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Abstract. This paper demonstrates that the self-adaptive technique
of Differential Evolution (DE) can be simply used for solving a multi-
objective optimization problem where parameters are interdependent.
The real-coded crossover and mutation rates within the NSGA-II have
been replaced with a simple Differential Evolution scheme, and results
are reported on a rotated problem which has presented difficulties using
existing Multi-objective Genetic Algorithms. The Differential Evolution
variant of the NSGA-II has demonstrated rotational invariance and su-
perior performance over the NSGA-II on this problem.

1 Introduction

Traditional genetic algorithms that use low mutation rates and fixed step sizes
have significant trouble with problems with interdependent relationships between
decision variables, but are perfectly suited to many of the test functions currently
used in the evaluation of genetic algorithms [1]. These test functions are typically
linearly separable and can be decomposed into simpler independent problems.
Unfortunately, many real-world problems are not linearly separable, although
linear approximations may sometimes be possible between decision variables.

Interdependencies between variables can be introduced into a real-coded func-
tional problem by rotating the coordinate system of the test function. A rotated
problem is not amenable to the directionless step-sizes and low mutation rates
that Genetic Algorithms typically use. Although the NSGA-II is a very robust
multi-objective optimization algorithm it suffers from the same limitations as
traditional Genetic Algorithms on these problems.

Previous work has reported on the poor performance of a number of MOEAs,
including the NSGA-II, on a rotated problem [2]. Rotated problems typically
require correlated self-adapting mutation step sizes in order to make timely
progress in optimization. In contrast, Differential Evolution has previously demon-
strated rotationally invariant behaviour in the single objective domain [3]. This
provides motivation to further demonstrate the worth of DE as a technique for
addressing rotated multi-objective optimization problems. Our survey of the lit-
erature found that no work has explicitly demonstrated rotationally invariant
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behaviour in multi-objective problems, therefore we propose a simple alteration
to the NSGA-II to make it rotationally invariant. The mutation and crossover
operators within the NSGA-II have been replaced with a Differential Evolution
algorithm for generating candidate solutions. Differential Evolution has all the
desired properties necessary to handle complex problems with interdependencies
between input parameters, without the implementation complexity and compu-
tation cost of some self-adaptive Evolutionary Strategies [3].

A number of experiments have been conducted on a uni-modal rotated prob-
lem from the literature [2]. We have found that integrating Differential Evolution
within the NSGA-II achieves rotational invariance on this problem.

The following section provides a brief introduction to the important concepts
of Multi-objective Optimization, Differential Evolution, and Rotated Problems.
Section 3 discusses the proposed model the Non-dominated Sorting Differential
Evolution (NSDE) which integrates Differential Evolution with the NSGA-II.
Section 4 outlines the performance metrics used in this study. Section 5 describes
the experiments that were conducted, followed by the parameter settings and
discussion of results in Section 6 and 7. The outcomes of this work and some
possible future directions are outlined in Section 8.

2 Background

2.1 Multi-objective Optimization

Multi-objective optimization deals with optimization problems which are for-
mulated with some or possibly all of the objective functions in conflict with
each other. Such problems can be formulated as a vector of objective func-
tions f(x) = (f1(x), f2(x), .., fn(x)) subject to a vector of input parameters
x = (x1, x2, ..., xm), where n is the number of objectives, and m is the number
of parameters. A solution x dominates a solution y if objective function fi(x)
is no worse than objective function fi(y) for all n objectives and there exists
some objective j such that fj(x) is better than fj(y). The non-dominated so-
lutions in a population are those solutions which are not dominated by any
other individual in the population. Multiobjective evolutionary optimization
is typically concerned with finding a diverse range of solutions close to the
Pareto-optimal front, which is the globally non-dominated region of the objective
space.

A number of evolutionary multiobjective algorithms have been developed
since the late 80s, and the NSGA-II [2] is typically regarded as one of the best.

The criteria for evaluating the performance of a multiobjective evolutionary
algorithm are different from those for assessing the performance of single ob-
jective algorithms. Generally, a multi-objective optimization produces a set of
solutions. Therefore, we need to assess the final solution set in terms of uniform
coverage of the Pareto-optimal front, closeness to the front, and spread across
the front. In section 4 we will outline in more detail the performance metrics
used in this study.
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Fig. 1. The above figure shows the vector addition and subtraction necessary to gen-
erate a new candidate solution in DE/current-to-rand/1

2.2 Differential Evolution

Differential Evolution is a population-based direct-search algorithm for global
optimization [4]. It has demonstrated its robustness and power in a variety of
applications, such as neural network learning [5], IIR-filter design [6], and the
optimization of aerodynamic shapes [7]. It has a number of important charac-
teristics which make it attractive as a global optimization technique, and the
reader is referred to [3] for an excellent introduction to DE which covers this
in more detail. The primary property of Differential Evolution that will be the
topic of study in this paper is rotational invariance.

Differential Evolution differs from other EAs in the mutation and recom-
bination phase. Unlike stochastic techniques such as Genetic Algorithms and
Evolutionary Strategies, where perturbation occurs in accordance with a ran-
dom quantity, Differential Evolution uses weighted differences between solution
vectors to perturb the population.

randomly select r1, r2, r3 ∈ {1, 2, ..., n}; r1 �= r2 �= r3 �= i (1)
ui,G+1 = xi,G + K · (xr3,G − xi,G) + F · (xr1,G − xr2,G)

The Differential Evolution variant used in this work is known as DE/current-
to-rand/1 (Equation 1), and is rotationally invariant [3]. The population of a
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Differential Evolutionary Algorithm is typically randomly initialised within the
initial parameter bounds. At each generation G, the population undergoes per-
turbation. Three unique individuals, or solution vectors denoted by x, are ran-
domly selected from the population. The coefficient K is responsible for the level
of combination that occurs between xr3,G and the current individual xi,G. The
coefficient F is responsible for scaling the step size resulting from the vector
subtraction xr1,G − xr2,G. Figure 1 details the relationship between the vec-
tors responsible for the generation of a new candidate solution. Typically in the
single-objective case, if the new individual ui,G+1,evaluates better than the cur-
rently selected individual xi,G, then the current individual is replaced with the
new one. The algorithm iterates over i from 1 to n, where n is the size of the
population.

2.3 Multi-objective Differential Evolution

Differential Evolution has also been applied to multi-objective problems. One of
the first examples of this was to tune a fuzzy controller for the automatic opera-
tion of a train, although the cost function transformed the objectives of punctu-
ality, comfort, and energy usage into the degenerate case of a single objective [8].
The Pareto Differential Evolutionary Algorithm (PDE) uses non-dominated so-
lutions for reproduction, and places offspring back into the population if they
dominate the current parent [9, 10]. This PDE was also extended into a vari-
ant with self-adaptive crossover and mutation [11]. Multi-objective DE has also
been applied to minimize the error and the number of hidden units in neu-
ral network training. The resulting Pareto-front is the tradeoff between these
two objectives [12]. The non-dominated sorting, ranking, and elitism techniques
utilised in the NSGA-II have also been incorporated into a Differential Evolu-
tion method [13]. Another approach involving Pareto-based evaluation has also
been applied to an Enterprise Planning problem with the two objectives of cycle
time and cost [14], and also compared with the Strength-Pareto Evolutionary
Algorithm [15].

2.4 Rotated Problems

A function can be rotated through one or more planes in the parameter space,
where the number of planes is determined by the dimensionality of the problem.
A problem with D dimensions in the parameter space has D(D − 1)/2 possible
planes of rotation. A problem rotated through all possible parameter space planes
means that every variable has interdependencies with every other.

In order to generate a rotated problem, each solution vector x is multiplied
by a rotation matrix M, and the result is assigned to y (Equation 2). The new
vector is then evaluated on each of the objective functions.

Figure 2 demonstrates the effect of rotation on the multi-objective problem
in Equation 2 with two input parameters. The shapes of the functions stay the
same, but their orientations change.
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Fig. 2. The above figure shows the effect of a 45-degree rotation on the x1x2 plane
on function f1 and f2. Before rotation, the functions are aligned with the coordinate
system ((a) and (c)), and after rotation they are not ((b) and (d))

minimize f1(y) = y1 and f2(y) = g(y)exp(−y1/g(y))

where g(y) = 1 + 10(D − 1) +
D∑

i=2

[
y2

i − 10 cos(4πyi)
]

(2)

and y = Mx, −0.3 ≤ xi ≤ 0.3, for i = 1, 2, ..., D.

It is apparent from the contour plots in Figure 2 that before rotation the func-
tions are aligned with the coordinate system. In which case, it is possible to make
progress in the search by perturbing the parameters x1 and x2 independently.
With rotated problems, significant progress in the search can only proceed by
making simultaneous progress across all parameters within a solution vector.
Consider Figure 3, where the elliptical contour represents a region of constant
fitness. The point v can be perturbed along both the x1 and x2 axes, and any
location along the dashed line will be an improvement over any point along the
contour, assuming that the global optimum is centered on the coordinate axis.
After rotation, progress from perturbing the same rotated point v′ will be lower.
This is because the interval of potential improvement for each of the decision
variables is reduced, meaning that the search will progress more slowly when
the parameters are only perturbed independently of each other. Another aspect
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v′

v

x2x2

x1 x1

Fig. 3. The above figure demonstrates how rotation can reduce the interval of possible
improvement. When the function is aligned with the coordinate axes, the improvement
interval (dashed line) is larger than when the function is rotated away from the co-
ordinate axes. The ellipse represents the region of constant fitness. Vector v and v′

represent the same point in the search space before and after rotation respectively

of rotated problems is that points can easily be trapped along a valley line in
the search space and can only make progress with simultaneous improvements
over all input parameters (Figure 4). The point v can easily be perturbed in the
x1 axis to find the global minimum in the center of the coordinate system. The
same point v′ after rotation is still on the valley, but now it can not progress to
a point of improved fitness by only moving along the direction of the coordinate
axes (dashed line) because any such perturbation will be to a point of lower fit-
ness in the search space. Typically the valley can be found easily, but the search
often becomes trapped at this location. Only a simulatenous improvement in all
parameters will result in the discovery of fitter solutions. On these types of prob-
lems, the small mutation rates frequently used in Genetic Algorithms are known
to be even less efficient than a random search [1]. Self-adaptation has been rel-
atively successful at solving this sort of problem using Evolutionary Strategies,
but it requires the learning of appropriate correlated mutation step sizes and

valley

v

v′

x2x2

x1 x1

Fig. 4. The above figure demonstrates how rotation can trap points along the valley.
If the point v′ moves anywhere along the dashed lines it will be towards a point in
the parameter space of lower fitness. Vector v and v′ represent the same point in the
search space before and after rotation respectively
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it can be rather computationally expensive when D becomes large [3]. Differ-
ential Evolution is an attractive solution to this problem because of its ability
to adapt to the fitness landscape through the correlation of mutation step sizes
by sampling multiple times the difference between randomly selected solution
vectors.

3 NSDE: A Simple Modification to the NSGA-II

The NSGA-II algorithm uses elitism and a diversity preserving mechanism. N
offspring are created from a parent population of size N. The combined popu-
lation of size 2N is sorted into separate non-domination levels. Individuals are
selected from this combined population to be inserted into the new population,
based on their non-domination level. If there are more individuals in the last
front than there are slots remaining in the new population of size N, a diversity
preserving mechanism is used. Individuals from this last front are placed in the
new population based on their contribution to diversity in the population. The
algorithm then iterates until some termination condition is met. The NSGA-II
uses a real-coded crossover and mutation operator but in the multi-objective
implementation of DE/current-to-rand/1, NSDE (Non-dominated Sorting Dif-
ferential Evolution), these mutation and recombination operators were not used,
and were replaced with Differential Evolution. In the single objective implemen-
tation of the Differential Evolution, if the new candidate ui,G+1 evaluates better
than the current individual xi,G, the current individual is replaced with the new
individual. In the multi-objective implementation this is not possible because
we do not know which individual is better until all candidates are sorted to-
gether and assigned to a non-domination level. Therefore, ui,G+1 is first added
to the new candidate offspring population. New candidates are generated using
DE/current-to-rand/1 until the candidate offspring population is filled up to
size N. The new individuals are then evaluated on the objective functions, and
then subjected to the combined non-dominated sorting described above. For fur-
ther details regarding the implementation of the NSGA-II, the reader is referred
to [2].

4 Performance Metrics

A number of performance metrics have been proposed for the purposes of com-
paring multiobjective optimization algorithms [16]. An analysis of different per-
formance assessment techniques is provided in [17].

We use the following performance metrics introduced by Zitzler [18]. These
metrics are frequently employed in the literature and we use them here to facil-
itate the comparison of the results with others. Secondly, they do not attempt
to combine coverage, convergence or spread measures into a scalar, but provide
these measures as distinct results. This assists any evaluation of the algorithms
in relation to these measures. The * designates we have used the objective space
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variant of these metrics only. Because metrics alone are probably insufficient to
assess the performance of a multiobjective optimization algorithm [16], we have
also provided plots of the non-dominated solutions (Figure 5).

M∗
1(Y

′) :=
1

|Y ′|
∑

p′∈Y ′
min{||p′ − p̄||∗; p̄ ∈ Ȳ} (3)

M∗
2(Y

′) :=
1

|Y ′ − 1|
∑

p′∈Y ′
|{q′ ∈ Y′; ||p′ − q′||∗ > σ∗}| (4)

M∗
3(Y

′) :=

√√√√
n∑

i=1

max{||p′
i − q′

i||∗;p′,q′ ∈ Y′} (5)

Y ′ is the set of objective vectors corresponding to the non-dominated solu-
tions found, and Ȳ is a set of uniform Pareto-optimal objective vectors. M∗

1(Y
′)

provides a measure of convergence to the Pareto-optimal front by giving the av-
erage distance from Y ′ to Ȳ . The smaller the value of M∗

1(Y
′) the better, as the

distance between Y ′ to Ȳ should be minimised. This metric is useful when the
true Pareto-front is known, although other metrics for measuring convergence
to the front are appropriate when this is not the case [16].

M∗
2(Y

′) describes how well the solutions in Y ′ cover the front. M∗
2(Y

′) should
produce a value between [0, |Y ′|] as it estimates the number of niches in Y ′ based
on the niche neighbourhood size of σ∗. A niche neighbourhood size, σ∗ > 0, is
used in Equation 4 to calculate the distribution of the non-dominated solutions.
Objective vectors outside the niche range are counted for each objective vector
p′ in Y ′. The higher the value for M∗

2(Y
′) the better the coverage is across the

front, according to σ∗.
M∗

3(Y
′) measures the spread of Y ′, which provides an indication of how well

the search has spread to the extremes of the Pareto-optimal front. Large values
of M∗

3(Y
′) are desired.

None of these metrics can be considered individually. For example, a good
convergence of the population towards the Pareto-front may also have a poor
coverage across the front, or vice versa.

5 Experiments

Experiments were conducted on the rotated problem described in section 2.4.
The dimensionality of the parameter space was 10, resulting in 45 possible planes
of rotation. Rotations were performed on each plane, introducing non-linear de-
pendencies between all parameters. In order to demonstrate the rotational invari-
ance of the NSDE on the problem, we performed experiments with 0 degrees of
rotation (no parameter interactions) up to 45 degrees of rotation, at 5 degree in-
tervals. Each experiment was run 30 times, for a total of 800 generations (80,000
evaluations) for each run. For comparative purposes the same experiments were
performed with the NSGA-II as well. Results are presented in Figure 5, and
Table 1.
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Fig. 5. Each of the left and right plots respectively show 30 runs of the NSGA-II and
the NSDE algorithm on the rotated problem, with successively increasing degrees of
rotation on all planes
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Table 1. M∗
1, M∗

2, M∗
3, and the number of evaluations (averaged over 30 runs). Rd

represents the rotated problem where d is the degree of rotation on each plane

Metric Algorithm R0 R5 R10 R15 R20

M∗
1

NSGA-II 6.26E-04 2.42E-02 1.49E+00 1.14E+00 3.49E-01
±7.55E-05 ±9.31E-02 ±3.07E+00 ±1.62E+00 ±6.85E-01

NSDE 2.22E-03 3.76E-03 5.60E-03 2.95E-01 1.10E-01
±1.97E-04 ±5.22E-03 ±1.18E-02 ±7.51E-01 ±4.16E-01

M∗
2

NSGA-II 9.86E+01 8.56E+01 6.87E+01 5.35E+01 6.41E+01
±7.00E-02 ±2.46E+00 ±2.42E+01 ±2.35E+01 ±1.98E+01

NSDE 9.85E+01 9.85E+01 9.85E+01 9.86E+01 9.85E+01
±5.49E-02 ±1.28E-01 ±2.14E-01 ±2.22E-01 ±4.68E-01

M∗
3

NSGA-II 1.10E+00 5.44E-01 6.47E-01 5.37E-01 8.66E-01
±5.48E-06 ±3.33E-01 ±7.94E-01 ±6.27E-01 ±1.52E+00

NSDE 1.10E+00 1.10E+00 1.11E+00 1.12E+00 1.17E+00
±7.48E-04 ±1.79E-02 ±3.68E-02 ±8.01E-02 ±3.56E-01

Metric Algorithm R25 R30 R35 R40 R45

M∗
1

NSGA-II 3.71E-01 5.18E-01 8.97E-01 8.17E-01 1.01E+00
±5.47E-01 ±7.91E-01 ±2.08E+00 ±1.79E+00 ±1.87E+00

NSDE 2.36E-03 1.38E+00 3.86E-03 2.29E-02 5.82E-01
±4.41E-19 ±1.07E+00 ±5.06E-03 ±6.26E-02 ±9.78E-01

M∗
2

NSGA-II 6.94E+01 5.22E+01 5.24E+01 4.60E+01 5.11E+01
±2.66E+01 ±3.61E+01 ±3.42E+01 ±3.39E+01 ±3.75E+01

NSDE 9.86E+01 9.85E+01 9.85E+01 9.83E+01 9.86E+01
±5.22E-01 ±1.19E-01 ±3.13E-01 ±1.36E+00 ±2.00E-01

M∗
3

NSGA-II 9.34E-01 8.39E-01 5.61E-01 7.95E-01 1.43E+00
±1.22E+00 ±1.47E+00 ±9.51E-01 ±1.75E+00 ±2.32E+00

NSDE 1.32E+00 1.10E+00 1.09E+00 1.11E+00 1.28E+00
±5.81E-01 ±3.14E-02 ±5.03E-02 ±1.50E-01 ±9.62E-01

6 Parameter Settings

A population size of 100 was used for both the NSDE and the NSGA-II. A
crossover rate of 0.9 and mutation rate of 0.1 were used with the NSGA-II. ηc

and ηm are parameters within the NSGA-II which control the distribution of
the crossover and mutation probabilities and were assigned values of 10 and 50
respectively. The choice of the NSGA-II parameters is the same as the parameter
values previously used on this rotated problem in other work [2]. For the NSDE,
F was set to 0.8 and K was set to 0.4. Suggestions from the literature helped
guide our choice of parameter values for the NSDE [3]. The niche neighbourhood
size σ∗ described in section 4, for the metric M∗

2(Y
′), was set to 0.01.

7 Results and Discussion

From Table 1 it is apparent that the NSDE maintains a significantly better
convergence (M∗

1), coverage (M∗
2), and spread (M∗

3) than the NSGA-II. Figure 5
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contains plots of 30 runs of the final non-dominated set after 80,000 evaluations.
These figures further demonstrate that the NSDE consistently converged closely
to the Pareto-optimal front, independently of the degree of rotation.

The only difference between the NSDE and the NSGA-II is in the method of
generating new individuals. NSDE uses the step sizes of Differential Evolution
which are adaptively adjusted to the fitness landscape. In contrast, the NSGA-II
uses real-coded crossover and mutation operators. It is obvious that the cause
of the poor performance by the NSGA-II on the rotated problem is because the
perturbation of variables through mutation and crossover is not correlated. We
have demonstrated that Differential Evolution can provide rotationally invariant
behaviour on a multi-objective optimization problem, and we expect this should
be true for other rotated problems as well. It is significant that such striking
results were obtained from such a simple variation of the NSGA-II.

8 Conclusion

Outside of Evolutionary Strategies, Differential Evolution is currently one of
a few techniques for solving multi-objective optimization problems with inter-
dependencies between variables. The striking results on the single test prob-
lem we have investigated in this preliminary study suggest that further work
is worthwhile. Currently we are investigating a number of even harder rotated
problems, incorporating some of the features of existing test functions, such as
multi-modality, non-uniformity, and discontinuities.
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