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Abstract—In this paper we propose a user-preference based
evolutionary algorithm that relies on decomposition strategies to
convert a multi-objective problem into a set of single-objective
problems. The use of a reference point allows the algorithm
to focus the search on more preferred regions which can
potentially save considerable amount of computational resources.
The algorithm that we proposed, dynamically adapts the weight
vectors and is able to converge close to the preferred regions.
Combining decomposition strategies with reference point ap-
proaches paves the way for more effective optimization of many-
objective problems. The use of a decomposition method alleviates
the selection pressure problem associated with dominance-based
approaches while a reference point allows a more focused search.
The experimental results show that the proposed algorithm is
capable of finding solutions close to the reference points specified
by a decision maker. Moreover, our results show that high quality
solutions can be obtained using less computational effort as
compared to a state-of-the-art decomposition based evolutionary
multi-objective algorithm.

I. INTRODUCTION

Evolutionary Multi-objective Optimization (EMO) [1], [2]

techniques have been successfully applied to many real-world

applications in engineering design, production and manufac-

turing [3]. In recent years there has been a growing demand

for tackling problems with many conflicting objectives [4],

however, the performance of evolutionary multi-objective ap-

proaches degrades rapidly as the number of objectives in-

creases [5], [6].

More specifically, there are three major challenges faced

by EMO algorithms when dealing with many-objective prob-

lems [7]. Visualizing the Pareto-front when there are more

than three objectives is virtually impossible. This makes it

difficult for the decision maker (DM) to get a visual sense

of the solutions to be able to select a preferred one. The

second difficulty is that the number of solutions required to

approximately generate the full Pareto-optimal front increases

exponentially with respect to the number of objectives. Finally,

when the number of objectives increases, most of the solutions

even in the initial randomly generated population are non-

dominated to each other, hence there will not be enough

selection pressure to propel the solutions towards the Pareto-

optimal front [6], [5].

It has been shown that the dominance-based approaches

such as NSGA-II [8], SPEA [9] and MOGA [10] suffer the

most from the selection pressure problem when dealing with

high dimensional objective spaces [11], [5], [6]. By apply-

ing decomposition strategies borrowed from multi-criterion

decision making [12] to convert a multi-objective problem

into a single-objective problem, we can alleviate the selection

pressure problem imposed on dominance-based evolutionary

algorithms. This eliminates the need for a dominance operator

which is the prime source of low selection pressure. Two major

techniques, which are widely used to convert a multi-objective

problem into a single-objective problem, are the weighted-sum

and the Tchebycheff approaches [12]. These strategies mainly

rely on assigning weight values to the objective functions

in order to obtain a solution on the Pareto-optimal front. In

particular, for each set of weight values often a solution can

be found on the Pareto-optimal front. Thus, by using various

sets of weight values, different solutions can be obtained on the

Pareto-optimal front. The well-known evolutionary approaches

that rely on a decomposition strategy to generate a set of

single-objective problems from a multi-objective problem are

MOGLS [13] and MOEA/D [14].

Although the decomposition based approaches such as

MOGLS and MOEA/D suffer less than the dominance-

based approaches from the selection pressure problem and

can potentially scale better to higher objective spaces, the

number of single-objective sub-problems that they have to

solve in order to approximate the entire Pareto-optimal front

grows exponentially as the number of objectives increases.

In order to reduce this computational cost, one can focus

the search on a preferred region of the Pareto-optimal front

rather than spending a considerable amount of computational

resources to generate the entire front. User preference based

approaches [15] are ideal for such scenarios where the DM

provides, as input, a reference point in the objective space as a

representative for his/her preferred region. By having access to

such a reference point, the algorithm can use the computational

budget more effectively by searching in the more desired

regions. The amount of computational resources that can be

potentially saved using user-preference based approaches is

magnified when dealing with many-objective problems.

In this paper, we propose a multi-objective optimization

algorithm that integrates the user preference with decomposi-

tion based EMO algorithms in order to provide a mechanism

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence 
June, 10-15, 2012 - Brisbane, Australia IEEE CEC

1150



for tackling many-objective problems more efficiently. In

particular, the proposed algorithm has the following major

advantages:

• Less susceptible to the selection pressure problem result-

ing from the use of dominance comparisons, by using a

decomposition based method;

• More computationally effective by searching the regions

which are preferred by the decision maker;

• Faster convergence to the Pareto-optimal front;

• Better scalability to higher objective spaces.

The organization of the rest of this paper is as follows. In

Section II we explain some preliminaries. Section III contains

a brief description of some related studies. The proposed

algorithm is described in Section IV. The experimental results

are presented and analyzed in Section V and finally, Section VI

concludes the paper.

II. BACKGROUND

A. Multi-objective Optimization

A multi-objective optimization problem is defined as fol-

lows:

F (~x) = 〈fi(~x), . . . , fm(~x)〉 , (1)

where fi(~x) is the i-th objective from a set of m objective

functions and ~x = 〈x1, . . . , xn〉 is the decision vector and n is

the dimensionality of the decision space. Since two solutions

in a multi-objective problem can be compared with respect

to various objectives, the concept of dominance has been

introduced for deciding which solutions should be preferred

to others. A solution ~x is said to dominate solution ~x′ if it is

as good as ~x′ with respect to all of the objectives and strictly

better on at least one. This is shown as ~x ≺ ~x′ and is more

formally defined as follows (minimization of the objectives

has been assumed):

~x ≺ ~x′ ⇐⇒ ∀i, fi(~x) ≤ fi(~x
′) ∧ ∃j, fj(~x) < fj(~x

′).

A non-dominated set is a set of solutions where all of its

members do not dominate each other. A Pareto-optimal set

is a non-dominated set where its members dominate all other

possible solutions. The mapping of all possible Pareto-optimal

solutions into the objective space form a curve (surface) which

is commonly referred to as Pareto-optimal front. A Pareto-

optimal front is said to be convex if and only if the connecting

line between any two points on the Pareto-optimal front lies

above it and non-convex otherwise.

B. Weighted-Sum Approach

The weighted-sum method is one of the simplest and well-

known strategies to convert a multi-objective problem into

a single-objective problem [12]. Although this approach is

simple and easy to apply, choosing a weight vector that results

in finding a solution near the user reference point is not a

straightforward task. Choosing a weight value for each of the

objectives depends on their relative importance in the context

of the actual problem which is being solved. Moreover, in

order to have a fair scaling of the objectives, they first need
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Fig. 1. This figure shows the effect of updating the weight vectors in moving
the solutions closer to the desired region.

to be normalized [1]. A compound objective function is the

sum of the weighted normalized objectives which is defined

as follows:

minimize gws =
m∑

i=1

wifi(~x) , (2)

where 0 ≤ wi ≤ 1,m is the number of objectives and wi is the

weight value for for the i-th objective function. It is customary

to choose weights such that they add up to one. It has been

proved that for any Pareto-optimal solution ~x⋆ of a convex

multi-objective problem, there exists a positive weight vector

such that ~x⋆ is a solution to Equation (2) [12]. For any given

set of weight values, Equations (2) will form a hyperplane

in R
m for which the location is identified by the objective

values which are subsequently dependent on the input vector

~x and the orientation of the plane is determined by the weight

values wi. In the special case of having two objectives, the

gws will take the form of a straight line for which the slope

is determined by the weight vector as depicted in Figure 1.

The effect of minimizing gws is to push this line as close as

possible to the Pareto-optimal front until a unique solution is

obtained. For example in Figure 1 the solutions lie on the line

‘a’ and as they improve during the evolution, they move in

the feasible region towards the Pareto-optimal front until an

optimum solution (‘O’) is obtained. Lines ‘a’ through ‘d’ show

how the improvement of solutions will result in the movement

on line (hyperplane in higher dimensions) until it becomes

tangential to the Pareto-optimal front at point ‘O’. A major

advantage of the weighted-sum approach is its simplicity and

effectiveness, however, it is less effective when dealing with

non-convex Pareto-optimal fronts [1].
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C. Tchebycheff Approach

Another decomposition method, Tchebycheff [12], converts

a multi-objective problem into a single-objective problem

using the following equation:

minimize gte(~x) = max{wi|fi(~x)− z⋆i |} , (3)

where i ∈ {1, . . . ,m}, m is the number of objectives, ~z⋆ =
〈z⋆1 , . . . , z

⋆
m〉 is the ideal point such that z⋆i = min{fi(~x)}

for all possible decision vectors ~x, and wi is a weight value.

Similar to the weighted-sum approach, by minimizing gte(~x)
for any given weight vector ~w a solution can be found

on the Pareto-optimal front. Therefore the complete Pareto-

optimal front can be generated by minimizing gte(~x) with

various weight vectors. A major advantage of the Tchebycheff

approach is that – unlike the weighted-sum approach – it can

be used to obtain a Pareto-optimal solution on problems with

a non-convex Pareto-optimal front.

D. Decomposition Based EMO Methods

Decomposition based EMO algorithms rely on a decomposi-

tion strategy such as weighted-sum or Tchebycheff to convert a

multi-objective problem into a single-objective problem which

is then optimized using any Evolutionary Algorithm. Among

decomposition based EMO approaches, MOGLS [13] and

MOEA/D [14] enjoyed more popularity than others. Since the

algorithm that we propose in this paper is mainly based on

MOEA/D, here we provide a brief description of its algorithm.

In MOEA/D, each individual is associated with a unique

weight vector which is used for the decomposition of the

problem. In addition to the weight vector, a neighborhood is

formed for each individual which contains the indices of T

closest neighbors based on the closeness of their corresponding

weight vectors. In the mating process, the individuals from the

same neighborhood are combined using suitable genetic oper-

ators to generate new offspring. Since MOEA/D relies on the

individuals’ neighborhood rather than the whole population to

generate new offspring, it benefits from a lower computational

cost compared to its counterparts such as MOGLS [13] and

NSGA-II [8].

III. RELATED WORKS

The idea of a user-preference based optimization in the

context of classical multi-criterion decision making was pro-

posed by Wierzbicki [16]. Such approaches allow the user

to specify their desired region through a reference point.

Since the reference point allows a more focused search,

considerable amount of computational resources can be saved.

These inherent advantages prompted the researchers to apply

user-preference based approaches to the field of Evolutionary

Multi-objective Optimization (EMO) [1], [2], [17].

Deb [18] made the first attempt to apply EMO approaches

to classical goal programming [19]. The ability of evolutionary

algorithms in finding multiple solutions made it possible

to simultaneously minimize the deviations from individual

goals which eliminated the need for a user-defined weight

vector. The effectiveness of this evolutionary approach to

goal programming has been verified empirically using several

test problems as well as a real-world engineering design

problem [18]. In this approach, the emphasis was mainly on

goal satisfaction and the algorithm does not try to find Pareto-

optimal solutions close to the supplied goal.

In another study, Deb and Sundar [7] proposed a method

which combined a reference point strategy with NSGA-II [8]

in order to simultaneously find multiple solutions on the

Pareto-optimal front close to each of the user-supplied refer-

ence points. This new algorithm which was called R-NSGA-

II used an extra parameter called ǫ in order to control the

crowding of solutions near the provided reference points. In

the same study, a predator-prey approach was also investigated

to find solutions close to a desired region. However, it has been

shown that the predator-prey approach does not scale well as

the number of objectives increases [7]. Although R-NSGA-

II has been applied successfully to problems with up to ten

objectives, it can potentially suffer from the selection pressure

problem common to all dominance-based approaches when

applied to many-objective problems.

In the context of decomposition based approaches,

Cvetkovic and Parmee [20] used a modified dominance op-

erator to account for the importance weights associated to

the objectives. Since the dominance operator does not specify

the extent to which one solution is better than the other, this

algorithm has been reported to be hard to control and only

provides a very coarse control over the desired region [7]. Jin

and Sendhoff [21] used dynamic weighted aggregation method

to decompose a multi-objective problem into a single-objective

problem. They also dynamically updated the weight values to

obtain desired solutions. In this approach, the users cannot

provide a reference point and the desired region can only be

coarsely specified by specifying the relative importance of the

objectives.

Branke et al. [22] proposed Guided Multi-Objective Evo-

lutionary Algorithm (G-MOEA) which guides the search to

regions on Pareto-optimal front which are of interest to the

decision maker. Since it is difficult for the decision makers to

determine the weight of each objective directly, instead, they

provide a maximum acceptable trade-off between each objec-

tive pair. The definition of dominance is modified accordingly

in order to favor the solutions closer to the region of interest.

Although this approach allows a faster convergence, it is very

difficult for the user to provide a set of pair-wise trade-off

values for the objectives when dealing with many-objective

problems.

A biased fitness sharing technique has been proposed by

Deb [23] where the search was focused on a desired region

by an importance weight vector that specifies the relative

importance of the objectives. The drawback of this technique

is that it cannot obtain a set of solutions anywhere on the

Pareto-optimal front in a controlled manner [23].

IV. PROPOSED APPROACH

In this section we describe the details of a reference

point based evolutionary multi-objective optimization prob-
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Fig. 2. This figure shows the effect of updating the weight vectors in moving
the solutions closer to the desired region.

lem through decomposition which we refer to as the R-

MEAD algorithm hereafter. As it was mentioned earlier in

Section I, we aimed at designing an algorithm that scales

better when the number of objectives increases. Therefore,

instead of tackling a multi-objective problem directly, we first

decompose it into a set of single-objective problems using a

decomposition strategy such as weighted-sum or Tchebycheff.

However, unlike decomposition methods such as MOGLS [13]

and MOEA/D [14] where a set of weight vectors is generated

to cover the entire Pareto-optimal front, we generate a smaller

set of weight vectors just to find a number of solutions close

to the user-supplied reference. Theoretically, if we manage to

find a suitable weight vector, it is possible to find a solution

close to the reference point. However, finding an optimum

weight vector that results in a solution close to the reference

point is not trivial. In order to solve this problem we initially

pick a sub-optimum weight vector and adapt it in the course

of evolution until it results in a solution as close as possible to

the user-provided reference point as well as the Pareto-optimal

front.

Figure 2 shows how updating the weight vector might result

in solutions closer to the user’s desired region. The region B on

Figure 2 shows the desired region close to the reference point

that we wish to find. Regions A and C show several solutions

which are obtained on the Pareto-optimal front far from the

desired region (B). The white solid arrows show the effect of

updating the weight vectors. Note that the optimization of the

population and the weight vectors happen simultaneously and

as a result, the sub-optimal solutions which are shown in white

circle on Figure 2 might move directly towards the desired

region on the Pareto-optimal front. However, if the individuals

converge on any other location on the Pareto-optimal curve,

Algorithm 1: R-MEAD

Inputs:
size1 : the initial population size

size2 : number of solutions to be generated close to the reference point

radius : determines the size of the solution region close to the reference point

m : number of objectives

n : number of dimensions

nref : number of provided reference points

RF : A nref ×m dimensional matrix of reference points with each row

representing a single reference point.

dm : the decomposition method (weighted-sum or Tchebycheff)

F (~x) : the objective function

Variables:
IW : A size1×m dimensional matrix of the initial weight vectors

W
i : A size2×m dimensional matrix of weight vectors for the ith

reference point.

BW : A nref ×m dimensional matrix of best weight vectors for reference

points

1. P ← rand(lbounds, ubounds, size1, n)

2. IW ← init_weight(size1)

3. evolve(P , F (~x), IW , dm)

4. PF ← evaluate(P , F (~x))
5. step← radius/size2
6. for i← 1 to nref do

7. ind← min_ind(euclid_dist(PF , RF [i,:]))

8. BW[i,:] ← IW[ind,:]

9. W
i
← init_weight(size2, raduis, BW[i,:])

10. end for

11. P ← rand(lbounds, ubounds, size2× nref , n)

12. while stop criteria not met do

13. evolve(P , F (~x))
14. PF ← evaluate(P , W , dm)

15. for j ← 1 to nref do

16. ~dist← euclid_dist(PF , RF [i,:])

17. best index← min_ind( ~dist)
18. worst index← max_ind( ~dist)
19. ~direction←Wj

[best index,:]
−W

j

[worst index,:]

20. update_weight(W
j , ~direction, step)

21. end for

22. end while

the adaptation of the weight vector will move them closer to

the desired region.

Algorithm 1 shows the details of this process. The major

stages of the algorithm is outlined below:

Step 1 - Initialization: An initial population is randomly

initialized within the lower and upper boundaries and eval-

uated for a limited number of iterations of an evolutionary

algorithm with a predetermined decomposition method. Once

the population is evolved, all of the objectives are evaluated

and the results are stored in PF matrix (Algorithm 1 lines

1-4). It should be noted that each individual in the population

is associated with only one weight vector which is later used

to decompose the problem. The size of this initial population

is determined by size1.

Step 2 - Finding the base weight vectors: At this stage for

each of the reference points provided by the user, the closest

point in the objective space (PF) is found using Euclidean

distance. The corresponding weight vector of the closest point

to each reference point is chosen as the base weight vector

around which a set of new weight vectors are generated. The

number and the spread of weight vectors are determined by

the size2 and radius variables respectively (Algorithm 1 lines

6-10). Since the number of individuals and the weight vectors

are equal, the variable size2 is practically the population size.
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Step 3 - Evolving the population: Here the population is

evolved and the weight vectors associated to each reference

point are updated in a round-robin fashion until a termination

criteria is met (Algorithm 1 lines 12-22).

Step 3.1 - Updating weights: At this stage the Euclidean

distance of each reference point to its corresponding solutions

in the population is calculated. In order to find the direction in

which the weights should be updated, the best and the worst

weights that correspond to the closest and the farthest points

to the reference points are found. Next, an update direction

is calculated based on the best and the worst weight vectors

(Algorithm 1 line 19). Once the update direction is determined

the weights are updated by moving them in the gradient

direction with the amount determined by the step variable

(Algorithm 1 line 20). This process is repeated for all of the

weight vectors associated with each reference point.

It should be noted that unlike MOEA/D our algorithm does

not form a neighborhood for each of the individuals. Instead,

the evolutionary optimizer relies on the entire population to

create new offspring. This eliminates the need to calculate the

Euclidean distances between all of the weight vectors to form

the neighborhoods. Because we only need to find a limited set

of solutions near the user-supplied reference point rather than

forming the entire frontier, the population size that we use is

comparatively smaller than MOEA/D which makes R-MEAD

more computationally effective.

V. EXPERIMENTAL RESULTS

In this section we report the performance of our algorithm

on a set of benchmark problems including ZDT1-ZDT4 and

ZDT6 from the ZDT test suite [24] for two-objective problems

and DTLZ1-DTLZ2 functions from DTLZ test suite [25]

for three-objective problems using the Tchebycheff and the

weighted-sum approaches.

A. Parameter Settings

The initial population size (size1) is set to 100 and 250 for

the two objective and three objective problems respectively

and the algorithm is executed for 10 iterations in order to

generate the base weight vectors (See Algorithm 1). In the

second stage of the optimization the population size (size2)
is set to 30 and 60 for two and three objective problems

respectively. We consistently used 450 iterations for the two

objective problems and 600 for the three objective problems.

The radius is set to 0.02 for the weighted-sum and 0.05 for the

Tchebycheff approaches. The performance of the algorithm is

not sensitive to the radius value and its sole purpose is to allow

the users to adjust the size of the regions they wish to cover

near the reference points. Since the way weight vectors are

used in the Tchebycheff and the weighted-sum approaches is

different, we picked the radius value such that both approaches

cover a region with relatively equal sizes. The optimizer that

we used in our framework is a simple implementation of

Differential Evolution [26].

B. Benchmark Results

For all of the benchmark problems we used two reference

points in the infeasible and the feasible regions where one

of them is closer to the Pareto-optimal front and the other

one is farther away from it. On ZDT1, the reference pionts

(0.3, 0.4) and (0.8, 0.2) were used. Figure 3(a) shows the

promising result of our algorithm on this function. On ZDT2

the reference points (0.8, 0.3) and (0.5, 0.9) were used. Fig-

ure 3(b) shows that our algorithm managed to find a reasonable

region on the Pareto-optimal front and close to the reference

points. Our reference points for ZDT3 were (0.15, 0.40)
and (0.75,−0.20). Figure 3(c) illustrates our results on this

function. On ZDT4 (0.2, 0.4) and (0.5, 0.4) were our reference
points. Figure 3(d) shows the results on ZDT4 where a set

of solutions were found on the Pareto-optimal front close to

the reference points. We chose (0.9, 0.3) and (0.5, 0.7) as

reference points for ZDT6. Figure 3(e) shows that we get

excellent results for this function.

On DTLZ1 (0.2, 0.4, 0.9) and (0.2, 0.2, 0.5) are our refer-

ence points. We have chosen (0.2, 0.5, 0.6) and (0.7, 0.8, 0.5)
as reference points for DTLZ2. These points were chosen in

feasible and infeasible regions with various distances from the

Pareto-optimal front. It can be seen from Figures 3(f) and 3(g)

that the R-MEAD algorithm also managed to find suitable

regions for the three objective problems. Overall, it can be seen

from Figure 3 that the R-MEAD algorithm managed to find

the desired regions as close as possible to the reference points

on the Pareto-optimal front. The algorithm works consistently

for the reference points in both feasible and infeasible regions.

C. Comparison between Weighted-Sum and Tchebycheff

In this section, instead of Tchebycheff we used weighted-

sum as the decomposition method and run the algorithm

with the same reference points. In all test functions we stop

the algorithm after 450 generations. The results of the algo-

rithm on test functions illustrate that weighted-sum approach

does not work properly for non-convex Pareto-optimal fronts.

Figure 4 shows the performance of the algorithm using the

weighted-sum decomposition method on two objective prob-

lems. For ZDT2, ZDT3 and ZDT6 with non-convex Pareto-

optimal fronts, the weighted-sum method could not find nicely

distributed solutions close to the reference points on the

Pareto-optimal front, as shown in Figures 4(b), 4(c) and 4(e).

In contrast, on the functions with a convex Pareto-optimal front

such as ZDT1 and ZDT4, the results are similar to that of the

Tchebycheff method, as shown in Figures 4(a) and 4(d).

D. Faster Convergence to the Pareto-optimal front

In Section I, we mentioned that one of the difficulties

faced by evolutionary multi-objective optimization algorithms

in solving many-objective problems is the exponential increase

in the number of solutions required to approximate the Pareto-

optimal front as the number of objectives increases. It has been

suggested that a reference point based approach allows a more

focused search and eliminates the need to approximate the

entire Pareto-front [17]. This approach can result in significant
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Fig. 3. Experimental results on ZDT1-ZDT4, ZDT6, DTLZ1 and DTLZ2 benchmark functions using Tchebycheff decomposition.

computational savings, especially in high dimensional objec-

tive spaces. In this section, we attempt to show this potential

saving more quantitatively through experimentation.

We used Generational Distance (GD) [27] to measure the

closeness of a solution front (PFsol) to the Pareto-optimal

front (PFtrue) which is formulated as follows:

GD =
(
∑n

i=1 d
p
i )

1
p

n
, (4)

where n is the number of solutions in PFsol and di is the

closest Euclidean distance from each point in PFsol to a point

in PFtrue. We used a p value of 2 in our experiments.

Since we use Tchebycheff decomposition method in both

R-MEAD and MOEA/D, they result in a similar spread of

solutions in the regions they cover. This allows us to exclude

the spread and focus solely on the convergence in our com-

parison. Additionally, in order to have a fair comparison, we

consistently used the same value for the variable n in both R-

MEAD and MOEA/D. Unlike dominance-based approaches

where the first front is usually used to calculate the GD

value, we set n to the population size in order to capture the
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Fig. 4. Experimental results on ZDT1-ZDT4 and ZDT6 benchmark functions using weighted-sum decomposition.

convergence behavior of the entire population.

For our experiments we used a 2-objective and a 3-objective

version of DTLZ1 function. In order to analyze the sensitivity

of the algorithms to the population size, we used 20, 50 and

100 population sizes for 2-objective. For 3-objective we used

60 and 250 as the population sizes. The total number of fitness

evaluations was set to 2.5× 104 and 7.5× 104 for 2-objective

and 3-objective DTLZ1 respectively. Figure 5 shows how fast

the GD value decreases through the course of evolution. Each

point on the convergence plot is the average of 25 independent

runs. It can be seen from Figure 5 that when an equal

population size is used, R-MEAD consistently has a lower

GD value than MOEA/D on both 2-objective and 3-objective

DTLZ1. The fact that the error bars for the same population

sizes do not overlap shows that R-MEAD algorithm converges

significantly faster than MOEA/D. Figure 5(a), shows that the

best results are achieved by R-MEAD with population sizes

of 50 and 100 respectively.

On the 3-objective DTLZ1, Figure 5(b) shows that there is a

more significant difference between the convergence speed of

MOEA/D and R-MEAD as compared to that of the 2-objective

DTLZ1. R-MEAD managed to obtain a similar convergence

accuracy as compared to MOEA/D with significantly less

number of fitness evaluations from around 2×104 to 3.5×104

depending on the population size. The increased ‘gap’ in the

convergence speed from a 2-objective problem to a 3-objective

problem suggests that a considerable amount of computational

resources can be saved using a reference point based approach,

especially when dealing with many-objective problems. It

should be noted that although in the case of R-MEAD we have

not taken the closeness to the reference point into account, the

experiments that we conducted in Section V-B have shown

that a region close to the reference point can be formed using

around 3.6 × 104 fitness evaluations which is far less than

7.5×104 that we used in this section. By looking at Figure 5(b)
we can see that R-MEAD has a much lower GD value around

3.6× 104 which shows that not only it converged faster than

MOEA/D but also managed to find a suitable region close to

the reference point.

VI. CONCLUSION

In this paper, we have proposed a preference-based evolu-

tionary multi-objective optimization through decomposition.

The proposed approach has the potential to be applied to

many-objective problems for the following major reasons:

• Use of decomposition techniques converts a multi-

objective problem into single-objective which is not sus-

ceptible to the selection pressure problem common in

dominance-based approaches.

• The use of a reference point allows the search to be

focused on the desired regions which can potentially save

considerable amount of computational resources.
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Fig. 5. Convergence of Generational Distance measure for R-MEAD and MOEA/D on 2-objective and 3-objective DTLZ1.

The algorithm has been evaluated using two decomposition

approaches, namely the weighted-sum and the Tchebycheff.

The Tchebycheff approach was superior on most of the test

problems especially when dealing with non-convex problems.

In all of the benchmark problems, the proposed algorithm

managed to find a set of solutions close to each of the

provided reference points on the Pareto-optimal front. It has

also been shown that R-MEAD results in a faster convergence

as compared to MOEA/D especially when the number of

objectives increases.

In this paper we have presented a very simple way of

updating the weight vectors. In our future work, we intend

to investigate the effectiveness of adapting the weight vectors

when dealing with many-objective problems with complex

non-convex Pareto-optimal fronts.
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