
Chapter 11
Improving Local Convergence in Particle
Swarms by Fitness Approximation Using
Regression

Stefan Bird and Xiaodong Li�

Abstract. In this chapter we present a technique that helps Particle Swarm Optimis-
ers (PSOs) locate an optimum more quickly, through fitness approximation using
regression. A least-squares regression is used to estimate the shape of the local fit-
ness landscape. From this shape, the expected location of the peak is calculated and
the information given to the PSO. By guiding the PSO to the optimum, the local con-
vergence speed can be vastly improved. We demonstrate the effectiveness of using
regression on several static multimodal test functions as well as dynamic multimodal
test scenarios (Moving Peaks). This chapter also extends the Moving Peaks test suite
by enhancing the standard conic peak function to allow the creation of asymmetri-
cal and additional multiple local peaks. The combination of this technique and a
speciation-based PSO compares favourably to another multi-swarm PSO algorithm
that has proven to be working well on the Moving peaks test functions.

Keywords: Particle Swarm Optimization, Swarm Intelligence, Optimization in
Dynamic Environments, Regression Techniques, Numerical Optimization.

11.1 Introduction

Local search methods are known for their extremely fast convergence, however they
are also highly susceptible to becoming trapped in the first optimum they find. Many
real world problems are far too complex to be solvable by these methods. Evolution-
ary Algorithms (EAs) and Particle Swarm Optimisation (PSO) have been proved

Stefan Bird
School of Computer Science and IT, RMIT University, Melbourne, Australia
e-mail: stbird@seatiger.org

Xiaodong Li
School of Computer Science and IT, RMIT University, Melbourne, Australia
e-mail: xiaodong.li@rmit.edu.au
� Corresponding author.

Y. Tenne and C.-K. Goh (Eds.): Computational Intel. in Expensive Opti. Prob., ALO 2, pp. 265–293.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

stbird@seatiger.org
xiaodong.li@rmit.edu.au

266 S. Bird and X. Li

to be effective search strategies. Both algorithms are able to converge on an op-
timum even when the catchment area occupies only a small portion of the search
space. These algorithms are far less likely to become trapped in a local peak than
local search, especially when combined with a diversification measure. This prop-
erty comes at a cost though, as they take far more evaluations to locate an optimum
than local search methods.

Combining local search with an EA (or PSO) can provide the best of both worlds,
as we gain the robustness of the population-based algorithms as well as the local
search’s convergence speed [26]. This hybrid approach is quite common, for ex-
ample [24, 34, 36]. However, using the local search requires extra fitness evalua-
tions to be performed; when considered over the entire optimisation process, these
evaluations can be very costly.

To overcome the issue associated with high computational cost, several fitness
approximation techniques have been developed (see also Section 11.2.1). For ex-
ample, in aerodynamic structure optimization, since simulations for computational
fluid dynamics are usually very expensive, approximate models were developed
[1, 16]. Fitness approximation was also used in conjunction with an evolution-
ary algorithm for protein structure prediction to cut down the computational cost
[27]. Another interesting study in [23] shows the benefits of approximating fitness
landscape using a polynomial regression model.

This chapter presents a fitness approximation technique that helps Particle Swarm
Optimisers (PSOs) locate an optimum more quickly, without requiring any extra
fitness evaluations. Rather than performing a local search, we use the candidate
solutions already tested by a PSO to create a surface that best fits the peak. We
then attempt to calculate the highest point of this surface. Provided that the local
features of the fitness landscape roughly match our surface, the optimum should be
very close to the computed highest point. This allows us to very quickly hone in on
the actual maximum point – with each successive attempt we know more and more
about the landscape, improving our estimation further.

Our early study in [7] suggested that regression was able to improve efficiency in
handling some dynamic optimization functions (ie., Moving peaks scenario 2). Ex-
tending the early findings, this chapter provides several new investigations on using
regression. Firstly, we identified similarities and differences between our regression
method and other existing works in literature. Secondly, we included several widely
used static multimodal test functions to further verify if regression is effective in im-
proving local convergence for solving static multimodal problems in general. In ad-
dition, we also adopted a Generic Hump function (which is tunable with the number
of peaks and the number of dimensions) to study especially if regression is effec-
tive in reducing the number of evaluations for high dimensional multimodal prob-
lems. Furthermore, we extended the Moving Peaks test functions to allow creation
of asymmetrical and additional multiple local peaks. The effectiveness of regression
on these more complex peak shapes was examined.

Although fitness approximation using regression has been developed for EAs
[23], this study represents a first attempt to integrate regression with a PSO for im-
proving local convergence. This paper is organised as follows. Section 11.2 provides

11 Improving Local Convergence in Particle Swarms 267

the background of this technique and the algorithms we have used to test it. A de-
tailed explanation of the method follows in Section 11.3. Sections 11.4 and 11.5
show the experimental setup and results. Our conclusions will be presented in
Section 11.6, as well as some further research directions.

11.2 Background

Local search methods are typically designed to rapidly locate an optimum once its
general area has been found. These methods are susceptible to becoming trapped
in a local optimum, meaning that they are most effectively used once the peak’s
location is already approximately known. The most intuitive local search method
is hill climbing. This method works by continually sampling the decision space
around the best point found so far [26]. At each iteration, a point somewhere near the
current best is selected and evaluated. If the new point is better than the current best
it replaces it, otherwise the new point is discarded. By repeating this process many
times we “climb” the peak of the initial starting point, usually chosen randomly. One
variant of hill climbing is gradient ascent, which works by using the derivative of the
fitness function to guide the search direction [14]. The next point chosen to search
is one that is close to the last point evaluated, but in the direction of the steepest
ascent. However, this technique can only be used with fitness functions where the
gradient can be computed.

To improve the local convergence of a PSO on a multimodal fitness landscape we
are incorporating a method that approximates the fitness landscape using regression.
This chapter will demonstrate that the use of regression and a convergence enhancer
can dramatically improve local convergence while saving computational cost. This
section provides the background for these techniques.

11.2.1 Fitness Approximation

In recent years, several studies have proposed EAs incorporating fitness approxima-
tion with an aim to improve performance while not incurring expensive computa-
tional cost [15, 23, 28]. Typically these EAs employ a surrogate model in place of
the expensive original function evaluations. The surrogate model is used to approx-
imate the original fitness function by using a small set of evaluated search points
chosen from the EA population. The goal is to reduce the number of expensive orig-
inal function evaluations while retaining an accurate approximation of the original
function. The most commonly used techniques for constructing surrogate models
include Kriging [31], neural networks [17], and polynomial regression [23, 32, 37].
A recent survey on fitness approximation in EAs can be found in [15].

One particularly interesting EA combining fitness approximation and local search
is EANA (Evolutionary Algorithms with N-dimensional Approximation) [23], where
polynomial regression was used to approximate fitness landscape. The experiments

268 S. Bird and X. Li

of EANA on a wide range of test functions have demonstrated the effectiveness of
this approach. Nevertheless, EANA was designed to locate a single global optimum
(not multiple global optima), and test functions were all static test functions. To the
best of our knowledge, no EAs using fitness approximation and local search have
been tested for locating multiple global optima. It is even more difficult when track-
ing multiple moving peaks in a dynamic environment. This paper aims to develop a
PSO incorporating fitness approximation and local search methods, and evaluate the
effectiveness of the hybrid PSO using multimodal test functions in both static and
dynamic environments.

11.2.2 Particle Swarms

Particle Swarm Optimisation (PSO) is an evolutionary algorithm that mimics a flock
of birds [18]. As birds move throughout a territory, they are all simultaneously
watching for both food and predators. In addition they are monitoring the behaviour
of the birds around them. A change in a neighbour’s behaviour usually indicates
there is some new information available, for example a food source or predator has
been seen. By copying the behaviour of its neighbours each bird is able to benefit
from the discovery, even before it has the information itself. In PSO, each bird is
represented by a particle. It maintains its current location and velocity, as well as
a memory of the best location it has seen so far, known as the personal best. Each
particle also has a number of neighbours with whom it can share its personal best.
At every timestep each particle chooses a random point between its personal best
location and the fittest personal best of any of its neighbours. It then steers towards
that point, but does not travel there directly. The particles have momentum, meaning
that if the chosen point is in the opposite direction to where they’re travelling it may
take a number of timesteps to turn around. This ensures the particles thoroughly
explore the area surrounding the fittest known point, and are able to jump to a better
peak if one is discovered nearby.

To guarantee convergence, we have used Clerc’s constriction coefficient PSO [11,
18]. This is described by Equations (11.1) and (11.2), which are run for every
timestep t.

v(i, j,t+1) = χ(v(i, j,t) + ϕ1(p(i, j,t) − x(i, j,t)) + ϕ2(p(g, j,t) − x(i, j,t))) (11.1)

x(i, j,t+1) = x(i, j,t) + v(i, j,t+1) (11.2)

where:

ϕ1 = c1r1, ϕ2 = c2r2, χ =
2κ∣∣∣2− c−√

c2 −4c
∣∣∣ (11.3)

The current location of particle i in dimension j at time t is represented as x(i, j,t),
with the current velocity v(i, j,t). ϕ1 and ϕ2 act as random weightings for the

11 Improving Local Convergence in Particle Swarms 269

personal and neighbourhood bests, represented as p(i, j,t) and p(g, j,t) respectively. c1

and c2 are constants, usually set at 2.05, with c = c1 +c2. r1 and r2 are uniform ran-
dom numbers in the range [0,1]. Equation (11.3) calculates χ , a constant friction on
the particles that prevents them from oscillating violently around an optimum. κ is
usually set at 1.

11.2.3 Speciated Particle Swarms

Most PSO algorithms are limited in that they will only converge on a single solution,
even when there are many global optima. Locating several solutions is beneficial in
several ways. Firstly, it provides the user with a choice. While to the algorithm it
may appear that two optima are of equal fitness, in reality it may be preferable to
choose one over the other. In many environments there are factors that are too com-
plex to incorporate into the fitness function. These factors are nevertheless present
and may lead an expert user to choose one solution over another. Secondly, by
simultaneously locating multiple solutions we reduce the risk of premature
convergence, that is where the entire population becomes trapped in a local
optimum.

Speciation, also known as niching, is one way to achieve this. The population is
divided into species, which are groups of particles that are close to each other in the
decision space. Communication between species is either severely limited or non-
existant, allowing them to each explore their local area without interference from
particles on distant peaks.

We have used SPSO [21] as our base algorithm to test the regression method.
To determine the effectiveness on dynamic environments we will be using Moving
Peaks, a well-known dynamic test function generator (see section 11.4.2). SPSO is
an ideal candidate for this function for two reasons. Not only does it perform well on
dynamic multimodal functions [29], its performance is also strongly correlated with
its local convergence speed [6]. This shows that by increasing the local convergence
speed, we should see a marked improvement in overall performance.

In SPSO, each species is defined by a hyper-spherical area of radius r. This area
is centred on the locally-fittest particle, called the species seed. Any particles within
the species area are considered to belong to that species, although they are free
to leave should they move away. The particles within each species are connected
using the global neighbourhood topology [19]. There is no communication between
particles of different species. To allocate the particles to species, they are first sorted
from fittest to least-fit. The list is then iterated through; for each particle, if there is
a species seed within r of its location it joins that species. Otherwise it becomes the
seed particle of a new species. If a particle is within r of two or more species seeds
it is allocated to the species of the fittest seed, as shown in Fig. 11.1.

In the original SPSO algorithm [21], particles were allocated to species based on
their current location. To improve species stability we have used the personal best
location and fitness, as was done in [5].

270 S. Bird and X. Li

Fig. 11.1 The species seeds are the fittest particles in their area of the decision space. The
middle seed is fitter than the one on the left, so its species area takes precedence where they
overlap

11.2.4 Guaranteed Convergence PSO

The basic PSO model has an inefficiency, in that the velocity of the fittest particle
will quickly drop to zero. This is caused by its personal and neighbourhood bests
being on the same point. While this is not a big problem in the standard imple-
mentation, it can become noticeable when using speciated algorithms because the
population of each species is often very low. Having an idle particle in a population
of 20 is far less noticeable than in a population of 4. In order for the particle to start
moving again, one of its neighbours must locate a better point. If there are only 2 or
3 particles this can take a long time, if it happens at all.

Guaranteed Convergence PSO [30] was developed to overcome this problem. In-
stead of travelling around like the rest of the population, the fittest particle randomly
tries points within a distance d of its personal best location. GCPSO adaptively de-
termines the value of d for each particle by tracking how many consecutive suc-
cessful or unsuccessful tries there were. An attempt is considered successful if it
improves on the personal best, otherwise it is a failure. If the number of consec-
utive successes exceeds a threshold, the algorithm searches more aggressively by
doubling d. Likewise if the number of consecutive failures becomes too large d is
halved so as to search in a smaller area. Combining SPSO with GCPSO means that
the species seed will follow the GCPSO rules, ensuring that it never stops searching.
The other particles follow the standard PSO implementation.

11.2.5 mQSO

To provide a benchmark to test SPSO’s performance against, we have used one
of the most effective PSO-based algorithms on Moving Peaks, mQSO [8]. mQSO
modifies the standard PSO in several ways to improve performance on this function.
These improvements are discussed below.

11 Improving Local Convergence in Particle Swarms 271

To track as many peaks as possible, mQSO divides the population into sub-
swarms. These are equivalent to species in SPSO, except that particles are not free
to join or leave a subswarm. If two subswarms become too close to each other, the
weaker one will have its particles reinitialised. This prevents duplication and en-
courages the swarm to explore new areas. Stagnation is prevented by means of an
anticonvergence measure. If all of the subswarms have converged to small areas, the
weakest one is reinitialised in the same way as a duplicate subswarm. This prevents
the system from wasting its resources on peaks of low fitness.

mQSO is used to increase the swarm’s responsiveness to a peak movement.
Rather than letting all of the particles tightly converge on the optimum, half of
the particles are reserved as quantum particles. These particles do not follow the
standard PSO movement equations; instead at each timestep they are placed ran-
domly within a hypersphere of radius rcloud using a uniform volume distribution.
This technique is similar in some respects to GCPSO mentioned above.

11.3 Using Regression to Locate Optima

On a multimodal fitness landscape, around each peak there is a catchment area.
Within this area, fitness generally improves as you get closer to the peak. If we
can model the overall shape of the peak while ignoring the local features, we can
calculate the highest point of that shape. Assuming that our model is reasonably
accurate, the top of our shape should be close to the optimum. We can use regres-
sion to approximate the shape of the peak. Polynomial regression with least-squares
approximation has been used to improve traditional optimisation methods [12, 35].
And more recently, regression was also employed to improve the performance of
EAs [23, 32, 37].

In our proposed hybrid PSO using regression, we maintain a separate memory
to the base algorithm, storing only the best locations and their fitnesses. If the base
algorithm’s memory was used, points would only remain known as long as there is
an individual there. The regression needs to know the locations of the fittest points,
regardless of the population’s current state.

A minimum number of points is needed in order to calculate the regression –
below this there will be more than one shape that fits the data. As the algorithm con-
tinues sampling the fitness landscape, the regression may keep some excess points to
help reduce the effect of any local landscape features. The number of excess points
e is a tunable, although robust, parameter.

By performing a linear least-squares regression on the known points and their
fitnesses, we are able to estimate the peak’s shape. From the regression we obtain
a set of equations, one for each decision variable, that defines the shape that best
fits our known points. Although more complex and flexible equations can be used
if desired, for simplicity and efficiency we have used quadratic equations to rep-
resent the shape. This results in a set of simultaneous equations in the form of
Equation (11.4) to be solved for a1,a2, ...,a2n and c, where n is the number of deci-
sion variables.

272 S. Bird and X. Li

f (x1,x2, ...,xn) = a1x2
1 + a2x1 + a3x2

2 + a4x2 + . . .

+a(2n−1)x
2
n + a(2n)xn + c (11.4)

In matrix form, the simultaneous equations look like:

A =

⎡
⎢⎢⎢⎣

f1

f2
...

fm

⎤
⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎣

x2
1,1 x1,1 x2

1,2 x1,2 . . . x2
1,n x1,n 1

x2
2,1 x2,1 x2

2,2 x2,2 . . . x2
2,n x2,n 1

...
...

...
...

. . .
...

...
...

x2
m,1 xm,1 x2

m,2 xm,2 . . . x2
m,n xm,n 1

⎤
⎥⎥⎥⎦ C =

⎡
⎢⎢⎢⎢⎢⎣

a1

a2
...

a2n

c

⎤
⎥⎥⎥⎥⎥⎦

where there is an equation for each of the m known points. To solve the simultaneous
equations, we manipulate the matrices as in Equation (11.5):

A = BC

B+A = B+BC

B+A = C (11.5)

where B+ is the pseudoinverse of B [3]. If we only use the minimum number of
points, B will be square and we can use the inverse B−1 instead. The minimum
number of points required to perform an approximation is 2n + 1, according to
Equation (11.4) (see also [23]). The coefficients that make our equation best match
the known points are found by computing C. We then find the turning point for the
equation in each dimension i = [1,n] by taking the partial derivative, as in Equation
(11.6):

∂
∂xi

f (x1,x2, . . . ,xn) = 2xia(2i−1) + a(2i) (11.6)

The turning point in dimension i is where ∂
∂xi

f (x1,x2, . . . ,xn) = 0. To find out
whether it is a maximum or minimum point, we take the second derivative. When
using quadratic equations, we can simply look at the sign of a(2i−1); a negative num-
ber indicates that it is a maximum. If this is a maximisation problem and one of the
equations has only a minimum turning point, we abort the regression and wait for
better data. Similarly, if it is a minimisation problem we abort if any of the equations
has no minimum turning point.

The global maximum point of the shape will be at the location of the turning
point in each decision variable. Even though we were able to compute a maximum,
we still need to check that it is valid. If the points do not give a good representation
of the peak, for example they are all on one side, the regression will not be accurate.
If the computed point is outside the expected area, or even the entire decision space,
it is discarded. We will try the regression again when we have more data.

To test the calculated position, we replace the least-fit individual with a new in-
dividual at the shape’s highest point. This avoids using an extra evaluation, and it
is unlikely that the individual’s next movement would have contributed much to
the search. If the regression was successful, the new point will be used to further

11 Improving Local Convergence in Particle Swarms 273

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20

f(
x
)

x

Known points

(a)

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20

f(
x
)

x

Known points
New point

-0.065x2 + 1.430x - 1.516

(b)

Fig. 11.2 a) Trying to find the highest point of the peak. We currently know the fitnesses
of 4 points: 3, 6, 15 and 20. The right side of the peak is less steep than the left. b) The
regression curve has a maximum at x = 10.926, considerably closer to the peak than any of
the previously known points

refine the shape when it is next performed, hopefully improving the fitness still fur-
ther. When using this technique with dynamic environments, we clear the memory
whenever a peak movement is detected. This prevents the regression from being
performed on stale data.

The main cost of this method is in performing the matrix inversion. Assuming
the minimum number of points are used, this has a complexity of O(n3). As n is
dependent only on the number of decision variables and complexity of the equa-
tions used, the cost is usually quite low. The CPU cost can be further reduced by
only performing the regression at certain intervals or only for the most promising
peaks. In many environments, fitness evaluations are the most expensive aspect.
The regression’s minimal CPU overhead is usually far outweighed by the number
of evaluations saved.

As an example we will try to solve a 1-dimensional triangular function, as shown
in Fig. 11.2 a). Currently we know the fitnesses of 4 points:

f (3) = 2

f (6) = 5

f (15) = 5

f (20) = 1

We place these values into B and C:

⎡
⎢⎢⎣

2
5
5
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

32 3 1
62 6 1
152 15 1
202 20 1

⎤
⎥⎥⎦

⎡
⎣a1

a2

c

⎤
⎦

Multiplying both sides by B+ gives:

274 S. Bird and X. Li

⎡
⎣ 0.01 −0.01 −0.01 0.01
−0.24 0.12 0.30 −0.17
1.46 0.02 −1.01 0.54

⎤
⎦

⎡
⎢⎢⎣

2
5
5
1

⎤
⎥⎥⎦ =

⎡
⎣a1

a2

c

⎤
⎦

⎡
⎣−0.065

1.430
−1.516

⎤
⎦ =

⎡
⎣a1

a2

c

⎤
⎦

This gives us the best-fitting quadratic curve, Equation (11.7).

f (x) = −0.065x2 + 1.430x−1.516 (11.7)

To find the turning point, we differentiate it:

d f (x)
dx

= (−0.065)2x + 1.430 (11.8)

Solving Equation (11.8) gives a turning point of x = 10.926. We know this point
is the maximum because the x2 coefficient is negative. The fitness at x = 10.926 is
8.2592. As can be seen from Fig. 11.2 b), this is not the location of the actual peak,
however it is considerably closer than any of the points known so far.

There are similarities between EANA [23] and the technique presented here. Both
methods use a polynomial regression to estimate the location of a peak. However
there are also important differences, including the focus of the algorithms. EANA
is designed to estimate the area of the global optimum, whereupon local search is
used to refine its guess. As with all local search algorithms, premature convergence
can be a problem. Our technique takes advantage of the fact that modern EAs are
already very effective at locating the area of a peak. Instead we use the regression as
a heuristic, guiding the base algorithm towards its goal as it explores the surrounding
areas. This gives us the best of both worlds – substantially improving performance
while only minimally increasing the risk of premature convergence.

Another important difference is the way the two techniques obtain an accurate
model of the landscape. EANA assumes that the height of the local optima is corre-
lated with their distance from the global optimum, and so spends evaluations search-
ing for the local peaks. Our technique makes no such assumption, instead using
more than the required number of points to compute its model. This allows it to bet-
ter reflect the general trends of the landscape and discourages overfitting, without
needing additional evaluations.

11.4 Experimental Setup

To determine whether performing the regression is effective, we compared the per-
formance of SPSO and GCPSO with and without the regression. For the rest of
the paper, we will use SPSO to mean SPSO + GCPSO, and rSPSO to mean SPSO +

11 Improving Local Convergence in Particle Swarms 275

GCPSO + regression. The regression has been implemented so as to discard any cal-
culated solutions that are outside the species boundary, as described in Section 11.3.

For the purposes of the regression, we consider each species to be an individual
subpopulation with its own memory. This means that for every timestep, there is a
regression run for each species.

The regression will be tested on both static and dynamic multimodal test func-
tions; we will describe our procedure below. For all of the tests, each species is
limited to Pmax = 6 particles; any excess particles are reinitialised elsewhere in the
decision space. This is the same method as was used in [29] to avoid having too
many individuals crowd an optimum. The success and failure thresholds for GCPSO
have been set to the values recommended in [4], that is sc = 15 and fc = 5. Unless
otherwise stated, the regression stores a maximum of e = 10 excess points. Each
experiment was performed 50 times and the results have been averaged.

11.4.1 Static Functions

To test general performance in a static multimodal environment, we chose functions
that represents several different landscape features. These functions are described
below; the mathematical definitions are shown in Table 11.1.

• Inverted Branin RCOS (F1) and Himmelblau (F4) both have peaks with large
catchment areas.

• Six-Hump Camel Back (F2) has two global optima with relatively large catch-
ment areas, however there are also 4 local optima for the particles to become
trapped in.

• Deb’s 1st Function (F3) has 5 narrow narrow peaks; even though it is only 1
dimensional, it can be difficult to locate all of the optima.

Table 11.1 Static multimodal test functions

Function r Comments

Inverted Branin RCOS [9]: F1(x,y) = −[(y−
5x2

4π2 + 5x
π −6)2 +10(1− 1

8π)cos(x)+10], where
−5 ≤ x ≤ 10; 0 ≤ y ≤ 15

4 3 global optima

Six-Hump Camel Back [25]: F2(x,y) =
−4[(4 − 2.1x2 + x4

3)x2 + xy + (−4 + 4y2)y2],
where −1.9 ≤ x ≤ 1.9; −1.1 ≤ y ≤ 1.1

1 2 global optima and 4 local
optima

Deb’s 1st Function [13]: F3(x) = sin6(5πx),
where 0 ≤ x ≤ 1

0.15 5 equally spaced global
optima

Himmelblau [2]: F4(x,y) = 200 − (x2 + y −
11)2 − (x+y2 −7)2, where −6 ≤ x,y ≤ 6

3 4 global optima

Inverted Shubert 2D [20]: F5(x,y) =
−∑5

i=1 icos[(i + 1)x + i]∑5
i=1 icos[(i + 1)y + i],

where −10 ≤ x,y ≤ 10

0.75 18 global optima in 9 clus-
ters, many local optima

276 S. Bird and X. Li

-200
-150
-100
-50
 0
 50
 100
 150
 200
 250

-10
-5

 0
 5

 10-10

-5

 0

 5

 10

-200
-150
-100
-50

 0
 50

 100
 150
 200
 250

f(x, y)

Shubert 2D

 0.75
 0.25
 -0.25
 -0.75

x

y

f(x, y)

Fig. 11.3 The inverted Shubert 2D test function has 18 global optima located in 9 pairs, as
well as many local optima

• Inverted Shubert 2D (F5) is the most difficult as it is highly multimodal. There are
18 global optima, all of which have extremely small catchment areas. In addition,
there are numerous local optima as shown in Fig. 11.3.

A run is only considered successful if the algorithm locates all of the optima to
within a fitness of ε = 0.00001 within 2000 timesteps.

For F1 through F4, a population size of 50 has been used. To reliably solve F5,
SPSO requires at least 500 particles. With the exception of Deb’s First function, all
of these are two dimensional functions.

In addition to the test functions in Table 11.1, we also used a modified version of
the Generic Hump Function proposed by Singh and Deb [33], to test the regression’s
performance in environments where there are a larger number of decision variables.
The Hump function allows us to independently control the number of dimensions,
the number of humps and the size and shape of those humps, making it ideal for our
testing.

The Humps function consists of K humps rising from a flat surface. The height
of the hump k at a given point X is shown in Equation (11.9):

f (x,k) =

{
hk

[
1−

(
d(X ,k)αk

rk

)]
, if d(X ,k) < rk

0, otherwise
(11.9)

The distance from the centre of the hump k to X is denoted by d(X ,k). In Singh’s
testing, all of the humps have the same height, radius and shape; hk = 1,αk = 1 for
all k. The radius rk was varied with the number of dimensions. The humps are placed
so that they do not intersect, meaning that the distance between any two humps j
and k is at least r j + rk. For our testing, we have removed the function’s flat base so
as to allow SPSO to more easily find the peaks, as shown in Equation (11.10):

11 Improving Local Convergence in Particle Swarms 277

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

-2

-1.5

-1

-0.5

 0

 0.5

 1

f(x, y)

Modified Humps

 0.75
 0.25
 -0.25
 -0.75

x

y

f(x, y)

Fig. 11.4 An example of the Modified Humps landscape using 3 humps in two dimensions

f (x,k) = hk

[
1−

(
d(X ,k)αk

rk

)]
(11.10)

The height of any given point in the decision space is the height of the tallest hump
at that point, as in Equation (11.11):

f (x) = MaxK
k=1 f (x,k) (11.11)

An example of a landscape with 3 humps in two dimensions is shown in Fig. 11.4.
We have tested this function with 20 peaks and 5, 10, 15 and 20 decision variables,
with rk set to 0.27, 0.37, 0.41 and 0.43 respectively. All of the tests used 300 particles
and SPSO’s r parameter was set to 2rk, that is twice the hump radius.

11.4.2 Moving Peaks

Moving Peaks is a highly configurable dynamic test function suite, and is a common
benchmark for dynamic optimisation algorithms [10]. Moving Peaks is very similar
to the Humps function described above, except that the peaks periodically move and
change size. The peaks are usually conic, however in this paper we will be testing
with other shapes as well.

The algorithm must track the peaks as they move around the fitness landscape. As
the peaks move they also change height; this means that the globally optimal peak
changes over time, as in Fig. 11.5. For this reason, algorithms that only track one
or a few peaks tend to perform poorly; the results of a particular run depend more
on the peak’s average height than the algorithm’s performance [6]. To achieve good
performance it is critical that an algorithm tracks as many peaks as possible. It is
too expensive to locate the new optimum from scratch after every landscape change.
Following this rationale, it is expected that the good performance of an optimiser for

278 S. Bird and X. Li

Fig. 11.5 The difficulty of tracking peaks: Peak 2 used to be the global optimum however it
is now covered by Peak 3. At some point in the future Peak 2 may re-emerge and become the
highest again; algorithms with insufficient population diversity are unlikely to rediscover this
peak

a static multimodal environment should be transferable to the dynamic multimodal
environment.

Unless otherwise stated, all Moving Peaks parameters are set as specified by
scenario 2; please refer to Table 11.2 for details1.

The most widely-used performance metric on Moving Peaks function is offline
error [10]. Offline error is the difference in fitness between the best-known point
and the global optimum, averaged over the entire run. All of our results on Moving
Peaks will be presented in terms of offline error after 500,000 evaluations.

Both the PSO and regression algorithms need to be informed when the landscape
changes. To detect these changes, at the end of each timestep we check the fitness
of the top 5 species seeds. If any of the fitnesses differ from the recorded value, the
particles’ personal best memories and the memory used for the regression are both
cleared.

To determine the robustness of the regression under different circumstances, we
tested:

• The number of peaks between 1 and 200
• The severity of each peak movement, between 0 and 6
• The number of decision variables between 5 and 10

11.4.2.1 Creating Varying Peak Shapes

Extending our preliminary work in [7], we will fully analyse the regression’s per-
formance, including on more complex peak shapes, as defined in this section. We
wanted to see whether the regression was still effective with other peak shapes. The
standard conic shape used by Moving Peaks is produced by Equation (11.12):

f (x) = h−w

√
D

∑
d=1

(xd − pd)
2 (11.12)

1 See also: http://www.aifb.uni-karlsruhe.de/∼jbr/MovPeaks/

11 Improving Local Convergence in Particle Swarms 279

Table 11.2 Moving Peaks Scenario 2 parameters

Parameter Setting

Random seed 1

Dimensions 5

Peaks 10

Minimum peak height 30

Maximum peak height 70

Standard peak height 50

Minimum peak width 1

Maximum peak width 12

Standard peak width 0

Coordinate range [0, 100]

Peak movement severity 1

Peak height severity 7

Peak width severity 1

Basis function None

Movement correlation λ 0

Peak movement interval 5000 evaluations

Peak shape Conic

Change stepsize Constant

where w and h specify the width and height of the peak respectively, xd is the loca-
tion of the point in dimension d and pd is the tip of the peak in dimension d. We
have extended this equation in several ways:

• The relationship between height and distance from the peak’s centre in dimension
d is now controlled by αd . αd = 1 will produce the conic shape used by the
standard Moving Peaks scenarios. Using αd > 1 will produce a mound shape,
with steepness increasing as the αd gets bigger. Setting αd ∈ (0,1) produces a
spike shape, as depicted in Fig. 11.6.

• To create asymmetric peaks, for each decision variable we divide the peak into
2 halves, left and right. The value of αd used for the left and right halves are
denoted αd0 and αd1 respectively. Fig. 11.7 shows an asymmetric peak.

• Local optima have been added by superimposing a cosine wave over the peak.
The amplitude and frequency of the wave are specified by βd and γd respectively.
All γ values used in this paper are in radians. Fig. 11.8 shows a cosine wave
superimposed on Fig. 11.7. By adjusting βd and γd we can specify the number
and severity of local peaks in variable d.

The new peak function is defined in Equation (11.13). The standard conic peak
shape can be achieved by setting αd = 1,βd = 0,γd = 0 for all d.

280 S. Bird and X. Li

-1

-0.8

-0.6

-0.4

-0.2

 0

-1 -0.5 0 0.5 1

P
ea

k
he

ig
ht

xd - pd

αd = 3
αd = 2
αd = 1

αd = 1/2
αd = 1/3

Fig. 11.6 Five peaks have been overlaid, showing how αd determines the peak’s shape

-1

-0.8

-0.6

-0.4

-0.2

 0

-1 -0.5 0 0.5 1

P
ea

k
he

ig
ht

xd - pd

αd0 = 2, αd1 = 1/3

Fig. 11.7 An example of an asymmetric peak. The values of αd are 2 and 1
3 for the left and

right halves respectively

-1

-0.8

-0.6

-0.4

-0.2

 0

-1 -0.5 0 0.5 1

P
ea

k
he

ig
ht

xd - pd

αd0 = 2, αd1 = 1/3, βd = 0.1, γd = 25

Fig. 11.8 Superimposing the cosine wave over the peak in Fig. 11.7

11 Improving Local Convergence in Particle Swarms 281

f (x) = h−w

√
D

∑
d=1

(|xd − pd|αd + ud
)2

(11.13)

where

αd =
{

αd0, if xd < pd

αd1, otherwise
,ud = βd (cos [γd (xd − pd)]−1) ,αd0,αd1 ∈ (0,∞),βd ,γd ∈ [0,∞)

To determine the regression’s performance on varying peak types, the following
tests were carried out:

• Symmetric peaks where all αd0 and αd1 values are equal. We tested with the
following setting: αd ∈ {

1
3 , 1

2 ,1,2,3
}

,β = γ = 0.
• Asymmetric peaks where all αd values are randomly generated within the range

[1
3 ,3], and β = γ = 0.

• Conic peaks with a superimposed wave: αd = 1,Maxβ ∈ [2,10] ,Maxγ ∈ [20,100].
• Asymmetric peaks with a superimposed wave: αd0,αd1 ∈ [1

3 ,3], Maxβ ∈ [2,10],
Maxγ ∈ [20,100].

Maxβ indicates that each peak’s values for βd are randomly chosen in the range
[0,Maxβ]. Maxγ indicates the same thing for γ .

We also tested the regression’s sensitivity to e, both on the standard scenario 2
problem and with the modified peak function, using αd ∈ [1

3 ,3],Maxβ = 10,Maxγ =
100. The latter is designed to show whether using a larger e value improves
performance on functions with many local optima.

Finally we compared our results to mQSO, one of the best performing algorithms
on Moving Peaks scenario 2. We have compared our results to the 10(5 + 5q) con-
figuration that Blackwell showed to be optimal on this problem. All experiments
were run with 100 particles and with SPSO’s r parameter set to 30. These were the
settings used in [22].

11.5 Results

This section is divided into two main parts. We will first look at the regression’s
performance on static multimodal functions. Secondly we will analyse its behaviour
on the Moving Peaks test suite.

11.5.1 Static Functions

Even with static environments, it is still very important to reduce the number of
evaluations. Each evaluation costs CPU time, often well in excess of the time used
by the optimiser itself. In this part we will report on the regression’s performance on
static problems, both in low dimensional and high dimensional environments. The

282 S. Bird and X. Li

Table 11.3 Regression performance on low dimensional static functions. Mean, standard
error and improvement over SPSO are shown

Function rSPSO SPSO Improvement

F1 6254.54 (±298.59) 9552.86 (±216.98) 35%

F2 1489.63 (±53.90) 8934.58 (±304.97) 83%

F3 5306.60 (±225.23) 7613.16 (±271.40) 30%

F4 4963.74 (±277.75) 11069.68 (±299.91) 55%

F5 50511.46 (±794.94) 164360.00 (±2912.89) 69%

Table 11.4 Regression performance on the high dimensional Humps function. d is the num-
ber of decision variables

d rSPSO SPSO Improvement

5 191902.50 (±5353.82) 292472.57 (±12638.88) 34%

10 256795.42 (±2506.12) 356665.10 (±5146.87) 28%

15 277200.14 (±2038.94) 404640.00 (±1161.45) 31%

20 297978.00 (±1427.11) 462036.00 (±1216.41) 36%

third part of this section will investigate how the number of excess points affects
performance.

11.5.1.1 Low Dimensional Landscapes

Table 11.3 shows that using the regression dramatically increased performance on
all of the low dimensional functions we tested. The largest improvement was on
Branin RCOS, where the number of evaluations required was reduced by more than
80%. Even on Deb’s First Function (F3), the regression still reduced the number of
evaluations by nearly a third. This is a significant improvement.

Inverted Shubert 2D (depicted in Fig. 11.3) was by far the hardest 2 dimensional
function we tested, normally requiring 160,000 evaluations for SPSO to locate all
of the optima. Adding the regression reduced this to just 50,000. We suspect that
one of the reasons the regression performed so well is that the peak tips resemble a
parabola, allowing it to be accurately modelled.

11.5.1.2 High Dimensional Landscapes

The number of dimensions does not appear to affect the regression’s effective-
ness. Table 11.4 shows that using the regression reduced the number of evaluations
by about 30%. This becomes especially signficant as the number of dimensions

11 Improving Local Convergence in Particle Swarms 283

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 10 20 30 40 50 60 70 80 90 100

E
va

lu
at

io
ns

Excess points (e)

SPSO
rSPSO

Fig. 11.9 Number of evaluations needed for Humps 5D with different numbers of excess
points. The vertical bars show one standard error

increases; for the 20 dimensional function using the regression saved over 160,000
evaluations.

11.5.1.3 Sensitivity to e

As Fig. 11.9 shows, the best performance was obtained by setting e to between
10 and 30. Although it still beat SPSO, the regression performed relatively poorly
when excess points were not kept. The Humps function’s peaks are conic, making
them difficult to model when only using the minimum number of points. The excess
points help to define the surface better, improving the regression’s guess.

Using too many points also decreased performance. The regression does not per-
form any weighting – it tries to match all of the points regardless of their fitness.
By storing too much data, we allow the memory to become polluted with distant
and poor quality points. Instead of just modelling the tip, the peak’s overall shape is
matched. We are then unable to accurately determine the tip’s location as our model
is not specific to that area.

We recommend that e be set to 10 for all problems. This value represents a good
tradeoff; it provides excellent performance without creating too much CPU or mem-
ory overhead. We have also tested this on the Moving Peaks problem and found the
same ideal value. This is discussed in the next section.

11.5.2 Moving Peaks

Reducing the number of evaluations is critical when working with dynamic envi-
ronments. If the environment is changing every 2 minutes, an algorithm that takes
3 minutes to find an adequate solution is useless. By adding the regression we are
able to significantly reduce the number of evaluations needed; this section details
the performance on Moving Peaks under different situations.

284 S. Bird and X. Li

 0

 10

 20

 30

 40

 50

 60

 70

 0 2500 5000 7500 10000 12500 15000 17500 20000 22500

C
u
rr

e
n
t
E

rr
o
r

Evaluations

SPSO
rSPSO

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 5000 7500 10000 12500 15000 17500 20000 22500

C
u
rr

e
n
t
E

rr
o
r

Evaluations

SPSO
rSPSO

(b)

Fig. 11.10 Current error over time on Moving Peaks scenario 2; a) showing the effect of
adding the regression; b) the same as a) but without the first 5000 evaluations

11.5.2.1 Increasing Convergence Speed

Fig. 11.10 a) compares the current error over time for SPSO and rSPSO. Current er-
ror is the difference in fitness between the best known point and the global optimum.
Offline error is calculated by averaging the current error over an entire run.

In scenario 2, the peaks move every 5000 evaluations, as can be seen by the
upwards jumps in the graphs. The regression is inactive for at least the first 200
evaluations after a peak movement. As the population size is 100, this represents
only two timesteps; improvements here are mostly due to the fortunate placement
and existing momentum of the particles. The regression cannot be used yet because
there are insufficient points for it to be computed. For a 5-dimensional function, 11
points are needed. Since each species is limited to 6 particles, at least two timesteps
needed to collect the required data.

Fig. 11.10 b) is the same as a), but without the first 5000 evaluations. This gives
a better indication of the regression’s performance helping to track the peaks. Af-
ter a peak movement the PSO requires 100 evaluations to re-evaluate the particles,
one for each individual. Thus the indicated error immediately after a change is not
representative of the individuals’ true fitnesses.

At 300 evaluations after a peak movement the regression’s effect becomes obvi-
ous. The curve for rSPSO drops quickly as the algorithm hones in on the optimum.
After a landscape change, a normal PSO must wait for the particles to accelerate
towards the new peak, then wait for them to converge again once the peak has been
located. The combination of GCPSO and the regression reduces the time spent do-
ing this: the regression moves the worst particle close to the peak while GCPSO’s
rules set the velocity to 0 and force it to explore the local area.

At 1200 evaluations after a peak movement rSPSO has already achieved the same
error as SPSO does after 4900 evaluations. Even at this point, the curve has a fairly
steep gradient; substantial improvements are being made each timestep. The graph
plateaus around 3000 evaluations; the error at this point is very small. The curve
does not converge to 0 because SPSO is usually unable to maintain species on all of

11 Improving Local Convergence in Particle Swarms 285

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 10 100

O
ffl

in
e

E
rr

or

Peaks

SPSO
rSPSO

Fig. 11.11 Adding the regression substantially reduced offline error

the optima [6]; the residual error is from the times that the algorithm is not tracking
the highest peak.

Please note that to ensure a smooth curve for Fig. 11.10, we have performed 1000
runs for each of the algorithms. All other results presented in this paper are based
on experiments of 50 runs.

11.5.2.2 Number of Peaks

Adding the regression reduced offline error by between 1 and 1.5, as shown in
Fig. 11.11. The settings of SPSO (r = 30,Pmax = 6) are optimised for 10 peaks,
which explains the sweet spot at that point. Below this, there are too many par-
ticles for the number of peaks. Since only 6 particles are allowed on each peak,
when there are too few peaks most of the particles are continually reinitialised. This
wastes evaluations, resulting in a larger offline error.

At the other end of the graph it becomes impossible for the algorithm to track
all of the peaks. Having neither enough particles nor a small enough r value, the
algorithm must rely on the particles to jump between peaks, hopefully to the globally
optimal one. The increased error is caused by the times the algorithm is unable to
discover the best peak.

11.5.2.3 Peak Movement Severity

The peak movement severity controls how far the peak moves each time. Larger
severities increase the time needed to re-find the peak. The further the peaks move,
the faster the particles will be travelling when they reach it. In a standard PSO
they will then take longer to slow down and reconverge. Using the regression in
combination with GCPSO helps this process; whenever the regression’s guess is
successful, the worst particle will become the species seed as the regression’s guess
was better than any of the existing solutions. Since the species seed follows the
GCPSO movement rules, it immediately loses the momentum it previously had.

286 S. Bird and X. Li

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6

O
ffl

in
e

E
rr

or

Severity

SPSO
rSPSO

Fig. 11.12 The benefit of the regression increases with severity

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 5 6 7 8 9 10

O
ffl

in
e

E
rr

or

Dimensions

SPSO
rSPSO

Fig. 11.13 The regression reduced the offline error by around 1.5 for all of the dimension
values tested

As this happens to successive particles, the average velocity is quickly reduced,
allowing the particles to reconverge.

Fig. 11.12 shows how SPSO’s error increases linearly with severity. rSPSO’s
error also increases, but at a much lower rate. At a severity of 0 the peaks do not
move at all, they only change height. In this situation the error achieved depends
almost entirely on being able to track all of the peaks. As the peaks are not moving,
once the optima have been initially located the regression is not needed to track
them, thus the performances of SPSO and rSPSO are very similar.

11.5.2.4 Dimensionality

As with the results shown in Table 11.4 for the Hump function, performance im-
provement provided by the regression on the Moving Peaks is fairly constant.
The error increases linearly as the number of dimensions increases, however the
difference between rSPSO and SPSO remains about 1.5, as shown in Fig. 11.13.

11 Improving Local Convergence in Particle Swarms 287

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.5 1 1.5 2 2.5 3

O
ffl

in
e

E
rr

or

Peak shape (α)

SPSO
rSPSO

Fig. 11.14 Offline error for different peak shapes

11.5.2.5 Peak Shape

For this experiment, all of the αd values have been set identically, making the shapes
tested symmetrical. A one dimensional peak for each value of αd is depicted in
Fig. 11.6.

The most obvious feature of Fig. 11.14 is that outside the range αd ∈ [1,2] there
is a large increase in offline error.

For αd > 2, the areas away from the optima are exceptionally steep. Performance
depends almost entirely on how quickly the algorithm can locate the general area
of the tip, rather than its exact location. Guiding the PSO’s search, the regression is
able to reduce the offline error from 35 to 30.

When αd < 1, the penalty for being far away from the peak’s tip is relatively
small, however to achieve a small error it is extremely important to precisely locate
the optimum. The difference between a point 0.1 units away from the peak and 0.2
units away can be substantial. Again, using the regression reduced the offline error
by about 1. This is quite impressive as the actual peak shape is the opposite of the
regression’s model – the fitness landscape does not fit a parabola at all. This result
suggests the parabolic model works well even on difficult peak shapes, and that
more elaborate models are generally unnecessary. Further testing would be required
to confirm this though.

11.5.2.6 Asymmetric Peaks

In the real world, many fitness landscapes have asymmetrical peaks. The peak may
be very steep on one or more sides, or be at the edge of the feasible region. For
these experiments, we have used random peak shapes. The αd values for each side
of every peak in each dimension are chosen randomly within a specified range. For
example, in a run with only two peaks, the following values may be chosen:

α00 = 0.40,α01 = 0.94,α10 = 2.64,α11 = 0.58

288 S. Bird and X. Li

Table 11.5 Regression performance on asymmetric peaks

αd rSPSO SPSO Improvement

[0.33,3] 1.82 (±0.07) 2.59 (±0.09) 30%

[0.4,2.5] 1.70 (±0.07) 2.46 (±0.07) 31%

[0.5,2] 1.66 (±0.06) 2.67 (±0.07) 38%

[0.67,1.5] 1.58 (±0.05) 2.66 (±0.09) 41%

[1,1] 1.45 (±0.05) 2.90 (±0.08) 50%

As Table 11.5 shows, the regression is most effective when the range of αd is small.
The regression works better on peaks that are roughly symmetrical as they more
closely match the parabolic shape used. However even when highly asymmetrical
peaks are created, the regression still achieved a 30% improvement over SPSO.
This shows again that the regression’s guesses are still accurate enough to aid the
optimisation, even when it cannot closely model the peak.

11.5.2.7 Adding Local Optima

By comparing Fig. 11.15 a) and b) we can see that the wave’s amplitude had a
much greater effect on performance than its frequency. The flatness of Fig. 11.15
b) suggests that the swarm is able to jump from peak to peak with relative ease.
The amplitude’s effect is far greater because each new candidate solution is just as
likely to be at the bottom of the wave as the top. On average each new point will
be halfway down a wave, increasing the overall error incurred. The local optima
decrease the accuracy of the regression’s model, reducing its effectiveness. Even so,
it still managed to reduce the offline error by around 1 in all of the runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10

O
ff

lin
e

 E
rr

o
r

Maximum amplitude (β)

SPSO
rSPSO

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

O
ff

lin
e

 E
rr

o
r

Maximum frequency (γ)

SPSO
rSPSO

(b)

Fig. 11.15 Performance on symmetric peaks for different values of: a) Maxβ (αd =
1,Maxγ = 100); b) different values of Maxγ (αd = 1,Maxβ = 10)

11 Improving Local Convergence in Particle Swarms 289

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10

O
ff
lin

e
 E

rr
o
r

Maximum amplitude (β)

SPSO
rSPSO

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100

O
ff
lin

e
 E

rr
o
r

Maximum frequency (γ)

SPSO
rSPSO

(b)

Fig. 11.16 Performance on asymmetric peaks for different values of: a) Maxβ (αd ∈ [0.33,3],
Maxγ = 100); b) Maxγ (αd ∈ [0.33,3], Maxβ = 10)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60 70 80 90 100

O
ff
lin

e
 E

rr
o
r

Excess points (e)

SPSO
rSPSO

(a)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

O
ff
lin

e
 E

rr
o
r

Excess points (e)

SPSO
rSPSO

(b)

Fig. 11.17 a) Offline error for Moving Peaks Scenario 2 for different values of e. b) Of-
fline error for asymmetric peaks with waves for different values of e (αd ∈ [0.33,3],Maxβ =
10,Maxγ = 100)

11.5.2.8 Asymmetric Peaks with Local Optima

This is the most challenging landscape for the PSO; we are creating peaks that look
similar to the one shown in Fig. 11.8. In all of the experiments the regression reduced
the offline error by between 1.5 and 2. As can be seen by comparing Fig. 11.16 a)
and b) with the results for the asymmetric peaks and local optima individually, the
local optima are the primary cause of the large offline error - the asymmetric peaks
are not a significant component. As would be expected, the results here are very
similar to the results for the local optima tests.

11.5.2.9 Sensitivity to e

On scenario 2 the value of e does not greatly affect the regression’s performance.
Low, nonzero values provided slightly better results for the same reason as before,

290 S. Bird and X. Li

Table 11.6 Comparing against mQSO: Severity

s mQSO rSPSO SPSO

0 1.18 (±0.07) 0.49 (±0.06) 0.60 (±0.04)

1 1.75 (±0.06) 1.41 (±0.04) 3.02 (±0.07)

2 2.40 (±0.06) 2.10 (±0.06) 4.49 (±0.09)

3 3.00 (±0.06) 2.79 (±0.07) 5.65 (±0.09)

4 3.59 (±0.10) 3.33 (±0.07) 7.02 (±0.14)

5 4.24 (±0.10) 3.85 (±0.08) 8.32 (±0.14)

6 4.79 (±0.10) 4.25 (±0.08) 9.59 (±0.15)

Table 11.7 Comparing against mQSO: Number of peaks

Peaks mQSO rSPSO SPSO

1 5.07 (±0.17) 1.91 (±0.09) 3.79 (±0.18)

2 3.47 (±0.23) 1.62 (±0.04) 3.14 (±0.10)

5 1.81 (±0.07) 1.42 (±0.06) 2.88 (±0.07)

7 1.77 (±0.07) 1.38 (±0.04) 2.82 (±0.07)

10 1.80 (±0.06) 1.47 (±0.07) 2.78 (±0.06)

20 2.42 (±0.07) 1.80 (±0.04) 2.99 (±0.05)

30 2.48 (±0.07) 2.07 (±0.05) 3.21 (±0.06)

40 2.55 (±0.07) 2.30 (±0.06) 3.52 (±0.06)

50 2.50 (±0.06) 2.30 (±0.04) 3.52 (±0.05)

100 2.36 (±0.04) 2.51 (±0.04) 3.73 (±0.06)

200 2.26 (±0.03) 2.57 (±0.03) 3.77 (±0.06)

by allowing the regression to concentrate on the best information. In all cases the
regression outperformed SPSO by a significant margin, as shown in Fig. 11.17 a).

When optimising the most complex function, Moving Peaks with αd ∈ [0.33,3],
β = 10,γ = 100, the value of e played a larger role in performance (Fig. 11.17 b)).
As would be expected, increasing e slightly helped the regression ignore the local
optima. Values larger than 20 gave no extra advantage however, showing that even
for difficult problems only a few excess points are needed.

11.5.2.10 Comparing to mQSO

In Table 11.6 we compare the performance against mQSO (with the anticonver-
gence measure) for differing movement severities. As can be seen, rSPSO exceeds
mQSO’s performance for all of the severities tested. This is even more impres-
sive considering that for most of the experiments SPSO had far worse performance

11 Improving Local Convergence in Particle Swarms 291

than mQSO. It should also be noted that both mQSO and SPSO have been tuned
for this benchmark - the parameters chosen by Blackwell were optimised for each
severity setting. SPSO’s r has been set to the standard value for the Moving Peaks
benchmark. The only parameter specifically related to the regression, e, requires
very little tuning. The value of 10 was shown to be either optimal or near-optimal
for all of the tests we conducted.

Table 11.7 compares mQSO’s performance against both SPSO and rSPSO for
differing numbers of peaks. It can be seen that rSPSO is highly competitive with
mQSO; offering better performance for all but the 100 and 200 peak runs. It should
be remembered that the regression can be added to most numerical optimisation
algorithms; it is highly likely that it could be used to improve mQSO’s performance
even further.

11.6 Conclusion

In this chapter we have presented a technique to incorporate regression into a PSO
algorithm, in order to improve local convergence. We have provided experimental
studies and analysis of results using several multimodal test functions with varying
difficulty. We have also extended the Moving Peaks test suite with more complex
peak shapes, and carried out experimental studies on these newly defined test func-
tions. Our results show that the performance of the regression-based SPSO (rSPSO)
compares favorably against two existing multimodal PSOs (SPSO and mQSO). In
particular, adding the regression significantly improved the performance of an ex-
isting multimodal PSO algorithm (SPSO) on a range of fitness landscapes in both
static and dynamic environments. By using the existing population members, the
regression technique does not require any additional evaluations, but only a modest
amount of memory and CPU time depending on the number of decision variables
and excess points.

As a future research direction it may be worthwhile exploring other deterministic
techniques that could be combined with a PSO. Currently much of the available
information is thrown away as the population moves each generation. By retaining
and analysing this data, it is likely that further improvements in performance can be
found.

References

1. Barthelemy, J.F.: Approximation concepts for optimimum structural design - a review.
Structural Optimization 5, 129–144 (1993)

2. Beasley, D., Bull, D., Martin, R.: A sequential niche technique for multimodal function
optimization. Evolutionary Computation 1(2), 101–125 (1993)

3. Ben-Israel, A., Greville, T.: Generalized Inverses: Theory and Applications. Wiley-
Interscience, New York (1974)

4. van den Bergh, F., Engelbrecht, A.: A new locally convergent particle swarm optimiser.
In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,
vol. 3, pp. 96–101. IEEE Press, Hammamet (2002)

292 S. Bird and X. Li

5. Bird, S., Li, X.: Enhancing the robustness of a speciation-based PSO. In: Proceedings of
the Congress on Evolutionary Computation, pp. 843–850. IEEE Press, Vancouver (2006)

6. Bird, S., Li, X.: Informative performance metrics for dynamic optimisation problems.
In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 18–25.
ACM Press, London (2007)

7. Bird, S., Li, X.: Using regression to improve local convergence. In: Proceedings of the
Congress on Evolutionary Computation, pp. 1555–1562. IEEE Press, Singapore (2007)

8. Blackwell, T., Branke, J.: Multi-swarm optimization in dynamic environments. Applica-
tions of Evolutionary Computing, 489–500 (2004)

9. Branin, F.: Widely convergent method for finding multiple solutions of simultaneous
nonlinear equations. IBM Journal of Research and Development 16(5), 504–522 (1972)

10. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization prob-
lems. In: Proceedings of the Congress on Evolutionary Computation, vol. 3, pp. 1875–
1882. IEEE Press, Washington (1999)

11. Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions on Evolutionary Computation 6,
58–73 (2002)

12. Conn, A., Toint, P.: An algorithm using quadratic interpolation for unconstrained deriva-
tive free optimization. Nonlinear Optimization and Applications, 27–47 (1996)

13. Deb, K., Goldberg, D.: An investigation of niche and species formation in genetic func-
tion optimization. In: Proceedings of the International Conference on Genetic Algo-
rithms, pp. 42–50. Morgan Kaufmann, San Francisco (1989)

14. Gottfried, B.: Introduction to Optimization Theory. Prentice-Hall, Englewood Cliffs
(1973)

15. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation.
Soft Computing-A Fusion of Foundations, Methodologies and Applications 9(1), 3–12
(2005)

16. Jin, Y., Olhofer, M., Sendhoff, B.: Managing approximate models in evolutionary aero-
dynamic design optimization. In: Proceedings of IEEE Congress on Evolutionary Com-
putation, vol. 1, pp. 592–599 (2001)

17. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with ap-
proximate fitness functions. IEEE Transactions on Evolutionary Computation 6(5), 481–
494 (2002)

18. Kennedy, J., Eberhart, R.: Swarm intelligence. Morgan Kaufmann, San Francisco (2001)
19. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Pro-

ceedings of the Congress on Evolutionary Computation, pp. 1671–1676. IEEE Press,
Honolulu (2002)

20. Li, J., Balazs, M., Parks, G., Clarkson, P.: A species conserving genetic algorithm for
multimodal function optimization. Evolutionary Computation 10(3), 207–234 (2002)

21. Li, X.: Adaptively choosing neighbourhood bests using species in a particle swarm op-
timizer for multimodal function optimization. In: Deb, K., et al. (eds.) GECCO 2004.
LNCS, vol. 3102, pp. 105–116. Springer, Heidelberg (2004)

22. Li, X., Branke, J., Blackwell, T.: Particle swarm with speciation and adaptation in a
dynamic environment. In: Proceedings of the Genetic and Evolutionary Computation
Conference, pp. 51–58. ACM Press, Seattle (2006)

23. Liang, K.H., Yao, X., Newton, C.: Evolutionary search of approximated n-dimensional
landscapes. International Journal of Knowledge-Based Intelligent Engineering Sys-
tems 4(3), 172–183 (2000)

11 Improving Local Convergence in Particle Swarms 293

24. Mahinthakumar, G., Sayeed, M.: Hybrid genetic algorithm - local search methods for
solving groundwater source identification inverse problems. Journal of Water Resources
Planning and Management 131(1), 45–57 (2005)

25. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer,
New York (1996)

26. Michalewicz, Z., Fogel, D.: How to Solve It: Modern Heuristics. Springer, Berlin (2000)
27. Neumaier, A.: Molecular modeling of protein and mathematical prediction of protein

structures. SIAM Review 39(3), 407–460 (2002)
28. Ong, Y., Nair, P., Keane, A.: Evolutionary optimization of computationally expensive

problems via surrogate modeling. AIAA Journal 41(4), 687–696 (2003)
29. Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle

swarm model using speciation. IEEE Transactions on Evolutionary Computation 10(4),
440–458 (2006)

30. Peer, E., van den Bergh, F., Engelbrecht, A.: Using neighbourhoods with the guaran-
teed convergence PSO. In: Proceedings of the IEEE Swarm Intelligence Symposium,
pp. 235–242. IEEE Press, Indianapolis (2003)

31. Ratle, A.: Accelerating the convergence of evolutionary algorithms by fitness landscape
approximation. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN
1998. LNCS, vol. 1498, pp. 87–96. Springer, Heidelberg (1998)

32. Runarsson, T.: Ordinal Regression in Evolutionary Computation. In: Runarsson, T.P.,
Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN
2006. LNCS, vol. 4193, pp. 1048–1057. Springer, Heidelberg (2006)

33. Singh, G., Deb, K.: Comparison of multi-modal optimization algorithms based on evolu-
tionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, pp. 1305–1312. ACM Press, Seattle (2006)

34. Vesterstrom, J., Riget, J., Krink, T.: Division of labor in particle swarm optimisation. In:
Proceedings of the Congress on Evolutionary Computation, vol. 2, pp. 1570–1575. IEEE
Press, Honolulu (2002)

35. Winfield, D.: Function minimization by interpolation in a data table. Journal of the Insti-
tute of Mathematics and its Applications 12, 339–347 (1973)

36. Yin, P., Yu, S., Wang, P., Wang, Y.: A hybrid particle swarm optimization algorithm for
optimal task assignment in distributed systems. Computer Standards & Interfaces 28(4),
441–450 (2006)

37. Zhou, Z., Ong, Y., Nguyen, M., Lim, D.: A study on polynomial regression and
Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary
algorithm. In: Proceedings of the 2005 Congress on Evolutionary Computation, vol. 3,
pp. 2832–2839. IEEE Press, Los Alamitos (2005)

	Improving Local Convergence in Particle Swarms by Fitness Approximation Using Regression
	Stefan Bird and Xiaodong Li
	Introduction
	Background
	Fitness Approximation
	Particle Swarms
	Speciated Particle Swarms
	Guaranteed Convergence PSO
	mQSO

	Using Regression to Locate Optima
	Experimental Setup
	Static Functions
	Moving Peaks

	Results
	Static Functions
	Moving Peaks

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

