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Abstract— Niching is an important technique for multimodal
optimization in Evolutionary Computation. Most existing nich-
ing algorithms are evaluated using only 1 or 2 dimensional
multimodal functions. However, it remains unclear how these
niching algorithms perform on higher dimensional multimodal
problems. This paper compares several schemes of PSO update
rules, and examines the effects of incorporating these schemes
into a lbest PSO niching algorithm using a ring topology.
Subsequently a new Cauchy and Gaussian distributions based
PSO (CGPSO) is proposed. Our experiments suggest that
CGPSO seems to be able to locate more global peaks than
other PSO variants on multimodal functions which typically
have many global peaks but very few local peaks.

I. INTRODUCTION

Most real-world problems are multimodal by nature, i.e.,
multiple equally good solutions (global or local) exist. It may
be desirable for a decision maker (DM) to locate all global
solutions or satisfactory solutions so that the DM can then
choose the suitable one from the pool of multiple solutions
depending on the preferred decision variable ranges in the
decision space.

Numerous techniques have been developed in the past
for locating multiple optima. Two most well-known such
techniques are probably crowding [1] and fitness sharing [2].
These techniques are commonly referred to as niching meth-
ods. A niching method can be incorporated into a standard
Evolutionary Algorithm (EA) to promote and maintain the
formation of multiple stable subpopulations within a single
population, with an aim to locate multiple optimal solutions.

Most existing niching algorithms, however, require user
specified parameters in order to perform well. In a recent
attempt to eliminate the need of specifying any niching
parameters, a lbest PSO niching algorithm based on a
ring topology was proposed[3], where a PSO’s population
was directly mapped onto a ring topology. This way the
population can be naturally divided into multiple subpop-
ulations, each operating as a separate PSO with its own
local neighbourhood best. Since these subpopulations are
only loosely connected, the speed of convergence is greatly
reduced. Most importantly, it was shown that the ring topol-
ogy based PSO can be used as an effective niching method
for maintaining stable subpopulations (or niches), therefore
it can reliably locate multiple global optima. This lbest PSO
niching algorithm was shown to provide better performance
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than some existing niching algorithms typically using a niche
radius parameter.

One potential issue as a result of niching is that these
subpopulations may contain very few particles. In the ring
topology based PSO, each subpopulation contains only 3
particles. The search capability of such a small swarm may
be adequate for very low dimensional problems (e.g., 1 or
2 dimensions), but severely limited for higher dimensional
multimodal problems. To further enhance the search capa-
bility of small swarms, there is a need to incorporate a more
capable optimizer in place of the existing constricted PSO.
This paper examine several alternative PSO variants using
different position update rules, and compare the effects of
embedding these schemes in the aforementioned lbest PSO
niching algorithm using a ring topology. A novel PSO update
rule which uses a combination of Cauchy and Gaussian
distributions (CGPSO) to sample a particle’s next position
is proposed. The proposed CGPSO is shown to perform
competitively even when a small population size is used. The
lbest PSO niching algorithm employing CGPSO seemed to
be able to locate more global peaks other PSO variants on
multimodal problems which have many global peaks but few
or no local peaks.

The rest of the paper is organized as follows. We begin
with a review of classic niching methods in section II, focus-
ing on discussing the issue of niching parameters. We then
give a brief introduction on PSO and several PSO variants
based on Gaussian distribution in section III. In section
IV we describe in detail a lbest PSO niching algorithms
proposed in [3]. This is followed by section V describing
a newly proposed PSO update rule employing Cauchy and
Gaussian distributions for sampling a particle’s next position.
Experimental setup and numerical results are presented in
section VI and VII respectively. Finally section VIII gives
the concluding remarks.

II. NICHING METHODS

Niching methods were introduced to EAs to allow mainte-
nance of a population of diverse individuals so that multiple
optima within a single population can be located [4]. One
of the early niching methods was developed by De Jong
in a scheme called crowding. In crowding, an offspring is
compared to a small random sample taken from the current
population, and the most similar individual in the sample is
replaced. A parameter CF (crowding factor) is commonly
used to determine the size of the sample. The most widely
used niching method is probably fitness sharing. The sharing
concept was originally introduced by [5], and then adopted
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Fig. 1. Inverted Shubert 2D function.

by [2] as a mechanism to divide the population into different
subpopulations according to the similarity of the individuals
in the population. Fitness sharing was inspired by the sharing
concept observed in nature, where an individual has only
limited resources that must be shared with other individuals
occupying the same niche in the environment. A sharing
function is often used to degrade an individual’s fitness based
on the presence of other neighbouring individuals. Although
fitness sharing has proven to be a useful niching method, it
has been shown that there is no easy task to set a proper
value for the sharing radius parameter σshare in the sharing
function without prior knowledge of the problems [6] .

Apart from the above, many other niching methods have
also been developed over the years, including derating [7],
deterministic crowding [8], restricted tournament selection
[9], parallelization [10], clustering [11], and speciation [12],
[13]. Niching methods have also been developed for PSOs,
such as NichePSO [14] and SPSO [15].

Most existing niching methods, however, suffer from a
serious problem - their performance is subjected heavily to
some niching parameters, which are often difficult to set by
a user. For example the sharing parameter σshare in fitness
sharing [2], the species distance σs in species conserving
GA (SCGA) [13], the distance measure σclear in clearing
[12], and the species radius rs in the speciation-based PSO
(SPSO) [15]. The performance of these EAs depend very
much on how these parameters are specified.

Figure 1 shows an example of a function fitness landscape
that has 9 pairs of global optima and numerous local optima.
Within each pair, two global optima are very close to each
other but optima from different pairs are further away. A
niching algorithm relying on a fixed niche radius value to
determine a particle’s membership in a niche would have a
significant difficulty to work properly on such a landscape.
To capture all peaks, a niching EA would have to set its niche
radius extremely small so that the closest two peaks can be
distinguished. However, doing so would form too many small
niches, with possibly too few individuals in each niche. As
a result, these niches tend to prematurely converge. On the

other hand, if the niche radius is set too large, peaks with
a distance between them smaller than this value will not be
distinguished. In short, it is likely that there is no optimal
value for the niche radius parameter. Dependency on a fixed
niche radius is a major drawback for niching methods that
rely on such a parameter.

In the following section we will first present a brief
introduction on PSO. This is then followed by section IV
describing a PSO niching algorithm using a ring topology
that is able to remove the need of specifying niching param-
eters.

III. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a Swarm Intelli-
gence technique originally developed from studies of social
behaviours of animals or insects [16]. In a canonical PSO,
the velocity of each particle is modified iteratively by its
personal best position (i.e., the position it has attained that
gives the best fitness value so far), and the global best
position (i.e., the position of best particle from the entire
swarm). As a result, each particle searches around a region
defined by its personal best position and the global best
position. Let’s use �vi to denote the velocity of the i-th
particle in the swarm, �xi its position, �pi its personal best,
and �pg the global best position from the entire swarm. �vi and
�xi of the i-th particle in the swarm are updated according to
the following two equations [17]:

�vi ← χ(�vi + �R1[0, ϕ1]⊗ (�pi − �xi) +
�R2[0, ϕ2]⊗ (�pg − �xi)), (1)

�xi ← �xi + �vi, (2)

where �R1[0, ϕ1] and �R2[0, ϕ2] are two separate functions
each returning a vector comprising random values uniformly
generated in the range [0, ϕ1] and [0, ϕ2] respectively.
ϕ1 and ϕ2 are commonly set to ϕ

2 (where ϕ is a positive
constant). The symbol ⊗ denotes point-wise vector mul-
tiplication. A constriction coefficient χ is used to prevent
each particle from exploring too far away in the search
space, since χ applies a dampening effect to the oscillation
size of a particle over time. This Type 1” constricted PSO
suggested by Clerc and Kennedy is often used with χ set to
0.7298, calculated according to χ = 2∣∣∣2−ϕ−

√
ϕ2−4ϕ

∣∣∣ , where

ϕ = ϕ1 + ϕ2 = 4.1 [17].

A. lbest and gbest PSO

Two common approaches of choosing �pg in equation (1)
are known as gbest and lbest methods. In a gbest PSO, the
position of each particle in the search space is influenced by
the best-fit particle in the entire population, whereas a lbest
PSO only allows each particle to be influenced by the best-fit
particle chosen from its neighborhood. The lbest PSO with a
neighborhood size set to the population size is equivalent to
a gbest PSO. Kennedy and Mendes [18] studied PSOs with
various population topologies. One of common population
topologies suggested is the ring topology, where each particle
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on the population array is only allowed to interact with its
two immediate neighbours. A more recent study in [19]
showed that a lbest PSO is most likely to outperform a
gbest PSO on a multimodal fitness landscape, whereas gbest
PSO tends to do better on a unimodal landscape. Figure 2
illustrates a typical example using a ring topology for an EA
and an equivalent for a PSO. One noticeable difference is
that the PSO approach uses local memory.

Clearly the ring topology is desirable for locating multiple
optima, because ideally we would like to have individu-
als to search thoroughly in its local neighbourhood before
propagating the information throughout the population. The
consequence of any quicker than necessary propagation
would result in the population converging onto a single
optimum (like gbest PSO). The ring topology seems to be
able to provide the right amount of communication needed
for inducing stable niching behaviour.

B. Gaussian based PSO variants

It is interesting to note that if we let �pi and �pg be fixed,
then the resulting particle positions from (1) and (2) follow a
Gaussian distribution [21]. This observation led to Kennedy
proposing a PSO variant called Bare-bones PSO which relies
solely on the Gaussian distribution to generate a particle’s
next position [21]. In the Bare-bones PSO, each dimension
of the new position of the i-th particle is randomly selected
from a Gaussian distribution with the mean being the average
of �pi and �pg and the standard deviation σ being the distance
between �pi and �pg:

�xi ← N (
�pi + �pg

2
, |�pi − �pg|). (3)

Note that there is no velocity term used in equation
(3). The new particle position is simply generated via the
Gaussian distribution. A comparative study on PSO variants
employing Gaussian distribution was provided in [22], as
well as Lévy distribution which is a more generalized form
of distribution than Gaussian and Cauchy distribution1. Al-
gorithms employing Lévy or Cauchy distribution, which both
have a long fat tail, are more capable of escaping from local
optima than the Gaussian counterpart, as suggested in several
studies [23], [24], [22].

Without the velocity term �vi, the Gaussian based PSO as
shown in (3) becomes very similar to Evolutionary Program-
ming (EP), where Gaussian distribution is typically used for
generating the next trial points in the search space [23]. One
important difference though, is that in the Gaussian based
PSO the standard deviation σ is determined by the distance
between �pi and �pg , whereas in a typical EP, σ needs to be
supplied by the user, or be made self-adaptive [23], [24].

In another Gaussian based PSO (GPSO) proposed by
Secrest and Lamont [25], instead of sampling around the
midpoint between �pi and �pg , Gaussian distribution is used
to sample around �pg with some pre-specified probability p,

1The shape of the Lévy distribution can be controlled by a parameter α.
For α = 2 it is equivalent to Gaussian distribution, whereas for α = 1 it
is equivalent to Cauchy distribution [22].

Randomly generate an initial population
repeat

for i = 1 to Population Size do
if fit(�xi) > fit(�pi) then �pi ← �xi;

end
for i = 1 to Population Size do

�pn,i ← neighbourhoodBest(�pi−1, �pi, �pi+1);

end
for i = 1 to Population Size do

Equation (1);
Equation (2);

end
until termination criterion is met;

Algorithm 1: The pseudocode of a lbest PSO using a ring
topology. Note that in equation (1), �pg should be replaced
by the i-th particle’s neighbourhood best �pn,i.

otherwise around �pi. This proves to be beneficial, as particles
can explore better in a much wider area, rather than just
around the midpoint between �pi and �pg . However, since
GPSO uses only Gaussian distribution, its ability to explore
the search space is still rather limited especially when the
standard deviation becomes smaller. In section V we propose
a PSO update rule which uses a combination of Cauchy and
Gaussian distributions (instead of only Gaussian distribution)
to sample a particle’s next position. Our results show that this
Cauchy and Gaussian based PSO with a small population
size is able to explore more effectively the search space than
GPSO and other PSO variants.

IV. lbest NICHING PSO USING A RING TOPOLOGY

This section describes the lbest PSO niching algorithm
using a ring topology, which was proposed in [3]. As shown
in Figure 2 b) or c), in a lbest niching PSO using a
ring topology, each particle interacts only with its imme-
diate neighbours. An implementation of such a lbest PSO
using a ring topology is provided in Algorithm 1. Note
that we can conveniently use population indices to identify
the left and right neighbours of each particle. Here we
assume a ‘wrap-around’ ring topology, i.e., the first particle
is the neighbour of the last particle and vice versa. The
neighbourhoodBest() function returns the neighbourhood
best of the i-th particle (which is the best-fit personal best
in the i-th particle’s neighbourhood). This neighbourhood
best, i.e., �pn,i, is then used as the i-th particle’s local
leader (instead of �pg) when updating the i-th particle using
equations (1) and (2).

Note that different particles residing on the ring can
have different �pn (we use �pn to denote a non-specific
‘neighbourhood best’), and they do not necessarily converge
into a single value over time. As illustrated in Figure 3,
the ring topology not only provides a mechanism to slow
down information propagation in the particle population, but
also allows different neighbourhood bests to coexist (rather
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Fig. 2. a) A typical ring topology used in a conventional EA. Each member interacts only with its immediate left and right neighbours, with no local
memory used; b) Graph of influence for a lbest PSO using the same ring topology (see also p.89 in [20]). Each particle possesses a local memory; c)
The same as b) but also showing the overlapping subpopulations, each consisting of a particle and its two immediate neighbours, and their corresponding
memories.

than becoming homogeneous) over time. This is because
a particle’s �pn can only be updated if there is a better
personal best in its neighbourhood, but not by a better �pn

of its neighbouring particle. Assuming that particles from
the initial population are uniformly distributed across the
search space, niches can naturally emerge as a result of
the coexistence of multiple �pn positions being the local
attraction points for the particles in the population. With a
reasonable population size, such a lbest PSO is able to form
stable niches around the identified neighbourhood bests �pn.

Fig. 3. A ring topology with each member interacting with its 2 immediate
neighbours (left and right). Local neighbourhoods are overlapped with each
other. The i-th particle’s neighbourhood best (�pn,i) is the same as those of
its 2 immediate neighbouring particles, but differs from those particles in
the neighbourhoods further out.

Extensive experiments carried out in [3] showed that the
lbest PSO algorithms with a ring topology are able to induce
stable niching behavior. The lbest PSO algorithms with
an overlapping ring topology named as r3pso (with each
member interacting with its immediate member on its left
and right as shown in Figure 3) are able to locate multiple
global optima, given a reasonably large population size,
whereas the lbest PSO algorithms with a non-overlapping
ring topology can be used to locate global as well as local
optima, especially for low dimensional problems. We used
r3pso for all our experiments described in this paper.

V. CAUCHY AND GAUSSIAN DISTRIBUTIONS BASED PSO

Inspired by the Bare-bones PSO and GPSO as described
in section III-B, in this section, we propose a PSO update
rule that employs a combination of Cauchy and Gaussian
distributions for sampling a particle’s next position. The
update rule for each particle position can be now rewritten
as follows:

�xi ←
{

�pi + C(1)|�pi − �pn,i|, if rand ≤ p;

�pn,i +N (0, 1)|�pi − �pn,i| otherwise,
(4)

where C(1) denotes a number that is generated following a
Cauchy distribution, and in this case we need to set an “ef-
fective standard deviation” [22] for the Cauchy distribution,
which is the same standard deviation value we would set
for the equivalent Gaussian distribution, |�pi − �pn,i|; rand
is a random number generated uniformly from [0,1]; p is
a user-specified probability value for Cauchy sampling to
occur. Here �pn,i denotes a local neighbourhood best for
the i-th particle. Since a lbest ring topology is used for
defining local neighbourhood, �pn,i (i.e., the best-fit particle),
is chosen among all 3 particles including the current i-th
particle and its immediate left and right neighbours (imagine
that all particles are stored on a list that is indexed and
wrapped-around). Since each particle may have a different
�pn, the population is likely to remain diverse for a longer
period. The chance of prematurely converging to a single
global best is reduced, since multiple local neighbourhood
bests are used, instead of a single population best �pg as in the
Bare-bones PSO (see equation (3)). Note that p can be simply
set to 0.5 so that half of the time Cauchy is used to sample
around the personal best �pi, while for the other half of the
time Gaussian is used to sample around the neighbourhood
best �pn,i. The idea is to use Cauchy distribution to explore
more broadly around different personal best positions so that
the swarm remains diverse, and at the same time to use
less exploratory Gaussian to encourage convergence towards
various neighbourhood best positions.
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VI. EXPERIMENTAL DESIGN

A. Two sets of experiments

We carried out two sets of experiments. In the first set
of experiments, we want to evaluate the search capability
of the 4 PSO variants using only a small population size.
Most niching algorithms need to subdivide the population
into many smaller subpopulations (or niches), with each
specializing in locating a different global peak, therefore the
search capability of a niche (often with a small population
size) is critical to the overall performance of the niching
algorithm. In the case of r3pso, we want to pick the best
optimizer for a ring topology defined local neighbourhood
(i.e., with a size of 3), hence we set the population size
to 3. We chose to use the standard Sphere and Rastrigin
functions of 2 to 100 dimensions for this comparative study.
The idea is to evaluate the ability of each PSO variant to
converge on a simple unimodal function, as well as on a
multimodal function. The Rastrigin function was used to
assess if an algorithm can overcome many of the local optima
before reaching the global optimum. Each algorithm was run
50 times (with each run allowing 200,000 evaluations), and
the mean and standard deviation of the best fitness were
recorded.

In the second set of experiments, we are more interested
in evaluating the niching capability of the abovementioned
r3pso employing 4 different PSO update rules. We used 6
multimodal optimization test functions of different character-
istics (see Table I) for this purpose. f1 has 5 evenly spaced
global maxima, whereas f2 has 5 global maxima unevenly
spaced. f3 has 4 global peaks with 2 closer to each other
than the other 2. There are no local peaks. f4 has 2 global
peaks as well as 2 local peaks. f5 is the inverted Shubert
function, as shown in Figure 1. f5 2D function has 9 groups
of global optima, with 2 very close global optima in each
group. For n-dimensional Shubert function, there are n · 3n

global optima unevenly distributed. These global optima are
divided into 3n groups, with each group having n global
optima being close to each other. For f5 3D, there are 81
global optima in 27 groups; whereas for f5 4D, there are
324 global optima in 81 groups. f5 will pose a serious
challenge to any niching algorithm relying on a fixed niche
radius parameter. f6 the inverted Vincent function has 6n

global peaks, but unlike the regular distances between global
peaks in f5, in f6 global peaks have vastly different spacing
between them. Furthermore, f6 has no local peaks.

In the second set of experiments, we compared four
different r3pso variants employing the following four PSO
update rules:

• Constricted PSO (CPSO): as proposed by Clerc and
Kennedy in [17]. See equations (1) and (2).

• Bare-bones PSO (BPSO): as introduced by Kennedy in
[21]. See equation (3).

• Gaussian PSO (GPSO): as proposed by Secrest and
Lamont in [25].

• Cauchy and Gaussian PSO (CGPSO): as proposed in
this paper. See equation (4).

For r3pso if any particle’s �xi exceeds the boundary of the
variable range, its position is reset to a value which is twice
of the right (or left boundary) subtracting �xi. For both GPSO
and CGPSO, the probability p was set to 0.5.

B. Performance Measures

To measure the performance of the lbest niching PSO
using different update rules, we first allow a user to specify
a level of accuracy (typically 0 < ε ≤ 1), i.e., how close
the computed solutions to the known global peaks are. If
the difference between a found solution and a known global
peak is below the specified ε, and it is sufficiently different
from other already found global peaks, then we can consider
a new peak is found. For only the purpose of measuring
performance, we make use of an algorithm for identifying
species seeds [15], in order to check if a niching algorithm
has located all known global peaks. Basically at the end of a
run, this algorithm is invoked to first sort all individuals in the
population in decreasing order of fitness values. With a pre-
specified niche radius, we iterate from the best-fit individual
on the sorted list, to check if any other individuals are within
the niche radius from it. If so, they are tagged as belonging to
the same species. These individuals are then excluded from
the sorted list. The next best-fit individual on the sorted list
is then considered, and the above process is repeated. The
algorithm terminates when there is no individual left.

As long as the niche radius r is set to a value not greater
than the distance between 2 closest global peaks, individuals
on two found global peaks would be treated as from differ-
ent species. The species seeds identification algorithm will
produce a list of best and also sufficiently different solutions
(i.e., species seeds) based on the pre-specified niche radius
and a given list of all personal best positions. For the test
functions in Table I, since the exact number of global peaks
is known a priori, and also roughly the distance between 2
closest global peaks, a niching algorithm’s performance can
be measured according to two performance measures - 1)
success rate or 2) peak ratio, before reaching a pre-specified
maximal number of evaluations and accuracy threshold ε.
Here, success rate measures a niching algorithm’s perfor-
mance in terms of the percentage of runs in which all global
optima are successfully located, whereas peak ratio measures
the percentage of peaks (i.e., optima) located out of the total
number of known global peaks in a run. To do this, we only
need to check species seeds, which are the dominant particles
sufficiently different from each other. At the end of each run,
we can determine if all global peaks are found by checking
all species seeds to see if they are close enough to all known
global peaks.

VII. RESULTS AND DISCUSSION

A. Competent optimizers

As shown in Tables II and III, even with just a small pop-
ulation size of 3, CGPSO outperformed significantly other
PSO variants on both the unimodal Sphere and the multi-
modal Rastrigin functions. In particular, CGPSO’s scalability
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TABLE I

TEST FUNCTIONS.

Name Test function Range Number of
global peaks

Equal Maxima [26] f1(x) = sin6(5πx). 0 ≤ x ≤ 1 5
Uneven Maxima [26] f2(x) = sin6(5π(x3/4 − 0.05)). 0 ≤ x ≤ 1 5
Himmelblau’s function [26] f3(x, y) = 200− (x2 + y − 11)2 − (x + y2 − 7)2. -6 ≤ x ≤ 6 4

Six-Hump Camel Back [27] f4(x, y) = −4[(4− 2.1x2 + x4

3
)x2 + xy + (−4 + 4y2)y2]. −1.9 ≤ x ≤ 1.9;

−1.1 ≤ y ≤ 1.1 2
Inverted Shubert function [13] f5(x1, x2, . . . , xn) = −∏n

i=1

∑5
j=1 jcos[(j + 1)xi + j]. −10 ≤ xi ≤ 10 n · 3n

Inverted Vincent function [28] f6(�x) = 1
n

∑n
i=1 sin(10 · log(xi)) 0.25 ≤ xi ≤ 10 6n

TABLE II

THE RESULTS OF PSO VARIANTS USING 4 DIFFERENT UPDATE RULES OVER 50 RUNS (MEAN AND STANDARD DEVIATION), ON THE STANDARD

SPHERE FUNCTION (THE RESULT OF THE BEST PERFORMING ALGORITHM IS HIGHLIGHTED IN BOLD).

Dimension Constricted PSO (CPSO) Bare-bones PSO (BPSO) Gaussian PSO (GPSO) Cauchy and Gaussian PSO (CGPSO)
2 1.55E-13 (1.09E-12) 4.26E+02 (934.69) 4.89E+02 (1148.49) 3.05E-4 (1.90E-03))
3 5.03E-02 (0.30) 1.04E+03 (1471.87) 5.82E+02 (1121.36) 1.17E-18 (5.49E-18)
5 1.30E+02 (350.94) 2.06E+03 (1949.06) 1.43E+03 (1566.20) 0.00E+00 (0.00E+00)
10 1.48E+03 (1855.46) 7.53E+03 (3871.42) 4.89E+03 (3046.55) 0.00E+00 (0.00E+00)
20 1.05E+04 (4881.15) 2.17E+04 (7431.87) 1.45E+04 (5814.24) 7.22E-130 (5.10E-129)
50 5.50E+04 (10629.20) 7.76E+04 (11861.87) 5.52E+04 (12790.46) 7.10E+00 (40.80)
100 1.54E+05 (16667.09) 1.82E+05 (20800.63) 1.51E+05 (20992.62) 7.11E+02 (1635.91)

TABLE III

THE RESULTS OF PSO VARIANTS USING 4 DIFFERENT UPDATE RULES OVER 50 RUNS (MEAN AND STANDARD DEVIATION), ON THE STANDARD

RASTRIGIN FUNCTION (THE RESULT OF THE BEST PERFORMING ALGORITHM IS HIGHLIGHTED IN BOLD).

Dimension Constricted PSO (CPSO) Bare-bones PSO (BPSO) Gaussian PSO (GPSO) Cauchy and Gaussian PSO (CGPSO)
2 1.75E+00 (2.77) 3.39E+00 (4.16) 4.30E+00 (5.40) 2.81E+00 (4.32)
3 4.86E+00 (4.64) 8.46E+00 (5.81) 7.46E+00 (6.80) 4.46E+00 (4.49)
5 1.15E+01 (7.83) 1.79E+01 (10.42) 1.50E+01 (8.45) 8.24E+00 (6.75)
10 4.44E+01 (15.30) 4.87E+01 (15.57) 4.09E+01 (14.18) 1.96E+01 (9.47)
20 1.22E+02 (21.99) 1.46E+02 (26.64) 1.21E+02 (26.40) 3.30E+01 (13.18)
50 4.41E+02 (45.77) 4.90E+02 (50.37) 4.17E+02 (52.36) 4.76E+01 (43.66)
100 1.10E+03 (74.42) 1.17E+03 (72.93) 1.05E+03 (73.95) 4.46E+02 (131.85)

with increasing dimensions is far superior than any other
PSO variants. Comparing GPSO and CGPSO, it is strikingly
clear that using a combination of Cauchy and Gaussian
distributions is far more effective than using only Gaussian
distribution alone for sampling. These results provide a
strong argument to employ CGPSO in the lbest niching PSO
algorithm, in order to further enhance its niching capability
in particular on higher dimensional multimodal problems.

B. Different PSO update rules

Table V presents the success rates on f1 to f5. A popula-
tion size of 50 was used for f1 to f4, and a population of 500
was used for f5 inverted Shubert 2D, since it has 18 global
peaks and numerous local peaks. The r3pso variants were run
until all known global optima were found, or a maximum of
100,000 evaluations was reached. All results were averaged
over 50 runs. In order to measure more accurately each r3pso
niching variant’s ability in forming niches in the vicinities of
all known global optima, for f1 to f4, we set ε to 0.0001,
and r to 0.01. In other words, a solution is found if it is less

than ε = 0.0001 from a known global peak’s fitness, and at
the same time not within the radius r of 0.01 in the search
space of any other solutions already found. Table IV shows
for each function the ε and r values used for performance
measurement, estimated known global peak heights (which
were obtained empirically), as well as the number of known
global peaks (from Table I). Note that these values were
purely used for the purpose of measuring performance over
these test function, though in real-world scenarios we may
not always have access to this sort of information.

As Table V shows, in terms of success rate, all 4 PSO
variants performed similarly on f1, f2 and f4, but both CPSO
and CGPSO performed better than Bare-bones PSO and
GPSO on f3. f3 has 2 global optima very close to each other,
which may cause some difficulties to the Bare-bones PSO
and GPSO. Figure 4 shows r3pso easily located all 5 global
peaks on Deb’s f1 to f2. Note that the convergence to the
5 peaks was stable, though a few particles always oscillated
around. For the more challenging f5 Inverted Shubert 2D
(see Figure 1, a population size of 500 was used, and each
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Fig. 4. Results of running r3pso (with a population size of 50) on f1 to f2 after 100 iterations. Note that nBest denotes �pn, pBest for �pi, and current
for �xi. A line is drawn from �pi and its associated �xi.

TABLE IV

PARAMETERS USED FOR PERFORMANCE MEASUREMENT.

fnc ε r Peak height no. peaks
f1 0.0001 0.01 1.0 5
f2 0.0001 0.01 1.0 5
f3 0.0001 0.01 200.0 4
f4 0.0001 0.01 1.03163 2

f5 (2D) 0.1 0.5 186.731 18
f5 (3D) 0.1 0.5 2709.0935 81
f5 (4D) 0.1 0.5 39303.55 324
f6 (2D) 0.01 0.1 1.0 36
f6 (3D) 0.01 0.1 1.0 216
f6 (4D) 0.01 0.1 1.0 1296

TABLE V

SUCCESS RATES ON f1 TO f5 (1D OR 2D).

fnc CPSO Bare-bones PSO GPSO CGPSO
f1 94% 100% 98% 96%
f2 92% 90% 94% 98%
f3 54% 24% 28% 44%
f4 100% 98% 100% 100%

f5 (2D) 98% 62% 76% 98%

algorithm was allowed to run for a maximum of 200,000
evaluations before termination. On f5, Table V shows that
both CPSO and CGPSO performed better than the other PSO
variants. Figure 5 shows a series of snapshots of a typical
run of r3pso on f5 2D. Multiple niches emerged from the
run, which are clearly visible.

For f5 3D, f6 2D, and 3D, a population size of 500 was
used, the maximal number of evaluations was set to 200,000.
But for f5 4D and f6 4D, we doubled the population size
to 1000 and allowed a maximum of 400,000 evaluations.
Table VI shows the results on averaged peak ratio (instead
of success rate), as most of the time the algorithms were
unable to find all the peaks.

A general observation can be made from Table VI is that
as the dimensionality increases (which also results in more
global peaks present in the landscapes), the performances
of all PSO variants decline quite dramatically. This suggests
that there is clearly a need to design more competent niching

TABLE VI

AVERAGED PEAK RATIOS ON f5 3D - 4D AND f6 2D - 4D.

fnc CPSO Bare-bones PSO GPSO CGPSO
f5 (3D) 0.62 0.40 0.45 0.31
f5 (4D) 0.24 0.09 0.11 0.04
f6 (2D) 0.95 0.77 0.80 1.00
f6 (3D) 0.25 0.24 0.25 0.35
f6 (4D) 0.10 0.10 0.10 0.12

algorithms that are more scalable. On these more challenging
functions with dimensionality up to 4, we can also observe
that CGPSO outperformed other variants including CPSO on
f6 2D, 3D and 4D, but did not on f5 3D and 4D. f6 Inverted
Vincent 2D - 4D function have only global peaks present,
whereas f5 Inverted Shubert 3D and 4D function have 81
and 324 global peaks respectively, as well as numerous local
peaks. This tells us that CGPSO still has the tendency of
getting struck on local optima, while CPSO seems to fare
much better in this regard.

Having said the above, CGPSO performed well on land-
scapes where there are many global peaks but very few or no
local peaks. It seems that sampling using a combination of
Cauchy and Gaussian distributions work better on this sort
of fitness landscapes. A good example is on f6 2D, where
CGPSO was able to find all 36 peaks for all 50 runs (i.e.,
the averaged peak ratio is 1.0).

VIII. CONCLUSIONS

A niching EA algorithm typically subdivides a population
into multiple niches, each operating as an independent EA
with a relatively small population size. However, traditional
EAs often do not work well with a small population size,
therefore we argue the importance of employing a more
competent optimizer in order for a niche to work well. This
paper examines the effects of incorporating several different
PSO update rules into a lbest PSO niching algorithms.
Among these variants, we also proposed a new PSO variant
CGPSO which was shown empirically more competent than
several other existing PSO variants, when a very small
population size was used. By sampling using both Cauchy
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Fig. 5. The niching behaviour of the r3pso (with a population size of 500) on the f5 Inverted Shubert 2D function over a run.

and Gaussian distributions, CGPSO was shown to perform
better than the more widely-used Constricted PSO (CPSO)
on multimodal functions where there are many global peaks
but fewer or no local peaks.
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