IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014 435

Cooperative Coevolution With Route Distance
Grouping for Large-Scale Capacitated
Arc Routing Problems

Yi Mei, Member, IEEE, Xiaodong Li, Senior Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—In this paper, a divide-and-conquer approach is
proposed to solve the large-scale capacitated arc routing problem
(LSCARP) more effectively. Instead of considering the problem
as a whole, the proposed approach adopts the cooperative coevo-
lution (CC) framework to decompose it into smaller ones and
solve them separately. An effective decomposition scheme called
the route distance grouping (RDG) is developed to decompose
the problem. Its merit is twofold. First, it employs the route
information of the best-so-far solution, so that the quality of
the decomposition is upper bounded by that of the best-so-
far solution. Thus, it can keep improving the decomposition by
updating the best-so-far solution during the search. Second, it
defines a distance between routes, based on which the potentially
better decompositions can be identified. Therefore, RDG is able
to obtain promising decompositions and focus the search on the
promising regions of the vast solution space. Experimental studies
verified the efficacy of RDG on the instances with a large number
of tasks and tight capacity constraints, where it managed to
obtain significantly better results than its counterpart without
decomposition in a much shorter time. Furthermore, the best-
known solutions of the EGL-G LSCARP instances are much
improved.

Index Terms—Capacitated arc routing problem, cooperative
coevolution, memetic algorithm, route distance grouping, scala-
bility.

I. INTRODUCTION

HE CAPACITATED arc routing problem (CARP) [1]

is a well known combinatorial optimization problem,
which has a lot of applications in the logistics area, such as
winter gritting [2]—[5], waste collection [6]-[8], and snow
removal [9], [10]. The problem requires designing an optimal
schedule to finish the service of a set of edges and arcs (i.e.,
directed edges) in a given network map subject to predefined
constraints so that the total cost is minimized.

Manuscript received January 3, 2013; revised July 21, 2013; accepted July
30, 2013. Date of publication September 11, 2013; date of current version
May 27, 2014. This work was supported in part by the ARC Discovery under
Grant DP120102205 and in part by the EPSRC under Grant EP/1010297/1.
The work of X. Yao was supported by the Royal Society Wolfson Research
Merit Award.

Y. Mei and X. Li are with the Evolutionary Computation and Machine
Learning Research Group, School of Computer Science and Information
Technology, RMIT University, Melbourne VIC 3000, Australia (e-mail:
yi.mei@rmit.edu.au; xiaodong.li@rmit.edu.au).

X. Yao is with the Centre of Excellence for Research in Computational
Intelligence and Applications, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, U.K. (e-mail: Xx.yao@cs.bham.ac.uk).

Digital Object Identifier 10.1109/TEVC.2013.2281503

In real-world situations, the problem size of CARP is
usually very large. For example, for the urban waste collection
problem, there may be hundreds or even thousands of streets
in the city for which waste is to be collected. Therefore, it is
important to study how to solve large-scale CARP (LSCARP).
Here, LSCARP is a CARP with more than 300 edges (i.e., the
required edges) to be served. The size of 300 is chosen because
previous studies have shown that it is large enough to pose a
scalability challenge [11]-[14], where the tested algorithms
either failed to obtain competitive results [11], [12], [14] or
required too much computational time [13].

LSCARP was first considered in [11], where an LSCARP
test set named the EGL-G set was generated to evaluate the
performance of algorithms. In contrast with the commonly-
used benchmark sets (the gdb, [15], val, [16], egl, [17]-[19]
and Beullens’ test sets [20]), in which the number of required
edges ranges from 11 to 190, all the instances in the EGL-G
set have more than 300 required edges. Nevertheless, most of
the algorithms for CARP that showed competitive performance
on the small and medium-sized test sets [21]-[26] were not
examined on the EGL-G test set. Clearly, LSCARP has been
overlooked so far, with only a few exceptions [11]-[14].

Solving LSCARP is much more challenging than solving
ones of small and medium size. This is because the solution
space increases exponentially as the problem size increases.
Given n required edges and m vehicles, the size of the solution
space is O(2"(n+m)!/m!). It becomes much more difficult for
the algorithm to locate the promising regions in such a vast
solution space. Hence, all the previously tested algorithms that
neglected the issue of scalability showed poor performance on
the EGL-G set.

In order to search more efficiently in the large solution
space, one can use the divide-and-conquer strategy to de-
compose the original large problem into a number of smaller
subcomponents, and then solve each subcomponent separately.
In this way, the solution space can be much reduced, and
the search can focus only on the regions defined by the
subcomponents. When decomposing the problem, the key
issue is to ensure that the solution spaces of the subcomponents
are promising regions, and thus, solving the subcomponents
separately can lead to a good result of the overall problem.
Nevertheless, in practice, the information known a priori
is often not enough to obtain the ideal decomposition. For
LSCAREP, it is difficult to develop a good decomposition

1089-778X (© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications _ standards/publications/rights/index.html for more information.

436 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

beforehand, since the problem is very complex and the quality
of the decomposition depends not only on the mutual distance
between the vertices, but also on the satisfaction of the
capacity constraint.

In this case, one alternative is to dynamically change the
ingredients of the subcomponents during the search process so
that the quality of the decomposition can be improved continu-
ously as more information about the solution space is gathered.
Here, we use the cooperative coevolution (CC) framework to
achieve this, as it has been successfully applied to solving
large-scale function optimization problems [27]-[30]. The
CC framework divides the whole evolutionary optimization
process into several cycles. In each cycle, the elements of the
subcomponents are reassigned by some decomposition scheme
(e.g., random grouping [27] and delta grouping [28]).

The performance of the CC framework largely depends on
the decomposition scheme. Thus, it is important to identify the
promising decompositions. However, this is not a trivial task
for LSCARP due to two difficulties. First, the large problem
size leads to an enormous number of possible decompositions,
and the proportion of promising decompositions within all the
possible decompositions is very low. Second, after the de-
composition, each subcomponent is still NP-hard, and cannot
be solved exactly. Therefore, the decompositions cannot be
accurately evaluated. To the best of our knowledge, the above
issues for decomposing LSCARP have not been considered
before, and this paper is the first attempt to address them.

In contrast to LSCARP, there has been quite a lot of work
focused on solving large-scale vehicle routing problem (VRP)
with decomposition strategies. Taillard er al. [31] introduced
a route-clustering scheme based on the gravity of the routes
and combined it with tabu search and variable neighborhood
search. Bent and Van Hentenryck [32] developed a decoupling
strategy of the routes for large-scale VRP with time windows
(VRPTW) by considering the customer region as a circle
and dividing it into wedges based on the coordinates of
the customers. Mester et al. [33] proposed a route-clustering
method that divides the entire area into smaller rectangles.
Qi et al. [34] designed a clustering strategy of the customers
for large-scale VRPTW that uses the k-medoid approach to
combine the customers that are close to each other in terms
of both Euclidean distance and time window. Note that one
can transform LSCARP to the corresponding VRP by problem
reformulation and adopt the existing decomposition strategies.
However, this will lead to a much larger problem size. The best
reformulations [35], [36] double the problem size. However,
further changes are needed on the algorithms for VRP when
applying them to solve these formulations. The best-so-far
reformulation without modifying the algorithms [37] still
triples the problem size. Additionally, in LSCARP, the distance
between two vertices is not necessarily proportional to the
Euclidean distance between their coordinates, but the shortest
traversing distance obtained by Dijkstra’s algorithm [38]. For
example, two geographically close vertices may be discon-
nected in the graph, and have a much larger traversing distance
than the Euclidean distance between them. For this reason, the
geographic-based decomposition strategies for VRPs may not
perform well for LSCARP. Therefore, in this paper, we will

focus on developing decomposition strategies for LSCARP
directly based on the distances between the vertices rather
than the geographic information.

In this paper, an effective decomposition scheme named the
route distance grouping (RDG) is proposed for LSCARP. RDG
has two main merits. First, it uses the route information of
the best-so-far solution. That is, in each cycle, it decomposes
the problem by dividing the routes of the best-so-far solution
into multiple groups. In this way, the quality of the obtained
decomposition is upper bounded by that of the best-so-far
solution, and can be continuously improved as the best-so-
far solution is updated during the search. Second, it defines
a distance between two routes, and divides the routes based
on such distance so that the routes that are closer to each
other are more likely to be placed in the same subcomponent.
Therefore, RDG can identify the promising decompositions
without using the geographic information. Then, to solve the
subcomponents effectively, the proposed CC framework is
combined with the memetic algorithm with extended neigh-
borhood search (MAENS) [23], which has been demonstrated
to be competitive in solving small and medium-sized CARPs.
The resultant algorithm, which is named RDG-MAENS, is
evaluated on a number of test sets with various parameter
settings. The experimental studies verified the efficacy of
RDG for solving the large and difficult EGL-G instances, on
which RDG-MAENS managed to obtain significantly better
solutions in a much shorter time than its counterpart without
decomposition (MAENS).

The rest of the paper is organized as follows. First, CARP
is introduced in Section II. Note that LSCARP is essentially
CARP with large problem size (i.e., more than 300 required
edges). After that, the CC framework for LSCARP is described
in Section III. Then, in Section IV, the difficulties in develop-
ing a decomposition scheme for LSCARP are addressed and
RDG is developed. Afterward, the experimental studies are
carried out in Section V. Finally, the conclusion and future
work are provided in Section VI.

II. CAPACITATED ARC ROUTING PROBLEM

In CARP, a graph G(V, E, A) is given, where V, E, and
A are the set of vertices, edges, and arcs of the graph. For
both E and A, there are subsets Zp C E and Z4 C A, which
are also called tasks, that need to be served. For the tasks in
Zg, service from either direction is acceptable, while for the
tasks in Z4, only the same direction as the arc is allowed.
The services are done by a number of vehicles located at a
depot vertex vy € V. Let the set of all the tasks be denoted as
Z=Z7ZpVU Z,. Each task z € Z has a positive demand d(z) >
0 and a positive serving cost sc(z) > 0. Besides, traversing
from any vertex v; to a different vertex v; induces a positive
deadheading cost dc(v;, vj) > 0. If v; and v; are disconnected,
then dc(v;, v;) = oo. Each vehicle has a limited capacity Q of
the demand, which is smaller than the total demand of all
the tasks. Hence, multiple vehicles are needed. CARP aims at
designing a routing plan to finish the service of the task set Z
with the minimal total cost (deadheading plus serving costs)
subject to the following constraints.

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs 437

1) Each vehicle must start and end at the depot.

2) Each task is served exactly once.

3) The total demand of the tasks served by each vehicle
cannot exceed its capacity Q.

The mathematical formulation of CARP has been inten-
sively investigated. Baldacci and Maniezzo [35] formulated
the undirected CARP with n tasks as a VRP with 2n + 1
customers. Belenguer and Benavent [39] proposed a math-
ematical formulation of CARP based on the cut constraints,
and designed a cutting plane method to solve it. Bartolini et al.
[40] and Martinelli ef al. [14] developed relaxed mathematical
CARP models and obtained the best-so-far lower bounds for
the benchmark instances with exact methods. For the sake of
brevity, the details of the mathematical CARP models are not
described here, since they can be found in [39], [40] and [14].

III. COOPERATIVE COEVOLUTION FOR LSCARP

The concept of CC was first proposed by Potter and De Jong
[41] to solve a problem by dividing the decision variables
into smaller subcomponents and evolving them separately.
In their framework (CCGA-1), the original n-dimensional
decision vector is predecomposed into n one-dimensional
subcomponents before the optimization process. Then, in each
generation, the subcomponents are evolved in turn. Subsequent
to CCGA-1, there are a number of works on the static
decomposition (e.g., the 1-D [42], split-in-half [43] strategies
and the more general one dividing into k s-dimensional
subcomponents where k x s = n [44]). However, they did not
consider the interdependency between the variables and fixed
the subcomponents throughout the search process. Yang et al.
[27] considered the interaction between variables and proposed
a new CC framework, which divides the whole optimization
process into a number of cycles. In each cycle, the variables
are randomly reassigned into the subcomponents to increase
the probability of placing the interacting variables in the same
subcomponent. It is obvious that the variables of LSCARP
interact with each other, and thus, Yang et al.’s CC framework
is quite suitable for solving LSCARP. It can be described as
follows.

Step 1
Step 2

Set i =1 to start a new cycle.

Split the original n-dimensional decision vector x =
(x1,...,x,) into g non-overlapping [-dimensional
subcomponents X, ..., X, (g-/ = n) randomly. Here,
randomly means that each variable x; (i = 1,...,n)
has the same chance to be assigned into any of the
subcomponents.

Evolve the subcomponent x; by an EA for a prede-
fined number of iterations.

Ifi < g, then seti=i+1 and go to Step 3.

If the stopping criteria are met, then stop. Otherwise
go to Step 1 for the next cycle.

Step 3

Step 4
Step 5

The random assignment of the variables in Step 2 is called the
random grouping scheme.

When adopting the above CC framework in LSCARP, the
decision variables are the tasks z € Z. However, unlike
function optimization, which is to determine the optimal value

Algorithm 1 CC framework for LSCARP

1: procedure CC(LSCAREP, g)

2: Initialize population p(Z);

3: S(Z) = arg mins(z)ep(z) ([C(S(Z)));

4: <1

5: repeat

6: (Zy, ..., Zg) = Decompose(Z),

7: fori=1— gdo

8: P(Zi) = Pop2Subpop(p(Z), Z;);

9: §(Z;) = argmingz,ep(z,) (tc(s(Z))));
10: (8(Zi), p(Z1)) = Evolve(5(Z;), p(Z)));
11: end for
12: P(Z) = Subpop2Pop(p(Z1), ..., p(Z,));
13: $(Z)={8(Z1), ..., 8(Zy)};

14: if 1¢(5”(2)) < 1c¢(8(Z)) then

15: 5(Z2) =5V(2);

16: end if

17: t<t+1;

18: until 7 reaches to a predefined upper bound
19: return S(Z2);

20: end procedure

for each decision variable of the vector x, LSCARP is to
cluster all the tasks into different routes, and sort the tasks
within each route, both in an optimal way, so that the total
cost (denoted as tc) of the routes is minimized.

To decompose a LSCARP, the task set Z is essentially
decomposed into nonoverlapping subsets Zji, ..., Z,. Then,
at Step 3 of the above CC framework, evolving the subcom-
ponent Z; is defined as finding a solution s(Z;) that serves all
the tasks in Z; with least total cost tc (s(Z;)) so that

1) each route of s(Z;) starts and ends at the depot;

2) each task in Z; is served exactly once, while all the tasks

in Z\ Z; are not served,

3) the total demand of each route of s(Z;) cannot exceed

0.
It is obvious that given the feasible solutions s(Z1), ..., s(Z,)
for the subcomponents, concatenating their routes Ules(Z,-)
will lead to a feasible solution for the overall problem.

The pseudo code of the CC for LSCARP is given in
Algorithm 1. It maintains the population p(Z) and the best
feasible solution §(Z) of the overall problem throughout the
search process, and finally outputs §(Z). In each cycle, Z
is first decomposed into (Zi, ..., Z,) by Decompose(). Af-
terward, for each Z;, a subpopulation p(Z;) is generated by
Pop2Subpop(). Then, p(Z;) is evolved by Ewvolve() and the
corresponding best feasible solution §(Z;) is updated. Finally,
p(Z) is updated from p(Z),...,p(Z,) by Subpop2Pop().
Besides, the best feasible solution §(Z) found in this cycle is
obtained by concatenating §(Zy), ...,8(Z,) (the same as the
context vector [30], [44]), and replaces §(Z) if it is better.

Decompose() is the most important and difficult part of
the CC, and thus, will be described separately in Section I'V.
In contrast, Pop2Subpop() and Subpop2Pop() are rather
straightforward. Given p(Z) and Z;, to obtain the jth indi-
vidual p;(Z;) from p;(Z), Pop2Subpop() scans each route

438 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

of p;j(Z), and removes all the tasks in Z \ Z;. Conversely,
given p(Zy), ..., p(Z,), Subpop2Pop() simply update each
individual p;(Z) by concatenating all the p;(Z;)’s routes.

IV. ROUTE DISTANCE GROUPING

The objective of Decompose() is to obtain the optimal
decomposition (Z7, ..., Z;) of Z, so that the union of the
optimal solutions s*(Z7), ..., s*(ZZ) of the subcomponents is
equivalent to the optimal solution s*(Z) of the overall problem,

, fc (Ug 1s*(Z*)) = tc (s*(Z)). In other words, the objective
is to minimize ic (UL s*(Z)).

It is obvious that an optimal decomposition can be obtained
by dividing the routes of the optimal solution s*(Z) into sub-
sets of routes. However, in practice, the route information of
s*(Z) cannot be known in advance. Therefore, we approximate
the route information of s*(Z) with that of the best-so-far
solution §(Z). That is, the tasks in the same route of §(Z)
are considered more likely to be in the same route of s*(Z).
This idea is similar to grouping solutions with respect to
route instead of customer; the latter as in VRP [31]-[33].
Here, we give the theoretical analysis to show that as long
as the subcomponents (Z, ..., Z,) are obtained by dividing
the routes of the best-so-far solution S(Z), one can guarantee
that the quality of the decomposition must improve along
with the improvement of §(Z) in terms of upper bound of
tc (UL,s*(Z;)). The analysis is as follows.

First, we define §(Z;) as the subset of routes of § placed in
subcomponent Z;. Then, it is obvious that

tc (Uf=1§(Zi)) =1c(5(2)). @)
On the other hand, since the total cost of a set of routes is the
sum of the total costs of each route in the set, we have

8
tc (UL s%(Z)) = Z tc (s*(Z)) 2

UL8(Z) Zrc (8(Z)) . 3)

Therefore, we have

8
te (UL,s°(Z) = Y te (s(Z)
i=1

g
< e (5(Z) = te (VL,8(Z) = te ((2)) . %)
i=1
That is, fc (UL,s*(Z;)) is upper bounded by fc (5(Z)). Thus,
tc (UL,s*(Z;)) improves along with the improvement of
tc (8(Z)) during the search process.

When grouping the routes of §(Z), we can leverage on the
domain knowledge and develop heuristics to favor potentially
better groupings over other groupings. Since the objective is to
minimize the total cost, the optimal solution tends to link the
tasks that are close to each other, and place them in the same
route. Therefore, the tasks that are closer to each other should
be more likely to be placed in the same subcomponent. Based
on such domain knowledge, it is better to combine the routes

whose tasks are closer to each other. For VRP, the closeness
between routes was defined based on geographic information,
i.e., coordinates [31]-[33]. However, such a definition may
not be proper for LSCARP, because the distance between the
nodes is not the Euclidean distance between their coordinates,
but the shortest traversing distance obtained by Dijkstra’s
algorithm. Then, the nodes that are geographically closer do
not necessarily have smaller traversing distance. In this case,
it is more proper to define the closeness directly based on the
distance matrix rather than the coordinates.

To define the closeness between routes for LSCARP, we
first define the distance A (21, 22) between two tasks z; and
7 as follows:

2 2
ZZ A(vi(z1), vj(22))

=l j=
))]
where A(vi(zl), v j(Zz)) is the traversing distance between the
ith end-node v;(z;) of the task z; and the jth end-node v;(z2)
of the task z,. Hence, Ayu(21, 22) is defined as the average
distance of the four possible links between z; and z.
Based on the task distance, the distance A;que(S1,S>) be-
tween two routes s; and s, can be defined as follows:

ZZIGS] 212652 Atask(zl s ZZ)
Is1] - [s2] '
Therefore, Aouee(S1, S2) is the average distance of all the pairs
of the tasks so that one is from s; and the other from s,.
Finally, Aoue(S1,S2) needs to be normalized with respect
to Aroue(S1,81) and Ajoue(Ss,). To this end, we define
the following normalized distance to represent the closeness
between s; and s;:

Aqsk(21, 22) =

(6)

Aroue(S1, $2) =

o A Si, S A Si, S
Amme(sl , 52) — route(1 2) . route(1 2)] (7)
Aroute(S1,81) Aroute(S2, 82)

An example of computing the Aoy matrix is given in Figs.

1 and 2. First, the graph is shown in Fig. 1, where the tasks

z1,...27 are represented by the solid lines. vy is the depot.

The deadheading costs of the edges of the graph are all one.
Thus, the distance matrix A between the vertices is

Vo Vi VU VU3 Vs Vs Vg

Vo

Vg

v2

A= U3

vy

Us

Ve

—_— =N NN = O
— NN = O -
— NN = O =N
—_— = O = NN
—_— O = NN
—_— O = N NN

P— etk

0

Then, Fig. 2 shows three routes s; = (0, xy, x3, x5, 0) (the
inner circle), s, = (0, x», x4, x¢, 0) (the outer circle), and s3 =
(0, x7, 0) to serve all the tasks, where x; is the ID assigned to
the current direction of the task z;, Vi =1, ..., 7. Each route
starts and ends at the depot loop indexed by 0. The services are
represented by solid arrows, while the deadheading paths are
represented by dashed arrows. It can be seen that s; and s, are
more tangled with each other than with s3, and thus, should
be more likely to be placed in the same subcomponent. In

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs 439

01 02

21
Z
0o Z
(depot)
26
Us V4
Fig. 1. Example graph of computing the Aoy matrix.

sl=(0/x11x3/x5/0) s2=(01x21x4—/x6/0) S3=(O,X7,0)

Fig. 2. Given three routes for the example graph.

fact, if we have a capacity constraint that prohibits each route
from serving more than three tasks, then, combining s; and s,
together can lead to two improved routes s} = (0, x1, x2, x3, 0)
and s, = (0, x4, X5, X6, 0). When calculating the total cost, we
have

4
1c(s1) = 1c(82) = Y A, vis1) + Alvs, v) =6 (8)
i=0
2
te(s)) =Y A, vir) + A(vs, v9) = 5 ©)

i=0
4
tc(sy) = A(vg, v3) + Z A(v;, vig1) + A(vs, v9) = 5. (10)
i=3
Then, 1c(s}) + tc(s,) < te(sy) + te(sy). However, combining
s; (or sp) and s3 cannot lead to improvement. According to
(5), the distance matrix between the tasks is

<1 22 13 24 25 26 27

o (12 1 7/4 2 7/4 1 3/4
| 1 12 1 7/4 2 7/4 5/4
|74 1 12 1 7/4 2 32
Awk=z4| 2 774 1 12 1 7/4 3/2
zs | 7/4 2 74 1 1/2 1 5/4
w| 1 7/4 2 7/4 1 172 3/4
77 \3/4 5/4 3/2 3/2 5/4 3/4 1)2

Then, the distance matrix between the routes in Fig. 2 is
computed by (6) and the results are

S1 S S3

si [4/3 4/3 T/6

Aroute =8 4/3 4/3 7/6

s3 \7/6 7/6 1/2

Then, based on (7), we have
S1 S S3

S 1 1 49/24
Aroue = $2 1 1 49/24

s3 \49/24 49/24 1

It can be seen that Amute(sl, Sp) is much smaller than
Arou[e(sl,sg and Amme(52, S3), which is consistent with the
intuition that s; and s, should be more likely to be combined
together. On the other hand, if there is no normalization, then
Aroute(S1, 82) 1s larger than A;oue(S1, 83) and Arouee(S2, $3). This
indicates the importance of normalization for identifying the
more tangled routes.

Based on the above definition, if two routes have smaller
Aroute(sl,sz), they are considered to be closer to each other,
and it should be more promising to place them in the same
subcomponent. Following this understanding, we can define
the decomposition as a clustering problem of the routes based
on the normalized distance matrix (A oue(s,, $t)) > Where
m is the number of routes in the solution s. If two routes have
a smaller normalized distance, they are more likely to be in
the same cluster.

Here, we define the clustering problem as a fuzzy k-medoids
[45], which can be stated as follows:

min J,(€:8) = Y Y Ma(si. €)) - Arue(si.).

s;es\c ¢;ec

Y

Given (Amu[e(sk,,skz))mxm and the predefined number of
groups g, the aim of the fuzzy k-medoids problem is to select
a subset of the routes ¢ = {c, ..., ¢,}, which are called the
medoids, out of the entire set of routes s = {s{,...,S,},
so that the sum of the fuzzy distances between all the pairs
of the medoids and nonmedoids is minimized. The function
M,(s;, ¢;), which is called the membership of s; to c;, is used
to obtain the fuzzy distances. Generally, M,(s;, ¢;) is larger
if Amute(si, ¢;) is smaller. Here, it is defined as follows:

Aroute(8i,€)

o
Z = (1)
k=1 Aroute(Si»Cx)

The parameter o € [0, 0o) controls the degree of fuzziness.
When o = 0, the fuzziness is maximized and the membership
of a nonmedoid to each medoid is the same as 1/g regardless
of the distance between them. When o = oo, there is no
fuzziness. The membership is 1 to the closest medoid, and O to
the other medoids. In this case, the fuzzy k-medoids problem
is reduced to the k-medoids problem [46].

To solve the fuzzy k-medoids problem, we employ the
partitioning around medoids (PAM) algorithm [46], which
is a simple and commonly used method. It is described in

Mq(si, ¢j) =

12)

440 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

Algorithm 2 PAM algorithm for fuzzy k-medoids problem

Algorithm 3 Assignment of the non-medoids

1: procedure PAM((Aroue(St, . St,)), 5 & @)
2 Randomly choose ¢ C s;

3 Compute J,(c;s) based on Eqgs. (11) and (12);
4 repeat

5: ¢4 ¢, ¢t <

6 Set Jo(c*;8) = Tu(c;8);

7 for j=1— gdo

8 for s; e s\ c do

9: ¢ «c;

10 Swap c/j and s;;

11: Compute 7,(c¢’;s);

12: if J,(c;s) < J.(c*;s) then
13: ¢t <« s

14: end if

15: end for

16: end for

17: c <« ¢

18: until ¢’ = ¢

19: return c;

20: end procedure

Algorithm 2. At the beginning, the medoids ¢ = {cy, ..., ¢,}
are randomly chosen. Then, at each iteration, all the swaps
between the medoids ¢; € ¢ and the nonmedoids s; € s\ ¢ are
evaluated in terms of the new objective value 7,(c’;s) after
the swap, and the one with the minimal J,(c’;s) is selected to
be conducted on ¢. The swap is repeated until no improvement
is obtained on J,(c;s).

After applying the PAM algorithm to the routes s, the output
is a number of the medoids ¢ = {cy, ..., ¢.}, each representing
a group. Then, it is necessary to assign all the nonmedoid
routes to the groups. Here, we adopt the simple roulette
wheel method based on the memberships of the nonmedoids
to the medoids. The probability of assigning a nonmedoid to
the group of each medoid is proportional to its membership
to the medoid. Such an assignment process is described in
Algorithm 3.

Finally, the decomposition (Zy, ..., Z,) of the task set Z
can be obtained directly from the grouping of the routes.
Specifically, if a task is in a route of G;, then it is put into
Z;. This can be depicted in Algorithm 4.

In summary, at the beginning of each cycle of the CC
framework, the normalized distance matrix of the routes of
the best-so-far solution is computed, and the corresponding
decomposition is then obtained by the aforementioned route
grouping method. This decomposition is called the RDG, as
it uses a grouping scheme of the routes based on the distance
between them. It is described in Algorithm 5, and replaces
Decompose(Z) in line 6 of Algorithm 1.

Compared with existing clustering methods [31]-[34] for
VRP, RDG has the following advantages. First, it is based on
a rigorous theoretical analysis so that the decomposition can
be guaranteed to be improved along with the improvement of
the best-so-far solution. Second, a normalized distance matrix
of the routes for LSCARP is defined to reflect the closeness

1: procedure NONMEDASSIGN(M,(s;, ¢;))

2: fori=1— gdo

3 Gi={e}

4: end for

5: for s; e s\ c do

6: Sample the random variable r € [0, 1] uniformly;
7: ¢ =0;

8: for k=1— g do

9: @ < ¢+ Mq(er:si);
10: if ¢ > r then

11: break;

12: end if

13: Gr < Gy Us;;

14: end for

15: end for

16: return (Gi, ..., Gy);

17: end procedure

Algorithm 4 Task decomposition from route grouping

1: procedure TASKDECOMP((Gy, ..., G,))
2: fori=1— gdo

3 Z;=1{}

4 for s, € G; do

5 for z € s; do

6: Z, < Z;Uz;

7 end for

8 end for

9 end for

10: return (Zi, ..., Z,);

11: end procedure

Algorithm 5 Route distance grouping decomposition
1: procedure RDGDECOMPOSE(S, g, «)
2 Compute (A oue(Ss, . St,)) by Eqs. (5)—(7);
3 €= PAM((AroueBh s 51)) s 8)3
4 (G, ..., G) = NonMedAssign(M,(5;, €)));
5: (Zy,....Zy) = TaskDecomp((Gy, . . ., g'g));
6
7

mxm

return (Z,, ..., Z,);
: end procedure

between the routes, and a fuzzy route clustering problem that
is directly based on the normalized distance matrix is defined.
In this way, one does not need to assume that geographically
closer nodes must have smaller traversing distance and the
coordinates of the nodes are known. Finally, the introduced
fuzziness parameter o can control the degree of freedom
during the route clustering, and help the decomposition to
jump out of the local optima.

V. EXPERIMENTAL STUDIES

For the proposed CC algorithm with RDG for LSCARP,
the performance mainly depends on two parameters: g and
a. First, it is obvious that g influences the performance of
the algorithm in the same way as the number of clusters

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs 441

influences the quality of solutions in the clustering problem.
g also determines the number of possible decompositions and
thus the probability of obtaining ideal decompositions. Second,
o controls the degree of freedom of the route grouping. If o
is too small, then the route grouping is too random and there
is not enough bias to the promising decompositions. If « is
too large, the grouping may be too deterministic to jump out
of the local optima. To investigate the effect of g and «, we
evaluated the performance of the proposed algorithm under
different values of g and «.

Finally, the algorithm to solve each subcomponent is to be
decided. Here, we adopt MAENS [23] due to its competi-
tiveness for small and medium-sized CARP in terms of the
quality of the final solution. Note that Chen extended MAENS
to MAENS+ [13] to address the scalability issue. However,
the experimental studies only showed marginal improvement
on the quality of solution. For the sake of simplicity, the
standard version of MAENS is adopted. Together with RDG,
the proposed algorithm is called RDG-MAENS.

A. Parameter Settings

The parameter settings are given in Table I, where g and
o are the parameters of RDG, and the remaining are the
parameters of MAENS and the CC framework. Here, g = 2
and 3 and o = 1, 5 and 10 are tested. Therefore, there are,
in total, 2 - 3 = 6 versions of RDG-MAENS to be compared.
For the sake of simplicity, we refer to the different versions
of RDG-MAENS (g, @) hereafter. For example, (2, 5) refers to
the RDG-MAENS with g = 2 and @ = 5. The number of cycles
is arbitrarily set to 50 given 500 total generations to achieve a
relatively good tradeoff between the number of cycles and the
exploitation of the subcomponents in each cycle. To verify the
efficacy of RDG, RDG-MAENS is compared with MAENS,
which is its counterpart without RDG decomposition, under
the same parameter settings and computational platform. To
this end, we obtained the source code of MAENS' and ran
it again under the same computational platform as RDG-
MAENS on all the test instances.

The Beullens’C, D, E, F sets [20], egl [17H19], and EGL-G
[11] test sets are selected to evaluate RDG-MAENS. Beullens’
sets are based on the intercity road network in Flanders,
Belgium, each containing 25 different instances with 28-121
tasks. The D and F instances share the same networks with
the C and E instances, respectively, but with a larger capacity.
The egl set is the largest commonly used CARP test set in the
literature. It was derived from a winter gritting application in
Lancashire, U.K., which has 24 instances with the number of
tasks ranging from 51 to 190. The EGL-G set was also based
on the road network of Lancashire, U.K., consisting of TEN
LSCARP instances with 347 to 375 tasks. In summary, the test
sets consist of small, medium, and large scale CARP instances.
Although RDG-MAENS is proposed specifically for solving
LSCARP, one may still be interested in its performance on the
small and medium sized instances. The gdb [15] and val [16]
test sets are not selected here, since all the gdb instances have

IThe code was obtained from the website .

TABLE I
PARAMETER SETTINGS OF RDG-MAENS

Parameter Description Value

g Number of subcomponents 2,3

@ Fuzziness control parameter 1, 5, 10
psize Population size 30

of fsize Offspring population size 6 - psize
Py Probability of local search 0.2

gen Maximal generations 500
cycles Number of cycles 50

been solved optimally, and the problem size of the val set is
covered by that of Beullens’ sets.

For the test sets, the state-of-the-art algorithms are selected
for comparison. To be specific, for Beullens’ sets, GLS [20]
and Ant-CARP (the version with 12 move types) [25] are taken
into account. For the egl set, Ant-CARP and VNS (the 3.6 GHz
version) [10] are selected, and for the EGL-G set, ILS-RVND
[14] is chosen.

For each parameter setting, 30 independent runs of RDG-
MAENS and MAENS were conducted on all the test instances.
The code of the MAENS part was directly obtained from the
one provided in the original reference [23], and the other parts
were implemented in C++. RDG-MAENS and MAENS were
compiled by GNU Compiler Collection (GCC) for Windows
and run on the CPU Intel Core i7-2600 @3.4 GHz, using only
one core.

B. Results and Discussions

First, the average performance and runtime of RDG-
MAENS are evaluated. Tables II-VII show the mean of
the 30 total costs and computational time of RDG-MAENS
and MAENS, along with the average performance of each
compared algorithm and the features of the test instances. |V|,
|E|, and | Z| refer to the number of vertices, edges, and tasks,
respectively. T is the minimal number of vehicles required to
serve all the tasks, which is obtained as follows:

= ’VZzeZ d(Z)—‘

In general, a larger t indicates a tighter capacity constraint
and, thus, a higher level of difficulty of the problem.

In the tables, the average performance and computational
time of the compared algorithms were obtained directly from
the original references except MAENS. For GLS, the column
labelled “Cost” indicates the total cost of the final solution,
since it was run only once. For Ant-CARP, the median total
cost and average computational time of five independent runs
are provided. For VNS and ILS-RVND, the mean total cost
and computational time of ten independent runs are given. For
Beullens’ sets, the past results were presented in the form of
either total cost or total deadheading cost, i.e., total cost minus
total serving cost. For the sake of consistency, all the results
have been transformed to total deadheading cost.

It is difficult to conduct a fair comparison on computational
time as there is no common computational platform, includ-
ing CPU frequency, RAM, operating system, implementing
language, compiler, etc. Here, the computation time of each

13)

442

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

TABLE 1T
AVERAGE (MEAN OR MEDIAN) TOTAL COST AND COMPUTATIONAL TIME OF THE COMPARED ALGORITHMS ON BEULLENS’ C TEST SET. FOR EACH
INSTANCE, THE MINIMAL TOTAL COST OF MAENS AND RDG-MAENS 1S MARKED WITH f. FOR EACH VERSION OF RDG-MAENS, IF ITS MEAN
TOTAL COST IS STATISTICALLY SIGNIFICANTLY SMALLER THAN THAT OF MAENS, THEN, IT IS MARKED IN BOLD. OTHERWISE, THE MEAN TOTAL
COST OF MAENS IS MARKED IN BOLD IF IT IS STATISTICALLY SIGNIFICANTLY SMALLER THAN THAT OF ALL THE VERSIONS OF RDG-MAENS

RDG-MAENS

Name (|V||E||Z|,r) GLS Ant-CARP MAENS

g=2

[20] [25] [23]

a=1

a=5 a =10 a =10

Cost Time Median Time Mean Time

Mean Time

Mean Time Mean Time Mean Time Mean Time Mean Time

C01 (69,98,79.9) 1660 48 1705 42 1691 94 1687
C02 (48,66,53,7) 1095 11095 16 10957 49 1103
C03 (46,64,51,6) 925 25 925 18 927t 52 936
C04 (60,84,72,8) 1340 42 1340 36 1341t 77 1346
C05 (56,79.65,10) 2475 34 2540 25 24957 65 2507
C06 (38,55,51,6) 895 24 895 17 902 47 899F
C07 (54,70,52,8) 1795 24 1795 16 17957 51 1818
C08 (66,88,63,8) 1730 34 1730 18 17321 62 1736
C09 (76,11797,12) 1825 65 1860 67 1847 137 1841F
C10 (60,82,55.9) 2200 27 2305 18 22841 52 2327
C11 (83,11894,10) 1815 62 1820 63 18467 130 1869
C12 (62,88,72,9) 1610 42 1610 30 16107 78 1619
C13 (40,60,52,7) 1110 26 1110 17 11107 47 1119
Cl4 (58,79,57.8) 1680 29 1680 17 1682 56 1683
C15 (97.140,107,11) 1860 81 1880 93 1889 170 1882
C16 (32,42,32,3) 585 18 585 8 585" 30 592
C17 (43,56,42,7) 1610 20 1610 11 16107 37 1633
C18 (93,133,121,11) 2410 83 2390 117 24067 222 2414
C19 (62,84,61,6) 1395 31 1400 23 14147 62 1424
C20 (45,64,53,5) 665 0 665 15 666" 49 677
C21 (60,84,76,8) 1725 48 1725 41 17257 86 1747
C22 (56,76,43.4) 1070 0 1070 11 1070t 38 1070f
C23 (78,109,92,8) 1690 56 1710 56 16997 126 1705
C24 (77.115,84,7) 1360 46 1360 49 13637 103 1371
C25 (37,50,38,5) 905 0 905 9 905" 33 920
Avg. 1501 35 1508 33 1507 78 1517

102 16747 103 1696 75 1689 107 1697 110 1754 91
68 1108 66 1132 59 1132 81 1153 83 1206 70
69 944 68 959 52 957 80 996 79 1046 65
95 1361 94 1370 74 1350 95 1398 99 1416 83
84 2510 85 2511 62 2538 100 2542 101 2541 80
70 943 71 958 50 955 79 985 79 1023 69
71 1834 70 1841 54 1837 84 1852 84 1885 70
79 1785 76 1781 56 1756 89 1792 89 1829 74

136 1856 136 1884 96 1869 128 1933 127 1969 97
73 2320 73 2343 52 2341 84 2358 85 2380 73

138 1873 141 1867 98 1886 126 1905 128 1924 97
93 1630 90 1641 60 1638 98 1662 100 1679 71
70 1132 73 1139 48 1133 82 1169 84 1190 72
78 1707 78 1722 51 1694 91 1727 91 1723 75

164 18797 166 1903 110 1909 149 1953 171 2007 128
48 629 49 626 34 679 55 676 54 681 54
64 1661 63 1677 421683 73 1734 75 1750 67

208 2422 207 2431 130 2413 170 2446 180 2458 131
77 1442 79 1456 54 1434 85 1474 85 1534 66
68 677 68 690 48 698 76 714 74 736 60
99 1752 103 1794 68 1757 97 1847 99 1886 68
65 1081 66 1086 45 1086 72 1124 70 1156 51

134 1739 147 1740 83 1730 116 1751 120 1797 81

108 1377 79 1390 69 1379 105 1404 105 1464 86
56 931 45 943 41 961 69 962 68 1066 57
93 1530 92 1543 64 1540 96 1570 98 1604 78

compared algorithm is simply normalized with respect to the
CPU frequency, as has been done in the previous studies [12],
[14], [23], [25]. The normalized computational time of each
compared algorithm is obtained as follows:

Y(algorithm)
Y(RDG-MAENS)

where p(algorithm) and p(algorithm) are the normalized com-
putational time and original computational time obtained from
publications, and ¥ (RDG-MAENS) and y(algorithm) are the
CPU frequency of RDG-MAENS and the algorithm, respec-
tively. In the experiments, RDG-MAENS and MAENS were
run on an Intel Core 17-2600 @3.4 GHz, using only one core.
GLS was run on Intel Pentium II @500 MHz. Ant-CARP
was run on Intel Pentium III @1 GHz. VNS was run on
Intel Pentium IV @3.6 GHz. ILS-RVND was run on Intel
Core i5 @3.2 GHz. Thus, the computational time of GLS,
Ant-CARP, VNS, and ILS-RVND are multiplied by 0.5/3.4,
1/3.4, 3.6/3.4, and 3.2/3.4, respectively. Normalization is not
needed for MAENS as it was run on the same computational
platform as RDG-MAENS. As shown in [47], even identical
CPUs may perform radically differently under different cache
or RAM capacities. Therefore, the above normalization is
only indicative. However, since MAENS and RDG-MAENS

p(algorithm) = p(algorithm) - (14)

were run on the same computational platform, the comparison
between them is guaranteed to be fair and thus provides a
meaningful comparison on computational time.

In the tables, for each instance, the minimal mean total
cost between MAENS and RDG-MAENS is marked with .
Besides, for each instance and each version of RDG-MAENS,
the 30 total costs are compared with that of MAENS using
Wilcoxon’s rank sum test [48] at the significance level of 0.05.
If they are significantly smaller, then the corresponding mean
total cost is marked in bold. Otherwise, the mean total cost of
MAENS is marked in bold if it is significantly smaller than that
of all the versions of RDG-MAENS. Note that for Beullens’
D16, D22, and E25 instances, T = 2 and there are not enough
routes to be divided into three groups. Hence, RDG-MAENS
with g = 3 were not applicable to them, and the corresponding
results were marked with —.

From Tables II-V, it can be seen that on almost all Beullens’
instances, MAENS showed better average performance than
RDG-MAENS. It obtained smaller mean total cost than RDG-
MAENS on 92 out of the total 100 Beullens’ instances (21 C,
24 D, 22 E, and 25 F instances), 63 of which were statistically
significant (12 C, 19 D, 13 E, and 19 F instances). There are
only two instances (COl and C15) on which (2, 5) performed
significantly better than MAENS. Overall, MAENS obtained

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs

443

TABLE III
AVERAGE (MEAN OR MEDIAN) TOTAL COST AND COMPUTATIONAL TIME OF THE COMPARED ALGORITHMS ON BEULLENS’ D TEST SET. FOR EACH
INSTANCE, THE MINIMAL TOTAL COST OF MAENS AND RDG-MAENS 1S MARKED WITH T. THE MEAN TOTAL COST OF MAENS IS MARKED IN
BOLD IF IT IS STATISTICALLY SIGNIFICANTLY SMALLER THAN THAT OF ALL THE VERSIONS OF RDG-MAENS

RDG-MAENS
Name (|V||E||Z|,r) GLS Ant-CARP MAENS g=2 g=3
[20] 1251 23] a=1 a=5 a=10 a=1 a=5 =10
Cost Time Median Time Mean Time Mean Time Mean Time Mean Time Mean Time Mean Time Mean Time
D01 (69.98,79,5) 725 2 745 59 744 142 7441 114 802 136 834 93 758 103 879 114 1009 85
D02 (48,66,53,4) 480 0 480 21 4807 68 483 69 552 71 553 51 545 72 648 73 711 51
D03 (46,64,51,3) 415 0 415 20 4151 67 421 63 439 62 498 49 739 67 759 69 755 47
D04 (60,84,72.4) 615 0 615 50 6151 115 615 91 624 98 645 74 690 88 757 89 789 56
D05 (56,79,65.5) 1040 0 1040 35 1040T 93 1062 85 1080 86 1108 65 1070 89 1139 90 1209 65
D06 (38.55,51,3) 485 0 485 19 4851 66 535 61 587 60 S84 46 716 67 702 69 727 50
D07 (54,70,52,4) 85 20 85 17 8397 71 84 67 900 67 905 49 983 74 1050 73 1141 63
D08 (66.88,63,4) 685 29 685 23 6911 85 718 74 752 77 735 57 751 78 785 76 809 65
D09 (76,117,97.6) 680 0 680 77 6807 212 688 138 710 139 731 104 695 117 832 126 930 88
D10 (60.82,55.5) 910 22 910 23 9100 69 933 63 1033 67 1067 54 951 78 1157 81 1172 66
DIl (83,118,94,5) 930 54 935 81 9371 210 948 136 950 130 1013 87 976 119 1009 118 1090 92
D12 (62,88,72,5) 680 0 680 36 6807 117 697 8 705 76 754 62 744 89 777 96 803 75
D13 (40,60,52,4) 690 690 22 6907 66 693 63 790 52 817 62 769 79 85 75 907 62
D14 (5879,57.4) 930 26 930 22 9301 79 947 68 971 47 1019 54 984 74 1073 72 1080 59
D15 (97,140,107,6) 910 54 920 120 9191 266 921 166 968 119 965 122 943 137 1027 130 1054 117
D16 (3242322) 170 0 170 8 1701 35 301 41 387 33 383 38 - - - - -
D17 (43,56,42,4) 675 0 675 14 6757 51 685 56 690 40 704 47 736 76 767 76 829 68
DI8 (93,133,121,6) 930 0 930 153 9397 342 951 203 989 120 1024 130 973 163 1093 174 1074 117
D19 (62,84,61,3) 680 23 680 30 6801 92 685 72 720 55 730 64 745 74 788 75 791 56
D20 (45,64,53,3) 415 0 415 22 4151 72 461 64 490 43 503 52 660 65 682 66 687 57
D21 (60,84,76,4) 805 37 810 48 826" 137 82 98 89 62 81 75 911 81 1018 80 1055 70
D22 (56,76.432) 600 0 690 13 6907 53 734 51 756 37 741 41 - - - - - -
D23 (78,109,92.4) 735 49 735 63 7521 189 765 134 754 92 757 108 810 114 823 125 922 86
D24 (77.115,84,4) 670 36 670 73 6751 157 695 101 738 69 714 78 734 96 824 92 881 62
D25 (37.50,38,3) 410 0 410 10 4100 43 415 50 479 38 528 45 711 68 707 67 707 55
Avg. 688 14 690 42 691 116 717 89 749 75 768 68 - - - - - -
similar average performance with Ant-CARP in terms of the Number of tasks versus computational time
. . 2500 4
average mean or median total cost over all Beullens’ instances. 1 —___ MAENS
This implies that MAENS is still one of the best performing 1 —e— (gw=(2,])
algorithms on Beullens’ sets. Additionally, it is observed that 2000 e @0=25)
1 —8— (g,0)=(2,10
MAENS showed better performance than RDG-MAENS on 1 E; oc;—i%]))
more D and F instances. Note that the D and F instances have 0] e (ea=(35)
smaller 7’s than the C and E instances. Therefore, MAENS P —v— (gW=(3,10)
performed better on the instances with smaller 7’s. For RDG- 2 1
2]

MAENS, smaller g and « generally have better performance.

On Beullens’ instances, RDG-MAENS did not always have
a smaller computational time than MAENS. In fact, for
many instances (e.g., C06 and C17), MAENS had a smaller
computational time than RDG-MAENS. The reason can be
explained as follows: most Beullens’ instances are small or
medium scaled instances. When the problem size is not large,
the computational effort for solving each subcomponent is
nearly the same as solving the overall problem. In this case, the
total computational time for solving all the g components can
be larger than that of solving the problem itself. Therefore, the
decomposition strategy is not effective when the problem size
is not large. Finally, the computational time of RDG-MAENS
was much larger than that of the compared state-of-the-art
algorithms. The reason is likely to be that RDG-MAENS
did not employ the lower bound, and thus, always stopped
after the maximal number of generations. However, the other

[e e e e IR m e o o
0 50 100 150 200 250 300 350 400
Number of tasks

Fig. 3. Average computational time versus the number of tasks over all the
test instances for each compared algorithm.

algorithms may stop much earlier than the maximal number
of generations when reaching the lower bound, especially for
the simple instances.

On the egl instances, which are shown in Table VI, the
average performance of RDG-MAENS became much better,
especially on the second half of the set. More specifically,

444

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

TABLE IV
AVERAGE (MEAN OR MEDIAN) TOTAL COST AND COMPUTATIONAL TIME OF THE COMPARED ALGORITHMS ON BEULLENS’ E TEST SET. FOR EACH
INSTANCE, THE MINIMAL TOTAL COST OF MAENS AND RDG-MAENS Is MARKED WITH f. THE MEAN TOTAL COST OF MAENS Is MARKED IN
BOLD IF IT IS STATISTICALLY SIGNIFICANTLY SMALLER THAN THAT OF ALL THE VERSIONS OF RDG-MAENS

RDG-MAENS
Name (|V||E|.|Z|.r) GLS Ant-CARP MAENS g=2 g=3

[20] [25] [23] a=1 a=>5 a =10 a=1 a=25 a =10
Cost Time Median Time Mean Time Mean Time Mean Time Mean Time Mean Time Mean Time Mean Time
E01 (73,105,85,10) 1940 50 1945 41 19417 114 1955 120 1951 82 1973 74 1971 117 1984 119 2056 86
E02 (58,81,58,8) 1610 28 1610 20 16157 78 1632 76 1640 51 1652 50 1660 84 1674 83 1715 72
E03 (46,61,47.,5) 750 0 750 14 7507 59 761 61 788 47 780 44 765 69 824 75 831 63
E04 (70,99,77,9) 1610 48 1675 36 16607 135 1675 107 1663 74 1678 65 1678 104 1703 104 1698 80
E05 (68,94,61,9) 2170 31 2220 23 22097 90 2221 84 2221 62 2237 54 2275 92 2248 93 2265 72
E06 (49,66,43,5) 670 0 670 11 670" 53 6707 59 696 45 730 41 671 72 767 71 814 57
E07 (73,94,50,8) 1900 24 1900 15 19007 71 1910 72 1922 51 1925 441925 81 1931 85 1963 67
E08 (74,98,59,9) 2150 33 2150 22 21507 91 2158 82 2167 55 2179 49 2165 91 2182 93 2224 73
E09 (91,141,103,12) 2250 65 2295 70 22917 224 2307 156 2313 108 2327 97 2319 142 2346 134 2385 98
E10 (56,76,49,7) 1690 0 1690 13 16907 67 1706 67 1726 52 1756 42 1735 77 1793 81 1822 59
E11 (80,113,94,10) 1850 62 1860 69 18857 200 1904 135 1905 96 1910 91 1929 127 1911 128 1957 92
E12 (74,103,67,9) 1710 39 1760 27 1753 103 1758 88 1752F 61 1761 63 1788 97 1770 99 1800 70
E13 (49,73,52,7) 1325 26 1325 16 13257 74 1327 69 1325 50 1338 55 1348 84 1380 88 1423 62
E14 (53,72,55.8) 1810 28 1810 18 18107 83 1835 75 1834 59 1843 60 1843 88 1851 92 1852 68
E15 (85,126,107,9) 1610 74 1610 95 1613 248 1618 165 16117 111 1618 116 1634 146 1632 156 1696 111
E16 (60,80,54,7) 1825 29 1825 21 18257 84 1850 75 1881 58 1913 62 1874 85 2034 86 2027 65
E17 (38,50,36,5) 1290 1 1290 1 12901t 46 1299 54 1303 44 1315 47 1299 68 1351 67 1389 52
E18 (78,110,88,8) 1610 53 1610 63 16127 176 1637 132 1625 92 1647 100 1634 117 1661 135 1711 98
E19 (77,103,66,6) 1435 31 1435 30 14377 106 1453 86 1449 67 1452 73 1468 94 1510 98 1509 79
E20 (56,80,63,7) 990 34 990 31 9907 100 998 83 1004 58 1039 60 1007 90 1072 90 1114 71
E21 (57.,82,72,7) 1705 43 1760 40 17437 128 1771 99 1770 67 1793 70 1785 95 1849 97 1875 72
E22 (54,73,44.5) 1185 19 1185 13 11857 57 1200 63 1194 47 1199 49 1202 73 1238 67 1234 55
E23 (93,130,89.8) 1430 58 1435 62 1462 177 1473 125 1460° 93 1469 92 1463 109 1475 127 1494 90
E24 (97,142,86.,8) 1785 53 1785 57 17907 168 1825 124 1834 81 1846 82 1835 125 1877 116 1891 94
E25 (26,35,284) 655 0 655 8 655 36 717 46 752 38 734 38 769 62 852 62 846 51
Avg. 1558 33 1570 33 1570 111 1586 92 1591 66 1605 65 1602 96 1637 98 1664 74

Convergence Curve on C15 Convergence Curve on D15
1150
2200 | — MAENS ——— MAENS
—— (2=(2,1) —— (g,0)=(2,1)
—— (2.)=(2,5) —x— (g,0)=(2,5)
D150 - 1100

—EF— (2W=(2,10)
—O— (g=3.1)
—A— (=35
—v— (g,0)=(3,10)

2100

2050

Total cost

2000

1950

1900

20 40 60 80 100 120 140 160 180 200 220
Time (sec)

Fig. 4. Convergence curves of RDG-MAENS on Beullens’ C15.

from s2-A to s4-C, at least one version of RDG-MAENS
showed significantly better performance than MAENS. On
these nine instances, all the versions of RDG-MAENS with
g = 2 performed no worse than MAENS and other state-of-the-
art algorithms. In other words, RDG-MAENS outperformed
MAENS and other state-of-the-art algorithms on the instances

—8— (g.m)=(2,10)
—0— (g.0)=,1)
A (gw=(3.5)

g 1050 —v— (2,0)=(3,10)
E
o
=

1000 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

050 o - g G Bk 1 e

——— e e e s
50 100 150 200 250
Time (sec)
Fig. 5. Convergence curves of RDG-MAENS on Beullens’ DI15.

with |Z| > 147 and t > 14. In addition, there is an obvious
trend that the computational time decreases when g increases.

Finally, as shown in Table VII, on the EGL-G instances, it
is obvious that RDG-MAENS performed significantly better
than MAENS and ILS-RVND. In terms of the average results
and computational time over the ten EGL-G instances, (3, 5)
performed the best, as it obtained nearly the best average

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs

445

TABLE V
AVERAGE (MEAN OR MEDIAN) TOTAL COST AND COMPUTATIONAL TIME OF THE COMPARED ALGORITHMS ON BEULLENS’ F TEST SET. FOR EACH
INSTANCE, THE MINIMAL TOTAL COST OF MAENS AND RDG-MAENS IS MARKED WITH . THE MEAN TOTAL COST OF MAENS IS MARKED IN
BOLD IF IT IS STATISTICALLY SIGNIFICANTLY SMALLER THAN THAT OF ALL THE VERSIONS OF RDG-MAENS

RDG-MAENS
Name (|V|,|E|.|Z|,7) GLS Ant-CARP MAENS g=2 g=3
[20] [25] [23] a=1 a=5 a =10 a=1 a=5 a =10

Cost Time Median Time Mean Time Mean Time Mean Time Mean Time Mean Time Mean Time Mean Time
F01 (73,105,85,5) 1065 1 1065 46 10707 173 1086 122 1103 88 1124 95 1146 109 1182 113 1198 100
F02 (58,81,58,4) 920 0 920 22 9207 78 929 68 963 51 987 54 1002 75 1044 75 1093 71
F03 (46,61,47,3) 400 0 400 19 4007 53 419 55 524 48 541 53 724 66 741 71 743 53
F04 (70,99,77.5) 940 36 955 54 9557 137 966 102 969 76 974 82 976 104 1082 108 1091 77
F05 (68,94,61,5) 1180 0 1180 32 1180F 83 1180 74 1219 63 1205 70 1199 88 1331 96 1391 77
F06 (49,66,43,3) 490 0 490 16 490f 45 515 47 530 41 557 46 670 65 685 71 674 60
FO7 (73,94,50,4) 1080 0 1080 16 1080" 63 1142 57 1164 46 1201 49 1259 82 1323 81 1377 69
FO8 (74,98,59,5) 1145 27 1145 27 1145F 82 1149 68 1160 55 1170 54 1167 79 1225 82 1222 67
F09 (91,141,103,6) 1145 1 1225 125 11727 231 1203 145 1213 109 1225 106 1232 133 1277 133 1349 100
F10 (56,76,49.4) 1010 0 1010 20 10107 63 1015 55 1062 44 1078 50 1128 74 1258 72 1279 71
F11 (80,113,94,5) 1015 1 1045 78 10257 212 1049 130 1067 89 1094 95 1089 114 1140 117 1179 95
F12 (74,103,67,5) 910 34 975 40 938" 101 966 81 1042 67 1064 74 996 95 1082 101 1172 76
F13 (49,73,52,4) 835 0 835 22 835" 70 839 58 866 52 896 55 882 77 983 81 1025 59
F14 (53,72,55.4) 1025 3 1025 22 1047F 77 1091 62 1111 53 1122 54 1172 81 1213 81 1224 67
F15 (85,126,107,5) 945 0 945 120 945" 186 954 161 962 126 1014 135 976 143 1011 162 1069 115
F16 (60,80,54,4) 775 0 775 25 775% 51 789 66 921 52 1015 52 959 79 1079 81 1121 63
F17 (38,50,36,3) 605 0 605 9 605 27 6051 43 610 38 640 40 931 64 1020 62 977 55
F18 (78,110,88.4) 850 40 850 72 8527 122 894 131 946 90 954 99 967 104 1040 105 1078 89
F19 (77,103,66,3) 725 23 725 37 725% 71 726 102 751 68 762 75 803 78 847 79 846 73
F20 (56,80,63,4) 610 610 42 615t 63 620 81 678 71 734 75 655 79 775 87 803 73
F21 (57,82,72,4) 905 1 905 54 905" 85 919 97 969 74 990 76 1039 84 1154 84 1218 73
F22 (54,73,44,3) 790 0 790 19 790F 38 796 61 808 49 797 52 873 66 935 59 944 61
F23 (93,130,89.4) 725 47 730 69 7297 117 741 119 741 97 758 9 772 98 825 111 902 103
F24 (97,142,86,4) 975 4 975 72 10037 119 1007 118 1028 89 1051 88 1128 96 1235 70 1278 82
F25 (26,35,28,2) 430 0 430 7 4307 24 553 38 529 34 559 38 - - - - - -
Avg. 860 9 868 43 866 95 886 8 917 67 940 71 - - - - - -

results (only slightly worse than that of (2, 10)) with the
smallest computational time. It is also obvious that a larger
g leads to a much smaller computational time.

In summary, the average performance of RDG-MAENS
improves as |Z| and t increases in terms of both solution
quality and speed. When |Z| and t are large (e.g., |Z| > 147,
T > 14), RDG-MAENS can obtain significantly better solu-
tions in a much shorter time than MAENS. On the other hand,
the previous studies have shown that larger |Z| (problem size)
and 7 (tightness of the capacity constraint) lead to a higher
level of difficulty of the problem. Therefore, the efficacy of
the RDG decomposition scheme in solving large and difficult
CARP instances has been verified.

To better understand the scalability of RDG-MAENS, we
plot the average computational time versus the number of tasks
over all the test instances for MAENS and each version of
RDG-MAENS. The results are shown in Fig. 3, where the x-
axis represents the number of tasks, and the y-axis indicates
the average computational time in seconds. Note that there
are multiple instances with the same number of tasks (x-axis
value). In this case, the average of the y-axis values of these
instances is computed to represent the average computational
time for the corresponding number of tasks. From the figure,
it is obvious that as g increases, the scalability improves
significantly. When the number of tasks is no larger than

50, the average computational time of RDG-MAENS is not
different from that of MAENS. Then, as the number of tasks
increases, the effect of g on the computational time increases.
As a result, the curve of MAENS is the steepest, while the
versions of RDG-MAENS with g = 3 have the flattest curves.
Given the same g, different values of « lead to similar curves.
This implies that the scalability of RDG-MAENS depends
largely on g, but not much on «.

Table VIII shows the mean of the best total costs of RDG-
MAENS and the other state-of-the-art algorithms over the
instances of each test set. One can see that on Beullens’ sets,
the best performance of MAENS is no worse than that of
the other state-of-the-art algorithms. The best performance of
(2, 1) is also as good as that of the state-of-the-art algorithms
on Beullens’ C, E, and F sets. On the egl set, all the versions
of RDG-MAENS showed nearly the same best performance
as the state-of-the-art results. However, on the EGL-G set, all
the versions of RDG-MAENS performed much better than the
state-of-the-art results in the best case.

Table IX shows the results on the instances where the
best-known solutions were updated by RDG-MAENS. BK
represents the previously best-known results of the instances,
which were obtained from [10], [14], [25], [40]. For each
instance, the new best-known result is marked in bold. One can
see that the best-known results were updated for all the EGL-G

446

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

TABLE VI
AVERAGE (MEAN OR MEDIAN) TOTAL COST AND COMPUTATIONAL TIME OF THE COMPARED ALGORITHMS ON THE EGL TEST SET. FOR EACH
INSTANCE, THE MINIMAL TOTAL COST OF MAENS AND RDG-MAENS IS MARKED WITH f. FOR EACH VERSION OF RDG-MAENS, IF ITS MEAN
TOTAL COST IS STATISTICALLY SIGNIFICANTLY SMALLER THAN THAT OF MAENS, THEN IT IS MARKED IN BOLD. OTHERWISE, THE MEAN TOTAL
COST OF MAENS IS MARKED IN BOLD IF IT IS STATISTICALLY SIGNIFICANTLY SMALLER THAN THAT OF ALL THE VERSIONS OF RDG-MAENS

RDG-MAENS
Name (|V|,|E|,|Z|,7) VNS Ant-CARP MAENS g=2 g=3
[10] [25] [23] a=1 a=5 a=10 a=1 a=5 a =10
Mean Time Median Time Mean Time Mean Time Mean Time Mean Time Mean Time Mean Time Mean Time
el-A (77,98,51,5) 3548 5 3548 0 3548F 56 3555 42 3551 40 3568 40 3565 36 3623 37 3633 37
el-B (77,98,51,7) 4522 59 4539 19 4501% 57 4526 44 4530 43 4538 44 4537 42 4554 41 4560 40
el-C (77,98,51,10) 5608 687 5595 21 5598F 62 5615 47 5679 52 5706 51 5647 47 5846 45 5927 43
e2-A (77,98,72,7) 5024 381 5018 45 50187 108 5029 68 5046 70 5042 68 5032 57 5077 56 5123 55
e2-B (77,98,72,10) 6335 732 6344 38 6331F 106 6342 71 6346 73 6373 73 6370 64 6389 65 6386 63
e2-C (77,98,72,14) 8356 457 8335 41 83397 116 8360 75 8364 80 8365 77 8395 70 8414 76 8448 74
e3-A (77,98,87.8) 5898 208 5898 10 5898 153 5912 89 5928 89 5923 95 5948 74 5955 76 6002 79
e3-B (77,98,87,12) 7806 502 7787 62 77907 154 7815 93 7830 99 7835 99 7835 79 7843 86 7846 86
e3-C (77,98,87,17) 10322 584 10292 57 103167 147 10324 98 10327 110 10342 106 10344 84 10346 89 10382 86
ed-A (77,98,98,9) 6459 518 6464 92 e472f 187 6475 105 6489 105 6517 104 6503 86 6508 86 6523 84
ed-B (77,98,98,14) 9016 523 9047 81 9009° 189 9033 111 9047 118 9040 115 9050 92 9057 99 9073 96
e4-C (77,98,98,19) 11750 533 11645 84 116267 155 11651 116 11655 123 11694 120 11670 100 11663 107 11675 105
s1-A (140,190,75,7) 5018 193 5018 46 50217 96 5063 65 5054 71 5050 71 5071 59 5223 60 5358 58
s1-B (140,190,75,10) 6388 385 6388 46 64121 112 6424 68 6435 68 6432 70 6471 65 6481 65 6612 60
s1-C (140,190,75,14) 8518 383 8518 44 85181 113 8540 73 8535 75 8555 76 8567 69 8622 69 8631 68
s2-A (140,190,147,14) 9998 848 9974 209 9979 433 9977 225 9970 259 99607 261 9960 174 9977 211 9971 209
s2-B (140,190,147,20) 13176 857 13283 227 13198 337 131837 223 13212 241 13229 244 13205 169 13214 183 13235 182
s2-C (140,190,147,27) 16552 713 16558 201 16510 303 164917 229 16499 233 16493 235 16505 182 16512 186 16529 187
s3-A (140,190,159,15) 10291 794 10306 248 10295 483 10292 256 102727 272 10278 262 10290 188 10312 215 10430 204
s3-B (140,190,159,22) 13829 606 13890 262 13848 397 13791 257 137757 271 13804 274 13825 191 13847 201 13906 196
s3-C (140,190,159,29) 17328 763 17304 226 17291 349 172837 256 17293 255 17319 254 17301 206 17334 202 17361 202
s4-A (140,190,190,19) 12440 721 12439 455 12404 588 123927 355 12397 387 12394 369 12406 252 12415 264 12440 261
s4-B (140,190,190,27) 16410 450 16502 608 16437 485 16376 345 16378 350 16386 348 163757 262 16434 261 16439 258
s4-C (140,190,190,35) 20732 885 20731 427 20703 438 20675 314 20696 317 20671 312 20682 266 20692 263 20667° 257
Avg. 9805 533 9809 148 9794 234 9797 151 9805 158 9813 157 9815 121 9847 127 9882 125
x10° Convergence Curve on egl-e4-C x10° Convergence Curve on egl-s2-B
] —— MAENS 1379 —— MAENS
1.195 —e— (ga)=(2,1) 1365 o e (g)=(2,])
] T @w=25) e (e0)=(2.5)
119 | —B— (g.0=(2,10) - —&— (g,0)=(2,10)
b —o— (g.)=(3.1) 1.355 - | —%— (g.0=(3.1)
1185 —A— (gw)=(3.5) s T =G
Z] —v— (2.0)=(3,10) g 1 —v— (@0=G.10)
3 118 5

— T T T T T
20 40 60 80 100 120 140 160
Time (sec)

Fig. 6. Convergence curves of the compared algorithms on egl-e4-C.

instances. The other instances (C11, E09, E11, s2-B and s4-B)
also have larger |Z| and 7 than most instances in their own
test sets. Therefore, the best performance of RDG-MAENS
showed a similar pattern as that of its average performance.
That is, RDG-MAENS showed its competitiveness on the
instances with large |Z|’s and 7’s.

I T rrr [rrrr[rrr [rr T[T
50 100 150 200 250 300 350
Time (sec)

Fig. 7. Convergence curves of the compared algorithms on egl-s2-B.

A more illustrative comparison is also made on the con-
vergence curves of MAENS and RDG-MAENS for some
representative instances, which are shown in Figs. 4-9. In
the figures, the x-axis represents the computational time in
seconds, and the y-axis is the average total cost of the best-
so-far solutions over the 30 independent runs. Figs. 4 and 5
show the results on Beullens’ C15 and D15 instances, which

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs

447

TABLE VII
MEAN TOTAL COST AND COMPUTATIONAL TIME OF THE COMPARED ALGORITHMS ON THE EGL-G TEST SET. FOR EACH INSTANCE, THE MINIMAL
TOTAL COST OF MAENS AND RDG-MAENS IS MARKED WITH . FOR EACH VERSION OF RDG-MAENS, IF ITS MEAN TOTAL COST IS
STATISTICALLY SIGNIFICANTLY SMALLER THAN THAT OF MAENS, THEN, IT IS MARKED IN BOLD

RDG-MAENS
Name (|V|,|E|,|Z|,7) ILS-RVND MAENS g=2 g=3
[14] [23] a=1 =5 a =10 a=1 a=25 a =10

Mean Time Mean Time Mean Time Mean Time Mean Time Mean Time Mean Time Mean Time
G1-A (255,375,347,20) 1010937 1023 1009302 2453 1008295 1426 1007956 1643 1007619 1628 1009720 933 10072237 1049 1014068 985
G1-B (255375,347,25) 1137142 916 1128114 2058 1127223 1288 1124191 1407 11228637 1390 1127022 860 1124751 901 1127199 888
G1-C (255,375,347,30) 1266577 860 1255709 1841 1254508 1203 1251535 1266 12501747 1264 1255083 829 1251718 843 1255139 846
G1-D (255,375,347,35) 1406929 834 1390034 1686 1386729 1066 1384225 1141 1386120 1145 1387528 818 13826957 834 1387294 822
GI-E (255375,347,40) 1554220 833 1535511 1566 1531185 995 1526998 1060 1525629 1068 1529293 776 15248907 781 1530237 775
G2-A (255,375,375.22) 1118363 1507 1109376 2593 1109513 1571 1106823 1674 11049447 1675 1110053 1045 1108916 1140 1110665 1073
G2-B (255375,37527) 1233721 1376 1225361 2268 1222816 1448 12212147 1515 1221429 1511 1225438 990 1222183 1055 1224629 1002
G2-C (255,375,375,32) 1374480 1019 1358398 2016 1356468 1313 1353777 1382 1355548 1373 1356212 947 13531187 962 1355141 947
G2-D (255,375,375,37) 1515119 940 1500415 1881 1496448 1203 1492116 1272 1492063 1268 1496652 910 1491013 923 14891147 920
G2-E (255,375,375.42) 1658378 900 1641260 1781 1636683 1119 1632008 1187 16290027 1181 1632348 886 1629310 907 1629837 893
Avg. 1327587 1021 1315348 2014 1312987 1263 1310084 1354 1309539 1350 1312935 899 1309582 940 1312332 915

TABLE VIII

MEAN OF BEST TOTAL COST OF THE COMPARED ALGORITHMS OVER THE INSTANCES OF EACH TEST SET

RDG-MAENS
Name GLS Ant-CARP VNS ILS-RVND MAENS g=2 g=3
[20] [25] [10] [14] [23] a=1 a=5 a=10 a=1 a=5 a=10
Beullens’ C 1501 1499 - - 1498 1499 1498 1499 1502 1503 1505
Beullens’ D 688 688 - - 688 696 697 697 - - -
Beullens’ E 1558 1556 - - 1557 1556 1555 1556 1556 1560 1562
Beullens’ F 860 860 - - 860 860 862 861 - - -
egl - 9747 9752 - 9752 9746 9748 9749 9748 9752 9756
EGL-G - - - 1318665 1305158 1303829 1300193 1300518 1302895 1299428 1300673
have the same graph. However, C15 has a larger 7. One can see
that the curves of RDG-MAENS tend to be closer to that of TABLE IX

MAENS on C15 than D15, which implies that RDG-MAENS
performed better on C15 than D15. Figs. 6 and 7 are the results
on the egl e4-C and s2-B, which have the similar 7’s. However,
the number of tasks is much larger in s2-B than in e4-C. It is
obvious that RDG-MAENS performed much better on s2-B.
Figs. 8 and 9 give the results on EGL-G2-A and EGL-G2-D,
both are LSCARP with larger 7’s. On these instances with
large t’s, there is a clear advantage of RDG-MAENS over
MAENS as well. However, the best versions of RDG-MAENS
are different. On EGL-G2-A, (2, 10) performed the best, while
on EGL-G2-D, (3, 10) showed the best performance. In short,
the representative illustrations show that RDG performed
better on instances with larger number of tasks and 7.

In summary, the competitiveness of the proposed RDG
decomposition scheme was demonstrated by the substantially
improved performance of RDG-MAENS on the instances
with large |Z|’s and t’s in terms of both solution quality
and computational time. In addition, it is shown that both
parameters g and o affect the performance of RDG-MAENS.
For example, on the EGL-G set, if g = 2, then o = 10 is the
best value among all the compared o’s. When g =3, =5 is
the best option. This implies the necessity of including both
g and « to achieve better decomposition performance.

BEST TOTAL COST OBTAINED BY THE RDG-MAENS ON THE INSTANCES
‘WHERE THE BEST-KNOWN RESULTS WERE UPDATED. FOR EACH
INSTANCE, THE NEW BEST-KNOWN RESULT IS MARKED IN BOLD

RDG-MAENS

Name (|Z|, 7) BK

a=1

C11 (94,10) 1810 1815 1815 1815 1820 1815

E09 (103,12)
E11 (94,10)

2235
1835

2225
1840

2235
1835

2225
1830

2225
1845

2235
1840

2225
1840

13100
16321

13127
16282

13120
16295

13112
16260

13099
16289

13119
16296

13127
16287

s2-B (147,20)
s4-B (190,27)

GI1-A (347,20) 1002264
G1-B (347,25) 1126509
G1-C (347,30) 1260193
G1-D (347.35) 1397656
GI1-E (347,40) 1541853
G2-A (375.22) 1111127
G2-B (375,27) 1223737
G2-C (375,32) 1366629
G2-D (375,37) 1506024
G2-E (375.42) 1650657

1002530
1118739
1246738
1376534
1522253
1102159
1214113
1350282
1486042
1618899

1000068
1118030
1243629
1372125
1514171
1094912
1208326
1346184
1482669
1621812

998777
1118030
1243403
1373389
1517424
1097578
1209694
1342637
1483558
1620692

1002460
1118248
1245297
1378682
1518205
1100664
1214184
1347530
1484667
1619012

1000575
1111971
1243779
1371443
1512584
1096027
1213617
1344148
1481181
1618955

1002154
1118030
1241762
1376280
1513648
1100422
1210276
1341519
1481649
1620992

448 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 3, JUNE 2014

<10° Convergence Curve on EGL-G2-A

g — MAENS
—— (g.=(2,1)
(8. W)=(2.5)
—&— (g,)=(2,10)
—o— (g.)=3,1)
—A— (g0=3.5)
—v— (2.0)=(3.10)

Total cost

—————— T —— ——
500 1000 1500 2000 2500
Time (sec)

Fig. 8. Convergence curves of the compared algorithms on EGL-G2-A.

<10° Convergence Curve on EGL-G2-D

16 —— MAENS
—— (g,a)=(2,1)
T =25) |
—a— (2.0)=(2,10)
—0— (g.)=(3.1)
e —4&— (g,0)=(3,5)
—— (2,0)=(3,10)

1.58

156 -\t

Total cost

R R RN RS ey e e
200 400 600 800 1000 1200 1400 1600 1800
Time (sec)

Fig. 9. Convergence curves of the compared algorithms on EGL-G2-D.

VI. CONCLUSION

The practically important LSCARP is investigated in this
paper, and a competitive decomposition-based approach is
proposed for solving it. The proposed approach is a combi-
nation of the CC framework and an effective RDG decom-
position scheme. The major contribution of this paper is the
development of the RDG decomposition scheme. It takes the
best-so-far solution as a guide, and defines a distance matrix
between the routes to make the routes closer to each other
more likely to be placed in the same subcomponent. In this
way, more promising decompositions can be identified as the
search continues. The final algorithm is named RDG-MAENS.
The experimental studies demonstrated the efficacy of RDG-
MAENS on the large and difficult CARP instances, such as all
the EGL-G LSCARP instances and the egl instances with large
|Z|’s and t’s. Furthermore, the best-known results of the EGL-
G instances have been much improved by RDG-MAENS.

The performance of RDG-MAENS largely depends on g
and «. In this paper, the effects of g and o were briefly
investigated by comparing RDG-MAENS with different g’s
and o’s, and the experimental results showed that the best g

and o values are different for different instances. For example,
Figs. 8 and 9 show that the best version of RDG-MAENS is
(2, 10) on EGL-G2-A, and (3, 10) on EGL-G2-D. In addition,
the tradeoff between the number of cycles and the generations
in each cycle may also influence the performance of the
algorithm. In the future, the relationship between the best
parameter values and the problem characteristics, such as |Z],
7, and the graph topology will be investigated, in an attempt
to develop an adaptive parameter setting scheme to further
enhance the performance of the algorithm.

REFERENCES

[1] M. Dror, Arc Routing: Theory, Solutions and Applications. Boston, MA,
USA: Kluwer Academic, 2000.

[2] H. Handa, L. Chapman, and X. Yao, “Robust salting route optimization
using evolutionary algorithms,” in Proc. IEEE Congr. Evol. Comput.,
vol. 1. Jul. 2006, pp. 10455-10462.

[3] H. Handa, L. Chapman, and X. Yao, “Robust route optimization for
gritting/salting trucks: A CERCIA experience,” IEEE Comput. Intell.
Mag., vol. 1, no. 1, pp. 6-9, Feb. 2006.

[4] G. Ghiani, G. Improta, and G. Laporte, “The capacitated arc rout-
ing problem with intermediate facilities,” Networks, vol. 37, no. 3,
pp. 134-143, 2001.

[5] A. Amberg, W. Domschke, and S. VoB, “Multiple center capacitated arc
routing problems: A tabu search algorithm using capacitated trees,” Eur:
J. Oper. Res., vol. 124, no. 2, pp. 360-376, 2000.

[6] F. Chu, N. Labadi, and C. Prins, “A scatter search for the periodic
capacitated arc routing problem,” Eur. J. Oper. Res., vol. 169, no. 2,
pp. 586-605, 2006.

[7] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Evolutionary algo-
rithms for periodic arc routing problems,” Eur. J. Oper. Res., vol. 165,
no. 2, pp. 535-553, 2005.

[8] Y. Mei, K. Tang, and X. Yao, “A memetic algorithm for periodic
capacitated arc routing problem,” IEEE Trans. Syst., Man, Cybern. B:
Cybern., vol. 41, no. 6, pp. 1654-1667, Dec. 2011.

[9] J. Campbell and A. Langevin, “Roadway snow and ice control,”
Arc Routing: Theory, Solutions and Applications. Boston, MA, USA:
Kluwer, 2000, pp. 389-418.

[10] M. Polacek, K. Doerner, R. Hartl, and V. Maniezzo, “A variable neigh-
borhood search for the capacitated arc routing problem with intermediate
facilities,” J. Heuristics, vol. 14, no. 5, pp. 405-423, 2008.

[11] J. Branddo and R. Eglese, “A deterministic tabu search algorithm for
the capacitated arc routing problem,” Comput. Oper. Res., vol. 35, no. 4,
pp. 1112-1126, 2008.

[12] Y. Mei, K. Tang, and X. Yao, “A global repair operator for capacitated
arc routing problem,” IEEE Trans. Syst, Man, Cybern. B: Cybern.,
vol. 39, no. 3, pp. 723-734, Jun. 2009.

[13] X. Chen, “MAENS+: A divide-and-conquer based memetic algorithm
for capacitated arc routing problem,” in Proc. 4th IEEE Int. Symp.
Comput. Intell. Design, vol. 1. Oct. 2011, pp. 83-88.

[14] R. Martinelli, M. Poggi, and A. Subramanian, “Improved bounds for
large scale capacitated arc routing problem,” Comput. Oper. Res., vol. 40,
no. 8, pp. 2145-2160, 2013.

[15] J. De Armon, “A comparison of heuristics for the capacitated Chinese
postman problem,” Master’s thesis, University of Maryland, College
Park, MD, USA, 1981.

[16] E.Benavent, V. Campos, A. Corberan, and E. Mota, “The capacitated arc
routing problem: Lower bounds,” Networks, vol. 22, no. 7, pp. 669-690,
1992.

[17] R. Eglese, “Routeing winter gritting vehicles,” Discrete Appl. Math.,
vol. 48, no. 3, pp. 231-244, 1994.

[18] R. Eglese and L. Li, “A tabu search based heuristic for arc routing
with a capacity constraint and time deadline,” Meta-Heuristics: Theory
Applications. Boston, MA, USA: Kluwer Academic, 1996, pp. 633-650.

[19] L. Li and R. Eglese, “An interactive algorithm for vehicle routeing for
winter-gritting,” J. Oper. Res. Soc., vol. 47, no. 2, pp. 217-228, 1996.

[20] P. Beullens, L. Muyldermans, D. Cattrysse, and D. Van Oudheusden, “A
guided local search heuristic for the capacitated arc routing problem,”
Eur. J. Oper. Res., vol. 147, no. 3, pp. 629-643, 2003.

[21] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Competitive memetic
algorithms for arc routing problems,” Ann. Oper. Res., vol. 131, no. 1,
pp. 159-185, 2004.

MEI et al.: COOPERATIVE COEVOLUTION WITH ROUTE DISTANCE GROUPING FOR LARGE-SCALE CARPs 449

[22] Y. Mei, K. Tang, and X. Yao, “Improved memetic algorithm for
capacitated arc routing problem,” in Proc. IEEE Congr. Evol. Comput.,
May 2009, pp. 1699-1706.

[23] K. Tang, Y. Mei, and X. Yao, “Memetic algorithm with extended
neighborhood search for capacitated arc routing problems,” IEEE Trans.
Evol. Comput., vol. 13, no. 5, pp. 1151-1166, Oct. 2009.

[24] L. Feng, Y. Ong, Q. Nguyen, and A. Tan, “Towards probabilistic
memetic algorithm: An initial study on capacitated arc routing problem,”
in Proc. IEEE Congr. Evol. Comput., Jul. 2010, pp. 18-23.

[25] L. Santos, J. Coutinho-Rodrigues, and J. R. Current, “An improved
ant colony optimization based algorithm for the capacitated arc routing
problem,” Transp. Res. B, Methodological, vol. 44, no. 2, pp. 246266,
2010.

[26] Y. Mei, K. Tang, and X. Yao, “Decomposition-based memetic algorithm
for multiobjective capacitated arc routing problem,” IEEE Trans. Evol.
Comput., vol. 15, no. 2, pp. 151-165, Apr. 2011.

[27] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary opti-
mization using cooperative coevolution,” Inf. Sci., vol. 178, no. 15,
pp- 2985-2999, 2008.

[28] M. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with delta
grouping for large scale non-separable function optimization,” in Proc.
IEEE Congr. Evol. Comput., Jul. 2010, pp. 1762-1769.

[29] M. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution
for large scale optimization through more frequent random grouping,”
in Proc. IEEE Congr. Evol. Comput., Jul. 2010, pp. 1-8.

[30] X. Li and Y. Yao, “Cooperatively coevolving particle swarms for large
scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2, pp. 1-15,
Apr. 2011.

[31] E.D. Taillard and S. Voss, “Popmusic: Partial optimization metaheuris-
tic under special intensification conditions,” in Proc. Essays Surveys
Metaheuristics, 2002, pp. 613-629.

[32] R. Bent and P. Van Hentenryck, “Randomized adaptive spatial decou-
pling for large-scale vehicle routing with time windows,” in Proc. Nat.
Conf. Artif. Intell. Amer. Assoc. Artif. Intell., 2007, pp. 173-178.

[33] D. Mester, O. Briysy, and W. Dullaert, “A multi-parametric evolution
strategies algorithm for vehicle routing problems,” Expert Syst. Applicat.,
vol. 32, no. 2, pp. 508-517, 2007.

[34] M. Qi, W.-H. Lin, N. Li, and L. Miao, “A spatiotemporal partitioning
approach for large-scale vehicle routing problems with time windows,”
Transp. Res. E, Logistics Transp. Rev., vol. 48, no. 1, pp. 248-257, 2012.

[35] R. Baldacci and V. Maniezzo, “Exact methods based on node routing
formulations for arc routing problems,” Networks, vol. 47, pp. 52-60,
2006.

[36] H. Longo, M. de Arag@o, and E. Uchoa, “Solving capacitated arc routing
problems using a transformation to the CVRP,” Comput. Oper. Res.,
vol. 33, no. 6, pp. 1823-1837, 2006.

[37] W.-L. Pearn, A. Assad, and B. L. Golden, “Transforming arc routing
into node routing problems,” Comput. Oper. Res., vol. 14, no. 4,
pp. 285-288, 1987.

[38] E. Dijkstra, “A note on two problems in connexion with graphs,” Numer.
Math., vol. 1, no. 1, pp. 269-271, 1959.

[39] J. Belenguer and E. Benavent, “A cutting plane algorithm for the
capacitated arc routing problem,” Comput. Oper. Res., vol. 30, no. 5,
pp. 705-728, 2003.

[40] E. Bartolini, J.-F. Cordeau, and G. Laporte, “Improved lower bounds
and exact algorithm for the capacitated arc routing problem,” Math.
Program., vol. 137, nos. 1-2, pp. 409-452, 2013.

[41] M. Potter and K. De Jong, “A cooperative coevolutionary approach to
function optimization,” in Proc. PPSN, 1994, pp. 249-257.

[42] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary
programming with cooperative coevolution,” in Proc. IEEE Congr. Evol.
Comput., vol. 2. May 2001, pp. 1101-1108.

[43] Y. Shi, H. Teng, and Z. Li, “Cooperative co-evolutionary differential
evolution for function optimization,” in Proc. Ist Int. Conf. Adv. Natural
Comput., 2005, vol. II, pp. 1080-1088.

[44] F. Van den Bergh and A. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225-239, Jun. 2004.

[45] R. Krishnapuram, A. Joshi, and L. Yi, “A fuzzy relative of the k-medoids
algorithm with application to web document and snippet clustering,” in
Proc. IEEE Int. Fuzzy Syst. Conf., vol. 3. Aug. 1999, pp. 1281-1286.

[46] L. Kaufman and P. Rousseeuw, “Clustering by means of medoids,” in
Statistical Data Analysis Based on the LI-Norm and Related Methods,
vol. 405, Y. Dodge, Ed. North-Holland, The Netherlands, Birkhduser
Basel; 1987.

[47] J. L. Henning, “Spec CPU2000: Measuring CPU performance in the
new millennium,” Computer, vol. 33, no. 7, pp. 28-35, 2000.

[48] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometr.
Bulletin, vol. 1, no. 6, pp. 80-83, 1945.

Yi Mei (S’09-M’13) received the bachelor’s degree
in mathematics from the University of Science and
Technology of China (USTC), Hefei, China, in 2005,
and the Ph.D. degree in computer science from

-
: > T the Nature Inspired Computation and Applications
= 4 Laboratory, School of Computer Science and Tech-
— nology, USTC, in 2010.

He is a Research Fellow with the School of Com-
puter Science and Information Technology, RMIT
University, Melbourne, Australia. His research in-
terests include evolutionary algorithms, memetic al-
gorithms, and other meta-heuristics with various real-world applications in the
logistic area, such as arc routing problems, vehicle routing problems, traveling
salesman problems, and supply chain. He is also interested in constrained
optimization, multiobjective optimization, dynamic optimization, and robust
design optimization.

Xiaodong Li (M’03-SM’07) received the B.Sc. de-
gree in information science from Xidian University,
Xi’an, China, in 1988, and the Dip.Com. and Ph.D.
degrees in information science from the University
of Otago, Dunedin, New Zealand, in 1992 and 1998,
respectively.

He is an Associate Professor with the School
of Computer Science and Information Technology,
RMIT University, Melbourne, Australia. His re-
search interests include evolutionary computation (in
particular evolutionary multiobjective optimization,
evolutionary optimization in dynamic environments, large scale optimization,
and multimodal optimization), neural networks, complex systems, and swarm
intelligence.

Dr. Li is an Associate Editor of the IEEE TRANSACTIONS ON EVOLUTION-
ARY COMPUTATION and International Journal of Swarm Intelligence Research
(1JSIR). He is currently the Chair of the IEEE CIS Task Force on Large
Scale Global Optimization and a Vice-Chair of the IEEE CIS Task Force on
Swarm Intelligence. He is member of the editorial board of the Journal of
Swarm Intelligence (Springer), and Journal of Soft computing (Springer), and
a member of the Technical Committee on IEEE Soft Computing, Systems,
Man and Cybernetics Society. He is an Advisor on the Scientific Advisory
Board of SolvelT Software. He is a Vice-Chair of IEEE Victorian Section CIS
Chapter, Melbourne, Australia. He is the recipient of the 2013 ACM SIGEVO
Impact Award.

Xin Yao (F’03) is a Chair (Professor) of Computer
Science and the Director of the Centre of Excellence
for Research in Computational Intelligence and Ap-
plications, University of Birmingham, UK. He is a
Distinguished Lecturer of the IEEE Computational
Intelligence Society (CIS). He has more than 400
refereed publications in international journals and
conferences. His research interests include evolu-
tionary computation and ensemble learning.

Dr. Yao won the 2001 IEEE Donald G. Fink
Prize Paper Award, 2010 IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION Outstanding Paper Award, 2010 BT Gordon
Radley Award for Best Author of Innovation (Finalist), 2011 IEEE TRANSAC-
TIONS ON NEURAL NETWORKS Outstanding Paper Award, and many other best
paper awards at conferences. He won the prestigious Royal Society Wolfson
Research Merit Award in 2012 and was selected to receive the 2013 IEEE
CIS Evolutionary Computation Pioneer Award. He was the Editor-in-Chief of
the the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION from 2003
to 2008.

