization
using evolutionary algorithms,” in Proc. IEEE Congr. Evol. Comput.,
vol. 1. Jul. 2006, pp. 10 455–10 462.

[3] H. Handa, L. Chapman, and X. Yao, “Robust route optimization for
gritting/salting trucks: A CERCIA experience,” IEEE Comput. Intell.
Mag., vol. 1, no. 1, pp. 6–9, Feb. 2006.

[4] G. Ghiani, G. Improta, and G. Laporte, “The capacitated arc rout-
ing problem with intermediate facilities,” Networks, vol. 37, no. 3,
pp. 134–143, 2001.

[5] A. Amberg, W. Domschke, and S. Voß, “Multiple center capacitated arc
routing problems: A tabu search algorithm using capacitated trees,” Eur.
J. Oper. Res., vol. 124, no. 2, pp. 360–376, 2000.

[6] F. Chu, N. Labadi, and C. Prins, “A scatter search for the periodic
capacitated arc routing problem,” Eur. J. Oper. Res., vol. 169, no. 2,
pp. 586–605, 2006.

[7] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Evolutionary algo-
rithms for periodic arc routing problems,” Eur. J. Oper. Res., vol. 165,
no. 2, pp. 535–553, 2005.

[8] Y. Mei, K. Tang, and X. Yao, “A memetic algorithm for periodic
capacitated arc routing problem,” IEEE Trans. Syst., Man, Cybern. B:
Cybern., vol. 41, no. 6, pp. 1654–1667, Dec. 2011.

[9] J. Campbell and A. Langevin, “Roadway snow and ice control,”
Arc Routing: Theory, Solutions and Applications. Boston, MA, USA:
Kluwer, 2000, pp. 389–418.

[10] M. Polacek, K. Doerner, R. Hartl, and V. Maniezzo, “A variable neigh-
borhood search for the capacitated arc routing problem with intermediate
facilities,” J. Heuristics, vol. 14, no. 5, pp. 405–423, 2008.

[11] J. Brandão and R. Eglese, “A deterministic tabu search algorithm for
the capacitated arc routing problem,” Comput. Oper. Res., vol. 35, no. 4,
pp. 1112–1126, 2008.

[12] Y. Mei, K. Tang, and X. Yao, “A global repair operator for capacitated
arc routing problem,” IEEE Trans. Syst., Man, Cybern. B: Cybern.,
vol. 39, no. 3, pp. 723–734, Jun. 2009.

[13] X. Chen, “MAENS+: A divide-and-conquer based memetic algorithm
for capacitated arc routing problem,” in Proc. 4th IEEE Int. Symp.
Comput. Intell. Design, vol. 1. Oct. 2011, pp. 83–88.

[14] R. Martinelli, M. Poggi, and A. Subramanian, “Improved bounds for
large scale capacitated arc routing problem,” Comput. Oper. Res., vol. 40,
no. 8, pp. 2145–2160, 2013.

[15] J. De Armon, “A comparison of heuristics for the capacitated Chinese
postman problem,” Master’s thesis, University of Maryland, College
Park, MD, USA, 1981.

[16] E. Benavent, V. Campos, A. Corberán, and E. Mota, “The capacitated arc
routing problem: Lower bounds,” Networks, vol. 22, no. 7, pp. 669–690,
1992.

[17] R. Eglese, “Routeing winter gritting vehicles,” Discrete Appl. Math.,
vol. 48, no. 3, pp. 231–244, 1994.

[18] R. Eglese and L. Li, “A tabu search based heuristic for arc routing
with a capacity constraint and time deadline,” Meta-Heuristics: Theory
Applications. Boston, MA, USA: Kluwer Academic, 1996, pp. 633–650.

[19] L. Li and R. Eglese, “An interactive algorithm for vehicle routeing for
winter-gritting,” J. Oper. Res. Soc., vol. 47, no. 2, pp. 217–228, 1996.

[20] P. Beullens, L. Muyldermans, D. Cattrysse, and D. Van Oudheusden, “A
guided local search heuristic for the capacitated arc routing problem,”
Eur. J. Oper. Res., vol. 147, no. 3, pp. 629–643, 2003.

[21] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Competitive memetic
algorithms for arc routing problems,” Ann. Oper. Res., vol. 131, no. 1,
pp. 159–185, 2004.

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs 449

[22] Y. Mei, K. Tang, and X. Yao, “Improved memetic algorithm for
capacitated arc routing problem,” in Proc. IEEE Congr. Evol. Comput.,
May 2009, pp. 1699–1706.

[23] K. Tang, Y. Mei, and X. Yao, “Memetic algorithm with extended
neighborhood search for capacitated arc routing problems,” IEEE Trans.
Evol. Comput., vol. 13, no. 5, pp. 1151–1166, Oct. 2009.

[24] L. Feng, Y. Ong, Q. Nguyen, and A. Tan, “Towards probabilistic
memetic algorithm: An initial study on capacitated arc routing problem,”
in Proc. IEEE Congr. Evol. Comput., Jul. 2010, pp. 18–23.

[25] L. Santos, J. Coutinho-Rodrigues, and J. R. Current, “An improved
ant colony optimization based algorithm for the capacitated arc routing
problem,” Transp. Res. B, Methodological, vol. 44, no. 2, pp. 246–266,
2010.

[26] Y. Mei, K. Tang, and X. Yao, “Decomposition-based memetic algorithm
for multiobjective capacitated arc routing problem,” IEEE Trans. Evol.
Comput., vol. 15, no. 2, pp. 151–165, Apr. 2011.

[27] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary opti-
mization using cooperative coevolution,” Inf. Sci., vol. 178, no. 15,
pp. 2985–2999, 2008.

[28] M. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with delta
grouping for large scale non-separable function optimization,” in Proc.
IEEE Congr. Evol. Comput., Jul. 2010, pp. 1762–1769.

[29] M. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution
for large scale optimization through more frequent random grouping,”
in Proc. IEEE Congr. Evol. Comput., Jul. 2010, pp. 1–8.

[30] X. Li and Y. Yao, “Cooperatively coevolving particle swarms for large
scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2, pp. 1–15,
Apr. 2011.

[31] É. D. Taillard and S. Voss, “Popmusic: Partial optimization metaheuris-
tic under special intensification conditions,” in Proc. Essays Surveys
Metaheuristics, 2002, pp. 613–629.

[32] R. Bent and P. Van Hentenryck, “Randomized adaptive spatial decou-
pling for large-scale vehicle routing with time windows,” in Proc. Nat.
Conf. Artif. Intell. Amer. Assoc. Artif. Intell., 2007, pp. 173–178.

[33] D. Mester, O. Bräysy, and W. Dullaert, “A multi-parametric evolution
strategies algorithm for vehicle routing problems,” Expert Syst. Applicat.,
vol. 32, no. 2, pp. 508–517, 2007.

[34] M. Qi, W.-H. Lin, N. Li, and L. Miao, “A spatiotemporal partitioning
approach for large-scale vehicle routing problems with time windows,”
Transp. Res. E, Logistics Transp. Rev., vol. 48, no. 1, pp. 248–257, 2012.

[35] R. Baldacci and V. Maniezzo, “Exact methods based on node routing
formulations for arc routing problems,” Networks, vol. 47, pp. 52–60,
2006.

[36] H. Longo, M. de Aragão, and E. Uchoa, “Solving capacitated arc routing
problems using a transformation to the CVRP,” Comput. Oper. Res.,
vol. 33, no. 6, pp. 1823–1837, 2006.

[37] W.-L. Pearn, A. Assad, and B. L. Golden, “Transforming arc routing
into node routing problems,” Comput. Oper. Res., vol. 14, no. 4,
pp. 285–288, 1987.

[38] E. Dijkstra, “A note on two problems in connexion with graphs,” Numer.
Math., vol. 1, no. 1, pp. 269–271, 1959.

[39] J. Belenguer and E. Benavent, “A cutting plane algorithm for the
capacitated arc routing problem,” Comput. Oper. Res., vol. 30, no. 5,
pp. 705–728, 2003.

[40] E. Bartolini, J.-F. Cordeau, and G. Laporte, “Improved lower bounds
and exact algorithm for the capacitated arc routing problem,” Math.
Program., vol. 137, nos. 1–2, pp. 409–452, 2013.

[41] M. Potter and K. De Jong, “A cooperative coevolutionary approach to
function optimization,” in Proc. PPSN, 1994, pp. 249–257.

[42] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary
programming with cooperative coevolution,” in Proc. IEEE Congr. Evol.
Comput., vol. 2. May 2001, pp. 1101–1108.

[43] Y. Shi, H. Teng, and Z. Li, “Cooperative co-evolutionary differential
evolution for function optimization,” in Proc. 1st Int. Conf. Adv. Natural
Comput., 2005, vol. II, pp. 1080–1088.

[44] F. Van den Bergh and A. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, Jun. 2004.

[45] R. Krishnapuram, A. Joshi, and L. Yi, “A fuzzy relative of the k-medoids
algorithm with application to web document and snippet clustering,” in
Proc. IEEE Int. Fuzzy Syst. Conf., vol. 3. Aug. 1999, pp. 1281–1286.

[46] L. Kaufman and P. Rousseeuw, “Clustering by means of medoids,” in
Statistical Data Analysis Based on the L1-Norm and Related Methods,
vol. 405, Y. Dodge, Ed. North-Holland, The Netherlands, Birkhäuser
Basel; 1987.

[47] J. L. Henning, “Spec CPU2000: Measuring CPU performance in the
new millennium,” Computer, vol. 33, no. 7, pp. 28–35, 2000.

[48] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometr.
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

Yi Mei (S’09-M’13) received the bachelor’s degree
in mathematics from the University of Science and
Technology of China (USTC), Hefei, China, in 2005,
and the Ph.D. degree in computer science from
the Nature Inspired Computation and Applications
Laboratory, School of Computer Science and Tech-
nology, USTC, in 2010.

He is a Research Fellow with the School of Com-
puter Science and Information Technology, RMIT
University, Melbourne, Australia. His research in-
terests include evolutionary algorithms, memetic al-

gorithms, and other meta-heuristics with various real-world applications in the
logistic area, such as arc routing problems, vehicle routing problems, traveling
salesman problems, and supply chain. He is also interested in constrained
optimization, multiobjective optimization, dynamic optimization, and robust
design optimization.

Xiaodong Li (M’03-SM’07) received the B.Sc. de-
gree in information science from Xidian University,
Xi’an, China, in 1988, and the Dip.Com. and Ph.D.
degrees in information science from the University
of Otago, Dunedin, New Zealand, in 1992 and 1998,
respectively.

He is an Associate Professor with the School
of Computer Science and Information Technology,
RMIT University, Melbourne, Australia. His re-
search interests include evolutionary computation (in
particular evolutionary multiobjective optimization,

evolutionary optimization in dynamic environments, large scale optimization,
and multimodal optimization), neural networks, complex systems, and swarm
intelligence.

Dr. Li is an Associate Editor of the IEEE Transactions on Evolution-

ary Computation and International Journal of Swarm Intelligence Research
(IJSIR). He is currently the Chair of the IEEE CIS Task Force on Large
Scale Global Optimization and a Vice-Chair of the IEEE CIS Task Force on
Swarm Intelligence. He is member of the editorial board of the Journal of
Swarm Intelligence (Springer), and Journal of Soft computing (Springer), and
a member of the Technical Committee on IEEE Soft Computing, Systems,
Man and Cybernetics Society. He is an Advisor on the Scientific Advisory
Board of SolveIT Software. He is a Vice-Chair of IEEE Victorian Section CIS
Chapter, Melbourne, Australia. He is the recipient of the 2013 ACM SIGEVO
Impact Award.

Xin Yao (F’03) is a Chair (Professor) of Computer
Science and the Director of the Centre of Excellence
for Research in Computational Intelligence and Ap-
plications, University of Birmingham, U.K. He is a
Distinguished Lecturer of the IEEE Computational
Intelligence Society (CIS). He has more than 400
refereed publications in international journals and
conferences. His research interests include evolu-
tionary computation and ensemble learning.

Dr. Yao won the 2001 IEEE Donald G. Fink
Prize Paper Award, 2010 IEEE Transactions on

Evolutionary Computation Outstanding Paper Award, 2010 BT Gordon
Radley Award for Best Author of Innovation (Finalist), 2011 IEEE Transac-

tions on Neural Networks Outstanding Paper Award, and many other best
paper awards at conferences. He won the prestigious Royal Society Wolfson
Research Merit Award in 2012 and was selected to receive the 2013 IEEE
CIS Evolutionary Computation Pioneer Award. He was the Editor-in-Chief of
the the IEEE Transactions on Evolutionary Computation from 2003
to 2008.

