
150 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

Niching Without Niching Parameters: Particle
Swarm Optimization Using a Ring Topology

Xiaodong Li, Senior Member, IEEE

Abstract—Niching is an important technique for multimodal
optimization. Most existing niching methods require specification
of certain niching parameters in order to perform well. These
niching parameters, often used to inform a niching algorithm
how far apart between two closest optima or the number of
optima in the search space, are typically difficult to set as
they are problem dependent. This paper describes a simple yet
effective niching algorithm, a particle swarm optimization (PSO)
algorithm using a ring neighborhood topology, which does not
require any niching parameters. A PSO algorithm using the ring
topology can operate as a niching algorithm by using individual
particles’ local memories to form a stable network retaining the
best positions found so far, while these particles explore the
search space more broadly. Given a reasonably large population
uniformly distributed in the search space, PSO algorithms using
the ring topology are able to form stable niches across different
local neighborhoods, eventually locating multiple global/local
optima. The complexity of these niching algorithms is only O(N),
where N is the population size. Experimental results suggest
that PSO algorithms using the ring topology are able to provide
superior and more consistent performance over some existing
PSO niching algorithms that require niching parameters.

Index Terms—Evolutionary computation, multimodal opti-
mization, niching algorithms, particle swarm optimization (PSO),
swarm intelligence.

I. Introduction

STOCHASTIC optimization algorithms such as evolution-
ary algorithms (EAs) and more recently particle swarm

optimization (PSO) algorithms have shown to be effective
and robust optimization methods for solving difficult opti-
mization problems [1]. The original and many existing forms
of EAs and PSOs are usually designed for locating a single
global solution. These algorithms typically converge to one
final solution because of the global selection scheme used.
However, many real-world problems are “multimodal” by
nature, that is, multiple satisfactory solutions exist. For an
optimization problem with multiple global and local optima,
it might be desirable to locate all global optima and/or some
local optima that are also considered as being satisfactory.
Numerous techniques have been developed in the past for
locating multiple optima (global or local). These techniques

Manuscript received May 13, 2008; revised March 2, 2009. Current version
published January 29, 2010.

The author is with the School of Computer Science and Information
Technology, Royal Melbourne Institute of Technology, Melbourne 3001,
Australia (e-mail: xiaodong.li@rmit.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2009.2026270

are commonly referred to as “niching” methods. A niching
method can be incorporated into a standard EA to promote and
maintain formation of multiple stable subpopulations within
a single population, with an aim to locate multiple optimal
or suboptimal solutions. Niching methods are of great value
even when the objective is to locate a single global optimum.
Since a niching EA searches for multiple optima in parallel,
the probability of getting trapped on a local optimum may be
reduced.

The success of EAs in real-world applications has also been
accompanied by their uses of niching methods. For example,
classification problems in machine learning can be mapped to
multimodal optimization problems, and hence be treated by
an EA employing a niching method [2]. A niching GA was
also applied to the problem of the inversion of teleseismic
waves [3]. In evolutionary multiobjective optimization, niching
methods are often used to maintain solution diversity [4].

Many niching methods have been proposed in the EA
literature. Some representative examples include crowding [5],
deterministic crowding [6], fitness sharing [7], derating [8], re-
stricted tournament selection [9], parallelization [10], cluster-
ing [11], clearing [12], and speciation [13]. Niching methods
have also been incorporated into PSO variants to enhance their
ability to handle multimodal optimization problems including
NichePSO [14] and SPSO [15], [16]. Most of these niching
methods, however, have difficulties that need to be overcome
before they can be applied successfully to real-world multi-
modal problems. Some identified issues include the following:

1) Reliance on prior knowledge of some niching parame-
ters, which must be set with some optimal values so that
the optimization algorithm can perform well. A common
use of a niching parameter is to tell how far apart two
closest optima are. A classic example is the sharing
parameter σshare in fitness sharing [7]. Other uses of
niching parameters include crowding factor in crowding
method [5], the window size w in restricted tournament
selection [9], or the number of clusters in k-means
clustering methods [11], [17]. Further discussion on the
issue of niching parameters is provided in Section III.

2) Difficulty in maintaining found solutions in a run. Some
found solutions might be lost in successive generations.
For example, the original De Jong’s crowding has
been shown unable to maintain all found peaks during
a run [6]. A good niching algorithm should be able
to form and maintain stable subpopulations over the
run.

1089-778X/$26.00 c© 2010 IEEE

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 151

3) In traditional niching EAs, it was observed that
crossover between two fit individuals from different
niches could produce far less fit offspring than the
parents [2]. How can we minimize such detrimental
crossover operations across different niches?

4) Some existing niching methods are designed only for
locating all global optima, while ignoring local optima.
Examples include the sequential niche GA (SNGA) [8],
clearing [12], SCGA [13], NichePSO [14], and SPSO
[15], [16]. However, it might be desirable to obtain
both global and local optima in a single run.

5) Higher computational complexity. Most of the niching
algorithms use global information calculated from the
entire population, therefore require at least O(N2)
computational complexity (where N is the population
size). Many niching algorithms suffer from this problem,
probably only with the exception of deterministic
crowding (DC) [6]. However, several studies found that
DC required a higher number of evaluations [18] and
was unable to maintain a proportional distribution of
individuals across niches [19].

To tackle the above-mentioned issues, this research aims to
develop niching algorithms that:

1) do not require specification of any niching parameters
such as how far apart between two optima, or the number
of optima;

2) are able to locate multiple optima and maintain these
found optima until the end of a run;

3) are able to locate multiple global optima, as well as local
optima, as required by a user;

4) have low computational complexity.

Two important criteria by which we can measure the success
of a niching method are whether a niching algorithm can find
all desired optima including global and/or local optima, and
whether it can maintain multiple subpopulations stably over a
run.

This research to develop niching algorithms without niching
parameters is strongly motivated by the recent development
of particle swarm optimization (PSO) [1], [20], [21]. PSO
has some attractive characteristics that make it an ideal opti-
mization algorithm to induce niching behaviors. In a canonical
PSO, each particle in the population knows its current position
in the search space, as well as the best position it has visited
so far (so called personal best position). As described in more
detail later on, the notion of memory and the viewpoint of a
swarm constituting an explorer-swarm and a memory-swarm
play an important role in the niching PSO algorithms described
in this paper. The basic idea is the following—the personal
bests of all particles in the population can be used to form a
memory-swarm providing a stable network retaining the best
positions found so far by the population, while the current
positions of particles act as parts of an explorer-swarm to
explore broadly around the search space. Instead of using a
single global best, each particle is attracted toward a fitter local
best only within its vicinity of the search space. As search con-
tinues, multiple niches (or subpopulations) are formed around
optima in parallel. Eventually multiple optima are found. Since

niches are formed naturally, there is no need to specify any
niching parameter in these kinds of niching methods.

This paper describes an attempt to eliminate the need of
specifying any niching parameters. We demonstrate that by
mapping a PSOs population onto a ring topology, its initial
population can be naturally divided into multiple subpop-
ulations, each operating as a separate PSO with its own
local neighborhood best. Since these subpopulations are only
loosely connected, the speed of convergence is greatly re-
duced. Most importantly, we demonstrate that the ring topol-
ogy based PSO can be used as an effective niching method
for maintaining stable subpopulations (or niches); therefore, it
can reliably locate multiple global and/or local optima.

Using a ring topology for PSO algorithms is not new. In
fact, it was described in one of the first papers on PSO
by Eberhart and Kennedy [22]. Several more recent studies
include [21], [23]. However, the ring topology based PSO
algorithms were primarily used in these studies with an aim
to locate a single global optimum, rather than multiple global
optima (which is the optimization goal of a niching method). It
was found in several recent studies that lbest PSOs (i.e., PSOs
employing some local neighborhood topology) were unable to
induce stable niching behaviors or were inefficient in doing so
[18], [24]. This paper differs from these previous studies by
showing that ring topology based PSO algorithms are capable
of inducing stable niching behaviors and they are robust and
effective niching methods. In particular, one key advantage of
such PSO niching algorithms is that there is no need to specify
any niching parameters that are often required in traditional
niching methods.

The paper is organized as follows. Section II provides
a review of the classic niching methods, followed by Sec-
tion III discussing the issue of niching parameters. Section IV
then gives an introduction to PSO and existing PSO niching
methods. Furthermore, we describe the notion of memory-
swarm and explorer-swarm, which have direct relevance to
the ring topology based PSO niching algorithms described in
this paper. Section V discusses first why the ring topology is
appropriate and then describes in detail the ring topology based
PSO niching algorithms. Convergence behaviors of these nich-
ing algorithms are also studied in this section. Section VI
describes the experimental setup and performance measures,
followed by detailed numerical results in Section VII. Finally,
Section VIII gives the concluding remarks.

II. Revisiting Classic Niching Methods

Just like EAs themselves, the notion of niching is inspired
by nature. In natural ecosystems, individual species must
compete to survive by taking on different roles. Different
species evolve to fill different “niches” (or subspaces) in the
environment that can support different types of life. Instead
of evolving a single population of individuals indifferently,
natural ecosystems evolve different species (or subpopulations)
to fill different niches. The terms species and niche are
sometimes interchangeable.

Niching methods were introduced to EAs to allow mainte-
nance of a population of diverse individuals so that multiple

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

152 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

optima within a single population can be located. As Mahoud
described [2], “A niching method must be able to form
and maintain multiple, diverse, final solutions, whether these
solutions are of identical fitness or of varying fitness. A
niching method must be able to maintain these solutions
for an exponential to infinite time period, with respect to
population size.” Cavicchio’s dissertation [25] was probably
one of the first studies attempting to induce niching behavior in
a GA. Cavicchio proposed several schemes in which offspring
directly replaced the parents that produce them. These so-
called preselection schemes were later generalized by De Jong
in a scheme called crowding. De Jong’s crowding was initially
designed only to preserve population diversity. In crowding,
an offspring is compared to a small random sample taken
from the current population, and the most similar individual
in the sample is replaced. A parameter crowding factor (CF)
is commonly used to determine the size of the sample. In [6],
Mahfoud carefully examined both crowding and preselection
and found that De Jong’s crowding method was unable to
maintain more than two peaks of a five peaks fitness landscape
due to stochastic replacement errors. Mahfoud then made sev-
eral modifications to crowding to reduce replacement errors,
restore selection pressure, and also eliminate the crowding fac-
tor parameter. The resulting algorithm, deterministic crowding,
was able to locate and maintain multiple peaks.

Another approach to induce niching behavior in an EA
is fitness sharing, which is probably the most widely used
niching method. The sharing concept was originally intro-
duced by Holland [26] and then adopted by Goldberg and
Richardson as a mechanism to divide the population into
different subpopulations [7] according to the similarity of the
individuals in the population. Fitness sharing was inspired by
the “sharing” concept observed in nature, where an individual
has only limited resources that must be shared with other
individuals occupying the same niche in the environment.
A sharing function is often used in an EA to degrade an
individual’s fitness based on the presence of other neighboring
individuals. During selection, many individuals in the same
neighborhood would degrade each other’s fitness, thereby
limiting the number of individuals occupying the same niche.
For example, if there are two individuals, i and j, and the
distance between the two is dij , then a sharing function
sh(dij) = 1− (dij

σshare
)α can be used to compute the shared value

for both i and j, if dij ≤ σshare (where σshare is the estimated
niche radius), and this value is added to their niche counts mi

and mj respectively. If dij > σshare, then i and j do not degrade
each other’s fitness, i.e., sh(dij) = 0. For an individual i, the
niche count is calculated as mi =

∑N
j=1 sh(dij), i.e., the sum

of its shared values computed over the population of size N.
Finally the shared fitness value for individual i is fi

mi
. Although

fitness sharing has proven to be a useful niching method, it
has been shown that there is no easy task to set a proper
value for the niche radius σshare and the scaling factor α [27],
[28], without prior knowledge of the problems. For many real-
world problems, it is not uncommon that such domain specific
knowledge is often unavailable.

Apart from the above, many other niching methods have
also been developed over the years, including derating [8],

deterministic crowding [6], restricted tournament selection
[9], parallelization [10], clustering [11], clearing [12] and
speciation [13]. In a recent work, Singh and Deb [29]
proposed a modified clearing method where individuals not
qualified as the best are redistributed to 1.5 times σclear or
more distance away. The algorithm showed good performance
compared with several classic niching EAs. However, the
performance of modified clearing still depends on how well
σclear is set. Niching methods have also been developed for
PSOs, such as NichePSO [14] and SPSO [16]. More dis-
cussion on existing PSO niching algorithms will be given in
Section IV-A.

III. Problems with Niching Parameters

Most existing niching methods, however, suffer from a
serious problem—their performance is subjected heavily to
some niching parameters which are often difficult to set by
a user; for example, the sharing parameter σshare in fitness
sharing [7], the species distance σs in species conserving GA
(SCGA) [13], the distance measure σclear in clearing, [12] and
the species radius rs in the speciation-based PSO (SPSO) [16].
Although different terminologies are used, what is in common
is that they all describe some kind of distance value by which
a niche can be defined. Therefore, in this paper, these terms
will be commonly referred to as niche radius.

Fig. 1 shows two examples of challenging fitness landscapes
that would be difficult for any niching algorithms using a
uniform niche radius value. The inverted Shubert 2-D function
has nine pairs of global peaks and numerous local peaks.
Within each pair, two global peaks are very close to each other
but peaks from different pairs are further away. The inverted
Vincent 2-D function has 36 global peaks with distances be-
tween these peaks varying greatly. A niching algorithm relying
on a fixed niche radius value to determine an individual’s
membership in a niche would have a significant difficulty to
work properly on such a landscape. To capture all peaks, a
niching EA would have to set its niche radius extremely small
so that the closest two peaks can be distinguished. However,
doing so would form too many small niches, with possibly
too few individuals in each niche. As a result, these niches
tend to prematurely converge. On the other hand, if the niche
radius is set too large, peaks with a distance between them
smaller than this value will not be distinguished. In short, it
is likely that there is no optimal value for the niche radius
parameter. Dependence on a fixed niche radius is a major
drawback for niching methods that rely on such a parameter.
For example, on the inverted Shubert 2-D function, SCGA had
to be tuned with a radius value of 0.98 and a population size
of 1000 in order to locate all 18 global peaks reliably [13]. For
Shubert 3-D, SCGA used a population size of 4000 in order
to locate all 81 global peaks. As the dimension increased to
4, SCGA was only able to identify groups of global peaks,
but not individual global optima within each group. Another
similar niching algorithm SPSO [16] suffers from the same
problem.

In an early work, Jelasity and Dombi [30] attempted to
tackle the niche radius problem where they observed that a

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 153

(a) (b)

Fig. 1. Challenging functions for niching methods using a uniform niche radius value. (a) Inverted Shubert 2-D function. (b) Inverted Vincent 2-D function.

niching method such as fitness sharing could not distinguish
optima that are much closer to each other than the provided
niche radius value. Instead of using a fixed niche radius,
Jelasity and Dombi proposed to use a radius function and a
cooling procedure similar to simulated annealing. However,
their method called GAS (S for species) introduced several
new parameters that have to be specified by a user, such as
the radius function R, the number of evaluations, the maximal
number of species, and the number of steps for cooling. It
seems that for the user to specify these parameters is also
rather challenging.

Shir and Bäck [31] also attempted to address the problem
of using a fixed niche radius. Inspired by the notion of self-
adaptation in evolutionary strategy, in Shir and Bäck’s CMA-
ES niching algorithm, each individual is allowed to adapt its
own niche radius value along with other adaptive strategy
parameters. The adaptation of individual niche radii provided
better performances than those niching methods using a fixed
niche radius. The downside of their method is again the
introduction of some new parameters, which may affect the
performance of the algorithm, e.g., the number of expected
optima and learning coefficients.

Recent development of PSO niching methods by Bird and
Li [32], [33] aimed to reduce the sensitivity of the SPSO to
the niche radius values. However, either this parameter still
remains (though made more robust), or several new parameters
are introduced.

Sometimes niching parameters can be under different dis-
guises, such as the crowding factor in crowding method [5],
the window size w in restricted tournament selection [9], or
the number of clusters in k-means clustering methods [11],
[17]. The performance of these EAs depends very much on
how these parameters are specified. Unfortunately, in many
real-world problems such prior knowledge is often unavailable.
It would be desirable if a user can be completely freed from
specifying any niching parameters.

In this paper, we will demonstrate that a PSO using a ring
topology is able to induce stable niching behavior without
using any niching parameters. Furthermore, the proposed
niching method does not introduce new parameters. Therefore,
it offers distinct advantages over the above-mentioned niching
methods.

IV. PSO

PSO is a swarm intelligence technique originally developed
from studies of social behaviors of animals or insects, e.g.,
bird flocking or fish schooling [1]. Since its inception in 1995
[1], PSO has gained increasing popularity among researchers
and practitioners as a robust and efficient technique for solving
complex and difficult optimization problems.

Like an EA, PSO is population-based. However, PSO differs
from EAs in the way it manipulates each particle (i.e., a candi-
date solution) in the population. Instead of using evolutionary
operators such as crossover and mutation, PSO modifies each
particle’s position in the search space, based on its velocity,
some previous best positions it has found so far, and previous
best positions found by its neighbors.

In a canonical PSO, the velocity of each particle is modified
iteratively by its personal best position (i.e., the position giving
the best fitness value so far), and the position of best particle
from the entire swarm. As a result, each particle searches
around a region defined by its personal best position and the
position of the population best. Let us use �vi to denote the
velocity of the ith particle in the swarm, �xi its position, �pi

the best position it has found so far, and �pg the best position
found from the entire swarm (so-called global best). �vi and �xi

of the ith particle in the swarm are updated according to the
following two equations [34]:

�vi ← χ(�vi + �R1[0, ϕ1]⊗ (�pi − �xi) +
�R2[0, ϕ2]⊗ (�pg − �xi)) (1)

�xi ← �xi + �vi (2)

where �R1[0, ϕ1] and �R2[0, ϕ2] are two separate functions
each returning a vector comprising random values uniformly
generated in the ranges [0, ϕ1] and [0, ϕ2] respectively. ϕ1 and
ϕ2 are commonly set to ϕ

2 (where ϕ is a positive constant).
The symbol ⊗ denotes point-wise vector multiplication. A
constriction coefficient χ is used to prevent each particle from
exploring too far away in the search space, since χ applies
a dampening effect to the oscillation size of a particle over
time. This “Type 1” constricted PSO suggested by Clerc and
Kennedy [34] is often used with χ set to 0.7298, calculated
according to χ = 2∣∣2−ϕ−

√
ϕ2−4ϕ

∣∣ , where ϕ = ϕ1 + ϕ2 = 4.1.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

154 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

Two common approaches of choosing �pg in (1) are known
as gbest and lbest methods. In a gbest PSO, the position
of each particle is influenced by the best-fit particle from
the entire population, whereas a lbest PSO only allows each
particle to be influenced by the best-fit particle chosen from its
neighborhood. The lbest PSO with a neighborhood size set to
the population size is equivalent to a gbest PSO. Kennedy
and Mendes studied PSOs with various population topolo-
gies [23], and have shown that certain population topologies
could give superior performance over certain optimization
functions.

A. PSO Niching Methods

Several niching methods have been developed within the
framework of a PSO. Parsopoulos and Vrahitis [35] introduced
a method in which a potentially good solution is isolated once
it is found, then the fitness landscape is “stretched” to keep
other particles away from this area of the search space [36],
similar to the derating method used in SNGA [8]. The isolated
particle is checked to see if it is a global optimum, and if it
is below the desired accuracy, a small population is generated
around this particle to allow a finer search in this area. The
main swarm continues its search in the rest of the search
space for other potential global optima. With this modification,
their PSO was able to locate all the global optima of some
selected test functions successfully. However, this stretching
method introduces several new issues, including the difficulty
in specifying several new parameters used in the stretching
function, and the risk of introducing false optima as a result
of stretching.

Brits and van den Bergh [14] proposed NichePSO,
which further extended Parsopoulos and Vrahitis’s model. In
NichePSO, multiple subswarms are produced from a main
swarm population to locate multiple optimal solutions in the
search space. Subswarms can merge together, or absorb parti-
cles from the main swarm. NichePSO monitors the fitness of
a particle by tracking its variance over a number of iterations.
If there is little change in a particle’s fitness over a number
of iterations, a subswarm is created with the particle’s closest
neighbor. The issue of specifying several user parameters still
remains. The authors also proposed nbest PSO in [37], where
a particle’s neighborhood best is defined as the average of the
positions of all particles in its neighborhood. By computing
the Euclidean distances between particles, the neighborhood
of a particle can be defined by its k closest particles, where
k is a user-specified parameter. Obviously, the performance of
nbest PSO depends on how this parameter is specified.

Another niching PSO algorithm inspired by the idea of
species, Speciation-based PSO (SPSO), was proposed in [15],
[16]. A procedure for determining species and the dominant
particles in these species was adopted from [13]. Each species
and its corresponding species seed (i.e., the dominant particle)
form a separate subpopulation that can be run as a PSO itself.
Since species are adaptively formed around different optima,
over successive iterations multiple global optima can be found
in parallel. In SPSO, a niche radius must be specified in
order to define the size of a niche (or species). Since this
knowledge might not be always available a priori, it might be

difficult to apply this algorithm to some real-world problems.
Recently, two PSO niching algorithms aiming to improve the
robustness to such a niching parameter were proposed in [32],
[33]. In [32], population statistics were used to adaptively
determine the niching parameters during a run, whereas in
[33], a time-based convergence measure was used to directly
enhance SPSOs’ robustness to the niche radius value. These
extensions to SPSO made it more robust; however, the need
to specify niching parameters (such as the niche radius)
remains.

A PSO based on fitness-Euclidean distance ratio (FER-PSO)
was recently proposed for multimodal optimization [38]. In
FER-PSO, personal bests of the particles are used to form
a memory-swarm to provide a stable network retaining the
best points found so far by the population, while the current
positions of particles act as parts of an explorer-swarm to
explore broadly around the search space. Instead of using a
single global best, each particle is attracted toward a fittest-
and-closest neighborhood point that is identified via computing
its FER value. FER-PSO is able to reliably locate all global
optima, given that the population size is sufficiently large.
One noticeable advantage is that FER-PSO does not require
specification of niching parameters. Nevertheless, it introduces
a parameter α which needs to be determined by the upper and
lower bounds of the variables. Since the algorithm uses global
information, the complexity of the algorithm is O(N2) (where
N is the population size).

In [39], a vector-based PSO was developed to combat the
issue of having to specify parameters. This algorithm depends
on a niche radius defined by the distance from the current
particle to the closest particle that moves in an opposite
direction. The distance calculation can be expensive since
every particle has to be compared with all others, therefore
the complexity is O(N2). In addition, only simple 1 or 2-D
test functions were used in this paper.

B. Can A More Restrictive Communication Topology Help?

It has been observed by many that different communication
topologies can be used to control the speed of information
propagation in an EA population. More restrictive communi-
cation topologies such as ring, star, or von Neumann have
been shown to be effective in slowing down the convergence
speed of an EA, hence alleviating the problem of premature
convergence. However, it was also noted by some that such
restrictive topologies cannot induce stable niching bebaviours,
as eventually the population would still converge to a single
solution in the presence of multiple equally good solutions. For
example in [40], it was observed that spatially structured EAs
(fine-grained or coarse-grained), where individuals of a popu-
lation are mapped onto some communication topology, often
help maintain a better population diversity, but they did not
prevent the population from converging to a single optimum
eventually. Similarly, mating restriction, where mating among
similar individuals in the population is restricted, though can
produce temporary species, but competition between species
will eventually eliminate all but one best-fit species. As a re-
sult, mating restriction is not effective in maintaining multiple
subpopulations [41]–[43].

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 155

Fig. 2. (a) Ring topology used in a conventional EA. Each member interacts only with its immediate left and right neighbors, with no local memory used.
(b) Graph of influence for a lbest PSO using the same ring topology [[21], p.89]. Each particle possesses a local memory. (c) The same as (b) but also
showing the overlapping subpopulations, each consisting of a particle and its two immediate neighbors, and their corresponding memories.

In the empirical studies carried out in [18], [24], it was
also found that lbest PSO algorithms with restricted local
neighborhood interactions were unable to form stable niches
or were very inefficient in doing so.

We will demonstrate in the following sections that an lbest

PSO using a ring topology, in fact, is able to induce stable
niching behaviors. One possible explanation of the traditional
EAs’ inability to induce niching behavior is that these EAs do
not allow individuals to have memory, more specifically local
memory. In contrast, a lbest PSO is able to do so because each
particle possesses local memory (via its personal best).

C. Memory-Swarm Versus Explorer-Swarm

In PSO, interactions among particles play an important role
in particles’ behavior. A distinct feature of PSO (which is dif-
ferent from many EAs) is that each particle carries a memory
of its own, i.e., its personal best. We can never underestimate
the significance of using local memory. As remarked by Clerc
in [21], a swarm can be viewed as comprising of two sub-
swarms according to their differences in functionality. The
first group, explorer-swarm, is composed of particles moving
around in large step sizes and more frequently, each strongly
influenced by its velocity and previous position [see (1) and
(2)]. The explorer-swarm is more effective in exploring more
broadly the search space. The second group, memory-swarm,
consists of personal bests of all particles. This memory-swarm
is more stable than the explorer-swarm because personal bests
represent positions of only the best positions found so far by
individual particles. The memory-swarm is more effective in
retaining better positions found so far by the swarm as a whole.

Fig. 2(a) shows an example of a conventional EA using a
ring topology with a population of seven individuals. Fig. 2(b)
shows a swarm of seven particles using a ring topology, as
illustrated by using a “graph of influence” as suggested by
Clerc [21]. The “graph of influence” can be used to explicitly
demonstrate the source and receiver of influence for each
particle in a swarm. A particle that informs another particle
is called “informant.” Here the explorer-swarm consists of
particles as marked from numbers 1 to 7, and the memory-
swarm consists of particles as marked from m1 to m7. Each
particle has three informants, from two neighboring particles’

memories and its own memory. Each particle’s memory also
has 3 informants, from two neighboring particles and the
particle itself. In stark contrast, Fig. 2(a) shows that no local
memories are used in a conventional EA using a ring topology.

The idea of memory-swarm and explorer-swarm inspired us
to develop effective PSO niching algorithms. With an aim to
locate and maintain multiple optima, the more stable personal
best positions retained in the memory-swarm can be used as
the “anchor” points, providing the best positions found so far.
Meanwhile, each of these positions can be further improved
by the more exploratory particles in the explorer-swarm.

V. Niching PSOs using a Ring Topology

In this section, we propose to use a lbest PSO for niching.
We will demonstrate that even with a simple lbest PSO
employing a typical ring topology, stable niching behaviors
can be induced. Kennedy and Mendes [23] studied PSOs using
various population topologies including the ring topology.
Among all topologies, Kennedy and Mendes considered the
ring topology to be “the slowest, most indirect communi-
cation pattern,” whereas the gbest PSO represents the “the
most immediate communication possible.” This paper showed
communication topology could be used as an effective means
to control the speed of convergence for PSO population in
search for a single global optimum. However, using various
topologies for niching (i.e., aiming to locate multiple optima)
was not investigated in this paper.

As shown in Fig. 2(b), in a lbest PSO using a ring topology,
each particle interacts only with its immediate neighbors.
Clearly the ring topology is desirable for locating multiple
optima, because ideally we would like to have individuals to
search thoroughly in its local neighborhood before propagating
the information throughout the population. The consequence
of any quicker-than-necessary propagation would result in the
population converging onto a single optimum (like gbest PSO).
As we will demonstrate in the following sections, the ring
topology is able to provide the right amount of communication
needed for inducing stable niching behavior.

An implementation of such a lbest PSO using a ring
topology is provided in Algorithm 1. Note that we can

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

156 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

Randomly generate an initial population
repeat

for i = 1 to Population Size do
if fit(�xi) > fit(�pi) then �pi← �xi;

end
for i = 1 to Population Size do
�pn,i← neighborhoodBest(�pi−1, �pi, �pi+1);

end
for i = 1 to Population Size do

Equation (3);
Equation (2);

end
until termination criterion is met ;

Algorithm 1: The pseudocode of a lbest PSO using a ring
topology.

Fig. 3. Ring topology with each member interacting with its two immediate
neighbors (left and right). Local neighborhoods are overlapped with each
other. The ith particle’s neighborhood best (�pn,i) is the same as those of
its two immediate neighboring particles, but differs from those particles in
the neighborhoods further out.

conveniently use population indices to identify the left
and right neighbors of each particle. Here we assume a
“wrap-around” ring topology, i.e., the first particle is the
neighbor of the last particle and vice versa. The function
neighborhoodBest(.) returns the best-fit personal best in the
ith neighborhood, which is stored in �pn,i, representing the
neighborhood best for the ith particle. Equation (1) can now
be rewritten as the following:

�vi← χ(�vi + �R1[0, ϕ1]⊗ (�pi − �xi) +
�R2[0, ϕ2]⊗ (�pn,i − �xi)) (3)

where �pg in (1) has been replaced by �pn,i. The position of the
ith particle is now updated according (2) and (3). �pn,i is now
used as the local leader for the ith particle.

Different particles residing on the ring can have different �pn

(note that we use �pn to denote a nonspecific “neighborhood
best” here), and they do not necessarily converge into a single
point over time. As illustrated in Fig. 3, the ring topology
not only provides a mechanism to slow down information
propagation in the particle population, but also allows different
neighborhood bests to coexist (rather than becoming homoge-
neous) over time. This is because a particle’s �pn can only be
updated if there is a better personal best in its neighborhood,
but not by a better �pn of its neighboring particle.

Fig. 4. Example where �pn,i and �pi are situated on different peaks.

On a multimodal fitness landscape, a particle’s personal
best �pi and �pn,i could be either on the same peak or two
different peaks. If they are on the same peak, both �xi and
�pi are likely to catch up with the particle’s �pn,i, resulting in
�pi = �pn,i = �xi (as described in [24]). The particle’s velocity �vi

will be reduced and eventually the particle stops moving when
�vi equals 0. However, if �pi and �pn,i are sitting on two different
peaks, the behavior of the particle’s movement is dramatically
different. As shown in Fig. 4, the chance of moving this �pi

to the same peak as �pn,i is in fact very small, since �xi has
to move somewhere between the “gap” (as indicated by the
dashed lines) and be on the same peak as where �pn,i resides.
In addition, if �xi moves into the “gap” on the peak where
�pi resides, it will only further narrow this gap, resulting in
an even smaller chance of moving �pi onto the peak where
�pn,i resides. Consequently, after some iterations, �pn,i and �pi

tend to differ for the rest of the run. If this occurs, a scenario
like �pi = �pn,i = �xi may never arise. According to (2) and
(3), �vi will become unlikely to reduce to 0, resulting in the
particle oscillating between the �pi and �pn,i, due to the random
coefficients from �R1 and �R2. It is indeed possible that some
particles may never fully converge to any point for the entire
run. However, the population of �pn and �pi (i.e., memory-
swarm) do become stabilized over time, reaching to some
equilibrium state.

A. Convergence Behaviors

The convergence behaviors of the ring topology lbest PSO
can be illustrated by running it on a simple 1-D test function,
the equal maximum function, which has five evenly spaced
global peaks with a height of 1.0 (see f4 in Table I). For the
purpose of illustration, a small swarm of 10 particles was used
for the ring topology lbest PSO, which was then run for some
iterations until all �pn and personal bests stabilized. We employ
an index-position plot as a visualization tool to help analyze
the niching behavior of the lbest PSO. In an index-position
plot, the positions of particles are shown in a sequential
order as in its ring topology. This way one can observe
clearly how niches emerge from interactions among different
local neighborhoods. The index-position plot can be used
together with a variable-fitness plot to gain valuable firsthand
understanding of the niching behavior of the proposed lbest

PSO niching algorithms.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 157

TABLE I

Test Functions

Name Test Function Range Number of
Global Peaks

Two-Peak Trap [45] f1(x) =

{
160
15 (15− x) for 0 ≤ x < 15,

200
5 (x− 15) for 15 ≤ x ≤ 20.

0 ≤ x ≤ 20 1

Central Two-Peak Trap [45] f2(x) =

⎧⎨
⎩

160
10 x for 0 ≤ x < 10,

160
5 (15− x) for 10 ≤ x < 15,

200
5 (x− 15) for 15 ≤ x ≤ 20.

0 ≤ x ≤ 20 1

Five-Uneven-Peak Trap [13] f3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

80(2.5− x) for 0 ≤ x < 2.5,

64(x− 2.5) for 2.5 ≤ x < 5.0,

64(7.5− x) for 5.0 ≤ x < 7.5,

28(x− 7.5) for 7.5 ≤ x < 12.5,

28(17.5− x) for 12.5 ≤ x < 17.5,

32(x− 17.5) for 17.5 ≤ x < 22.5,

32(27.5− x) for 22.5 ≤ x < 27.5,

80(x− 27.5) for 27.5 ≤ x ≤ 30.

0 ≤ x ≤ 30 2

Equal Maxima [42] f4(x) = sin6(5πx). 0 ≤ x ≤ 1 5

Decreasing Maxima [42] f5(x) = exp

[
−2log(2) ·

(
x−0.1

0.8

)2
]
·sin6(5πx) 0 ≤ x ≤ 1 1

Uneven Maxima [42] f6(x) = sin6(5π(x3/4 − 0.05)). 0 ≤ x ≤ 1 5

Uneven Decreasing Maxima [42] f7(x) = exp

(
−2log(2) ·

(
x−0.08
0.854

)2
)
·sin6(5π(x3/4 − 0.05)). 0 ≤ x ≤ 1 1

Himmelblau’s function [42] f8(x, y) = 200− (x2 + y − 11)2 − (x + y2 − 7)2. −6 ≤ x ≤ 6 4

Six-Hump Camel Back [46] f9(x, y) = −4[(4− 2.1x2 + x4

3)x2 + xy + (−4 + 4y2)y2]. −1.9 ≤ x ≤ 1.9;
−1.1 ≤ y ≤ 1.1 2

Shekel’s foxholes [5] f10(x, y) = 500− 1

0.002+
∑24

i=0
1

1+i+(x−a(i))6+(y−b(i))6

where a(i) = 16(i mod 5)− 2), and b(i) = 16(�(i/5)� − 2) −65.536 ≤ x, y ≤ 65.535 1

Inverted Shubert function [13] f11(�x) = −
∏n

i=1

∑5
j=1 jcos[(j + 1)xi + j]. −10 ≤ xi ≤ 10 n · 3n

Inverted Vincent function [31] f12(�x) = 1
n

∑n

i=1 sin(10 · log(xi)) 0.25 ≤ xi ≤ 10 6n

Inverted Rastrigin function [47] f13(�x) = −
∑n

i=1(x2
i − 10cos(2πxi) + 10). −1.5 ≤ xi ≤ 1.5,

where i = 1 . . . n 1

Generic Hump function [29] f14(�x) =

{
maxk=1,K[hk(1− (d(�x,k)

rk
)αk)], if d(�x, k) ≤ rk ;

0 otherwise.
0 ≤ x ≤ 1 Arbitrarily set

Fig. 5(a) shows that in a run with just 10 particles, the
lbest PSO managed to locate four global peaks at iteration
615 with several distinct �pn. From the index-position plot
in Fig. 5(b), it is clear that multiple separate niches have
established themselves firmly on four different peaks. Some-
times more than one niche could reside on the same peak.
A close examination on the raw data in Fig. 6 reveals that
six separate niches have formed at iteration 615, with each
niche determined by a common �pn. These six niches have
effectively become six independent PSO optimizers because
no interactions are possible across niches by this stage. The six
distinct �pn points are able to coexist, because each �pn is only
determined by its immediate neighbors’ personal bests, but not
their �pn. As an example for Fig. 4, we can see that particle 1s
personal best and its �pn are on two different peaks. The fitness
“gap” between the personal best and �pn (which is also particle

2s �pn) has become so narrow (i.e., less than 0.0000001) that it
becomes almost impossible to get an improved personal best
for particle 1 on the peak where its �pn resides.

With a population size as small as five, some runs of the
ring topology lbest PSO were able to reach to an equilibrium
state, where one or two particles were oscillating around their
respective �pn, but never converging, as shown in Fig. 5(a).

Assuming that particles from the initial population are
uniformly distributed across the search space, niches can
naturally emerge as a result of the coexistence of multiple �pn

positions being the local attraction points for the particles in
the population. With a reasonably large population size, such
a lbest PSO is able to form stable niches around the identified
neighborhood bests �pn. As described in Section IV-C, the
memory-swarm acts as the anchor points retaining the best
positions the particles come across, whereas the explorer-

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

158 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

(a) (b)

Fig. 5. Ring topology lbest PSO on the equal maxima function f4 at iteration
615. (a) variable-fitness plot. (b) Index-position plot. Note that nBest denotes
for �pn, pBest for �pi, and current for �xi. A line is drawn from �pi and its
associated �xi.

Fig. 6. Niches formed by a ring topology lbest PSO with a population of 10
particles on the equal maxima function at iteration 615. Dash lines separate
the stabilized niches that have no further interaction with outside. Each curved
line shows a personal best is chosen as the �pn shared by two personal bests on
two different peaks. Note that particle 0 is an immediate neighbor of particle
9 since the ring-topology is a “wrap-around.”

swarm explores the search space more broadly. One possible
explanation on why some classical EAs are unable to form
niches around multiple optima (as discussed in Section IV-B)
is that they do not have such a memory mechanism to retain
equally good search points in parallel, and a mechanism to
allow these good points to coexist. As a result, selection is
biased toward a single dominant individual in the population.
In contrast, the lbest PSO allows multiple similarly dominant
individuals to coexist through its memory-swarm and the
scheme for choosing neighborhood bests.

B. Other Possible Variants

In addition to the standard ring topology where each local
neighborhood has three members as shown in Fig. 2, some
variants can be implemented to achieve similar niching effects
as well. One variant is to further restrict the local neighborhood
to just two members, as shown in Fig. 7.

Fig. 7. Graph of influence for a lbest PSO with a ring topology using just
two members in each local neighborhood.

Fig. 8. Graph of influence for a lbest PSO. Every two particles form a pair as
a local hill-climber. Note that there is no overlapping between neighborhoods.

Since the lbest PSO with a ring topology has overlapping
neighborhoods, it is still possible for a more dominant �pn to
overtake less dominant �pn. This leads a tendency of the algo-
rithm locating more dominant peaks over other less dominant
peaks. If the goal of optimization is to locate both global and
local peaks, then such influence from a more dominant �pn

could be further prevented. This can be easily achieved by
removing the overlapping neighborhoods in the ring topology.
As shown in Fig. 8, each disconnected local neighborhood acts
as an independent hill climber, searching for a local optimum
only.

Apart from simplicity, these lbest PSOs do not require
any prior knowledge of (neither the need to specify) any
niching parameters, e.g., a niche radius, because niches emerge
naturally from their initial population. The complexity of the
algorithm is only O(N) (where N is the population size), as
the calculation to obtain a neighborhood best is only done
locally from each particle’s local neighborhood.

In the following sections, we will demonstrate through
extensive experiments that these lbest PSOs are able to induce
stable niching behaviors, thereby locating multiple global
optima reliably for multimodal optimization problems.

VI. Experiments

To evaluate the niching ability of the proposed lbest PSOs
with a ring topology, we used some widely used multimodal
optimization test functions of different characteristics, such
as deceptiveness, multiple evenly and unevenly spaced global

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 159

optima, multiple global optima in the presence of multiple
local optima, function rotation, and high dimensionality (see
Section VI-A). Our experiments were carried out with the
following key aims.

1) To demonstrate the lbest PSOs using a ring topology
with overlapping neighborhood can stably and reliably
locate multiple global optima. In addition, to show
that lbest PSOs with nonoverlapping neighborhood can
locate both global and local optima for some test
functions.

2) To compare the lbest PSOs using a ring topology with
a typical niching algorithm (e.g., SPSO) that does rely
on some user parameters such as the niche radius.

3) To study the effect of varying population size, since this
is a parameter that a user still needs to supply.

We continue to use the index-position plot as described
in Section V-A to illustrate the niching behaviors of the
algorithms. Following ring topology, lbest PSO variants were
used in our experiments.

1) r3pso: A lbest PSO with a ring topology, each member
interacts with its immediate member on its left and right.

2) r2pso: A lbest PSO with a ring topology, each member
interacts with only its immediate member to its right.

3) r3pso − lhc: The same as r3pso, but with no overlap-
ping neighborhoods. Basically multiple PSOs search in
parallel, like local hill climbers. This variant is more
appropriate if the goal of optimization is to find global
optima as well as local optima.

4) r2pso − lhc: The same as r2pso, but with no overlap-
ping neighborhoods, hence acting as multiple local hill
climbers, more suitable for finding global as well as local
optima.

The above lbest PSO niching variants were compared with
two existing PSO niching algorithms.

1) SPSO: This algorithm was chosen because it represents
a state-of-the-art niching algorithm that relies on a
prespecified niche radius value [16]. SPSO was inspired
by the classic clearing [12], and speciation methods
[13], and showed superior performance compared with
NichePSO [14] and SNGA [8].

2) FER-PSO: This algorithm was chosen since it shows
competitive performance on challenging functions such
as the Shubert function.

In addition, in some experiments, we also used the gbest

PSO, i.e., a standard gbest PSO using a global communication
topology.

For any particle with a position xi exceeding the boundary
of the variable range, its position is reset to a value that is
twice of the right (or left boundary) subtracting xi.

In the following sections, we first describe the test functions
used. We then describe the performance measures used for this
paper. For SPSO, since we know the global optima for all the
test functions, we always set the niche radius r to a value that
is less than the distance between two closest global optima,
making sure that it is able to distinguish global optima. In
some sense, SPSO was given an “unfair” advantage over the
lbest PSO algorithms. For all PSO algorithms, we used the

standard constricted version as described in Section IV. There
was no parameter tuning.

A. Test Functions

Table I shows the test functions used in this paper. These
test functions are categorized into six groups ranging from
simple to more complex and challenging.

1) 1-D Deceptive Functions: f1, f2, and f3 are considered
to be deceptive. These functions may be difficult because the
existing local optima can misguide the population to move
away from the true global optimum. For example, in f1, since
3/4 of the initial population have the values between 1 and 15,
offspring generated from these individuals are likely to move
toward the local peak at x = 0, rather than the global peak at
x = 20.

f2 is simply a variation of f1. Both f1 and f2 have only a
single global peak. However, f3 has three local peaks and two
global peaks, presenting additional challenge for an optimizer
to find both global peaks.

These functions are useful for testing an optimizer’s ability
to handle deceptiveness, i.e., avoiding misguidance from those
local peaks (or false global peaks).

2) 1-D Multimodal Functions: f4 has five evenly spaced
global peaks. f5 is similar to f4. The only difference is that
the five peaks decrease in height exponentially (so there is
only one global peak actually). f6 is also like f4, except that
now the five global peaks are unevenly spaced. f7 is like f6,
but with five peaks decrease in height exponentially.

These functions can be used to test a niching algorithm’s
ability to form niches on multiple peaks (either local or
global). In addition, the feature of unevenly spaced peaks is
useful to test those niching methods that rely on a user to
specify a niche radius parameter.

3) 2-D Multimodal Functions: f8 has four global peaks
with two closer to each other than the other two. There are
no local peaks. f9 has two global peaks as well as two local
peaks. f10 has 16 evenly spaced peaks of unequal heights,
with one being the global peak. If the goal of optimization is
to find all global and local optima, then f10 can be used to
test a niching EAs ability to locate all 16 peaks.

4) More Challenging Two or Higher Multimodal Func-
tions: Both the inverted Shubert function f11 and the inverted
Vincent function f12 are especially interesting in this paper.
For f11 the inverted Shubert 2-D, there are 18 global peaks in
9 pairs, with each pair very close to each other, but the distance
between any pair is much greater [see Fig. 1(a)]. There are
760 local peaks. As the dimensionality increases, the number
of global and local peaks also increase quickly. For the n-
dimensional inverted Shubert function, there are n · 3n global
peaks unevenly distributed. These global peaks are divided
into 3n groups, with each group having n global peaks being
close to each other. Hence for f11 Shubert 3-D, there are 81
global peaks in 27 groups; whereas for f11 Shubert 4-D, there
are 324 global peaks in 81 groups. f11 will pose a serious
challenge to any niching algorithm relying on a fixed niche
radius parameter.

f12 the inverted Vincent function has 6n global peaks, but
unlike the regular distances between global peaks in f11, in

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

160 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

f12 global peaks have vastly different spacing between them.
Furthermore, f12 has no local peaks.

5) Inverted Rastrigin Function: The inverted Rastrigin
function f13 can be used to test an optimizer’s ability to
locate the single global peak in the presence of many local
peaks when the problem dimension is increased dramatically.
Furthermore, to test niching algorithms’ ability to handle non-
separable problems, f13 is also rotated to introduce parameter
interactions between variables, thereby making the function
nonseparable. Rotations are performed in the decision space,
on each plane using a random uniform rotation matrix [44]. All
niching algorithms are run 50 times. A new random uniform
rotation matrix is generated for each run of each algorithm for
the purpose of an unbiased assessment.

6) Generic Hump Functions: To further evaluate the effi-
cacy of the lbest PSO niching algorithms on high dimensional
problems, the generic hump function introduced in [29] was
modified and used for experimentation. One major advantage
of using the hump function is that unlike the Shubert or
Vincent function, it allows an arbitrary number of peaks
generated regardless of the number of dimensions. The basic
idea is as follows: all variables are initialized within [0, 1].
Within this range, K peaks are generated at random locations,
with different shapes and sizes. The radius of each peak
(i.e., the radius of the basin of attraction of each maximum)
is also randomly created, but the distance between any two
neighboring peaks is at least equal to or greater than the radius
of one of the two peaks. For the kth peak, its height hk and
shape factor αk are also randomly chosen. The fitness of a
solution �x is calculated in the following steps: 1) first identify
all peaks that �x reside on; 2) calculate the Euclidean distances
between �x and the centers of these peaks; and 3) calculate the
fitness of �x according to

f14(�x) =

{
maxk=1,K[hk(1− (d(�x,k)

rk
)αk)], if d(�x, k) ≤ rk;

0 otherwise

where rk denotes the radius of the kth peak, and d(�x, k) denotes
the Euclidean distance between �x and the center of the kth
peak. The original hump function in [29] does not allow peaks
to intersect, hence producing too much flat surface between
peaks. Consequently, the fitness values of many individuals in
the initial population are likely to be zero. The above modified
hump function alleviates such a problem by allowing multiple
peaks to intersect with each other. The fitness is simply the
maximal height value of an individual on all the peaks it
resides on. By choosing different values for hk, rk, αk and
the maximal number of peaks K, multimodal test functions
having different complexities can be created.

B. Population Size and Maximal Number of Evaluations

For functions f1 to f10, we used a population size of 20–
50, which should be adequate for locating all global peaks.
All PSO niching algorithms were run (for f1 to f10) for a
maximum of 10 000 function evaluations, or having located
all known global peaks with the specified accuracy. For f11

Shubert 2-D function, population sizes ranging from 200 to
500 were used, since it has many more global peaks (i.e., 18
global peaks). We also showed the effect of varying population

sizes using f11 Shubert 2-D. Following the same principle,
larger population sizes up to 1000 were used for f11 Shubert
3-D and 4-D, f12 Vincent 1-D to 4-D and f13 Rastrigin 2-D
to 15-D.

For more challenging test functions, the maximal number
of evaluations allowed was increased accordingly. For f11 4-
D, the maximal number of evaluations was 400 000. For f12

Vincent 2-D, 3-D, and f13 Rastrigin 2-D to 15-D, the maximal
number of evaluations was 200 000.

For f14 the generic hump function we used a population
size from 300 to 800 for dimensions ranging from 8 to
20, respectively. Ten peaks were created (K = 10) for all
dimensions. The maximal number of evaluations was set to
200 000.

C. Setting Niche Radius for Higher Dimensional Functions

For higher dimensional multimodal functions, Deb and
Goldberg [43] proposed a method to compute the value of
the niche radius r in a D-dimensional space where there exist
p global optima

r =

√∑D
k=1(xu

k − xl
k)2

2 D
√

p
(4)

where xl
k and xu

k are the lower and upper bounds on the kth di-
mension of the variable vector of D dimensions. This method,
however, assumes that the number of global optima is known
and they are evenly distributed in the search space. As can be
seen from Fig. 1, both f11 Shubert and f12 Vincent functions
have many unevenly distributed global optima. Hence, (4)
cannot be applied to obtain an estimated niche radius for a
typical niching method relying on a fixed niche radius r, e.g.,
SPSO. In contrast, lbest niching PSOs do not rely on any niche
radius value, hence they certainly provide a distinct advantage
over SPSO.

Due to the difficulty in applying (4), for 2-D functions SPSO
was provided with a niche radius value normally set to be less
than the distance between two closest global optima. However,
for higher dimensional functions with uneven distributions of
global optima, too small niche radius is likely to create too
many small niches, resulting in premature convergence. As-
suming that no prior knowledge about the distribution of global
peaks is readily available, for higher dimensional functions,
we simply used the same niche radius values, which were
empirically found optimal for the 2-D function counterparts.

D. Performance Measures

To compare the performance of the proposed lbest niching
PSOs with those of SPSO and FER-PSO, we first allow a user
to specify a level of accuracy (typically 0 < ε ≤ 1), i.e., how
close the computed solutions to the known global peaks are.
If the distance from a computed solution to a known global
optimum is below the specified ε, then we can consider the
peak is found. For only the purpose of measuring performance,
we make use of an algorithm for identifying species seeds [16],
in order to check if a niching algorithm has located all known
global peaks. Basically at the end of each run, this algorithm
is invoked to first sort all individuals in the population in

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 161

(a) iteration 1 (b) iteration 5 (c) iteration 20

Fig. 9. Niching behavior induced by r3pso on the f1. Majority of the 20 particle personal bests gradually move toward the global optimum.

decreasing order of fitness values. With a prespecified niche
radius, we iterate from the best-fit individual on the sorted list,
to check if any other individuals are within the niche radius
from it. If so, they are tagged as belonging to the same species.
These individuals are then excluded from the sorted list. The
next best-fit individual on the sorted list is then considered,
and the above process is repeated. The algorithm terminates
when there is no individual left.

As long as the niche radius r is set to a value not greater
than the distance between two closest global peaks, individuals
on two found global peaks would be treated as from different
species. The species seeds identification algorithm will pro-
duce a list of best as well as different personal best positions
based on the prespecified niche radius and a given list of all
personal best positions from the swarm population. For the test
functions in Table I, since the exact number of global peaks is
known a priori, and also roughly how far apart between two
closest global peaks, a niching algorithm’s performance can be
measured in terms of the number of evaluations required to
achieve a given accuracy ε for all known global peaks for
a run. In this case, we only need to check species seeds,
which are the dominant particles sufficiently different from
each other. We can determine if a global peak is found by
checking each species seed to see if it is close enough to
a known different global peak. Note again that this species
seeds identification algorithm is only used for performance
measurement in determining if a sufficient number of global
peaks has been found, but not in any part of the optimization
procedure.

For real-world problems, it is not uncommon that the num-
ber of global optima is unknown. However, the above species
seeds identification algorithm is still useful. A practitioner can
still run a niching algorithm for a certain number of iterations
before invoking this algorithm (with a reasonably small niche
radius value). Presuming that the best-fit individual has found
a global optimum (this is often the case for low dimensional
problems), then seeds on the sorted list can be checked against
this best-fit seed to see if they are good enough in fitness as
well as sufficiently different.

The performance of all compared PSO niching algorithms is
measured in terms of the success rate, which is the percentage
of runs in which all global peaks are successfully located. Note
that the success rate can depend on the specified ε. For a more

relaxed (or higher value) of ε, an algorithm is more likely to
have a higher success rate.

For more challenging functions, it is possible that success
rate may become 0 if not all peaks are found in any run. In
such a case, the number of global peaks found in a run is
recorded, and averaged over 50 runs.

VII. Numerical Results

This section summarizes the results and analysis on the
experiments carried out.

A. 1-D Deceptive Functions

1) f1: For f1, if ε is set to 0.1, i.e., r3pso has 100%
success rate in locating the global peak. However, if ε is set
to 0.0001, the success rate drops to 94%. This shows that the
fine-tuning ability of an lbest PSO such as r3pso is not so
good, but it has always managed to find at least some points
in a very close vicinity of the global peak (x = 20).

Fig. 9 shows a simulation run of the r3pso on f1 using only
20 particles. In just 20 iterations, the population managed to
find the true global optimum. Fig. 10 shows that most �pn have
moved to the vicinity of the global peak, though the catchment
area of the global peak is only 1/3 of that of the local peak.

Our experiment shows that even the gbest PSO performed
remarkably well on f1. With a population size of 50, gbest

PSO always located the true global optimum, instead of being
attracted to the local peak. If it runs long enough, all particles
will end up on the slope of the global peak (Fig. 11). This
contrasts with the fact that often a simple GA is being misled
to the local peak due to the 75% of the initial population fall
on the slope leading up to the local peak. The gbest PSO did
not lose good solutions found largely due to its use of personal
bests, but a GA does not have such a mechanism.

With a respectable ε set to 0.1, r3pso, r2pso, gbest PSO,
and SPSO were all able to locate the true global optimum with
100% success rate. SPSO was the fastest in locating the global
peak. However, SPSO requires a user to supply a niche radius
value.

If r3pso−lhc is used, then both the global and local optima
will be located with 100% success rate.

The results on f2 are similar to those of f1, hence we will
not show them here.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

162 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

(a) iteration 1 (b) iteration 5 (c) iteration 20

Fig. 10. Index-position plot for the same run as given in Fig. 9 shows that most of the niches are formed around the global optimum.

(a) (b)

Fig. 11. gbest PSO on the two-peak trap function at iteration 60. (a)
Variable-fitness plot. (b) Index-position plot.

(a) (b)

Fig. 12. r3pso on the five-uneven-peak-trap function f3 at iteration 100
(with a population size of 50). (a) Variable-fitness plot. (b) Index-position
plot.

2) f3: f3 has five peaks, of which two are global peaks and
three are local peaks. It presents additional challenges than f1

and f2 as two global peaks must be located, while avoiding the
three local peaks. Fig. 12(a) shows that r3pso can locate both
global peaks without any difficulty. It is interesting to see that
all �pn are located on the two global peaks (i.e., none on local
peaks), which helps the population remain on the two global
peaks stably. However, particles on local peaks are unstable,
as their corresponding �pn on the slopes of two global peaks
continue to attract them to move toward the two global peaks.
Fig. 12(b) shows clearly that there are three or four stable
niches formed around each global peak.

Local hill climbers such as r2pso − lhc and r3pso − lhc

were shown to be more effective in locating both global and

(a) (b)

Fig. 13. r2pso − lhc on the five-uneven-peak-trap function f3 at iteration
20 (with a population size of 50). (a) Variable-fitness plot. (b) Index-position
plot.

local peaks. Fig. 13 shows that r2pso− lhc was able to locate
all global and local peaks. Since r2pso − lhc has only two
members for each neighborhood, many small niches were
formed around the five peaks. Each niche is in fact a local
hill climber, i.e., an independent PSO with a population size
of just two.

B. 1-D Multimodal Functions

f4, f5, f6, and f7 were introduced by Deb [42] for testing
his sharing GA. f4 and f6 both have five global peaks. Most
interesting is that f6s peaks are unevenly spaced. As a result,
this would require any niching method that relies on a uniform
niche radius, to choose an appropriate niche radius value.
Choosing a value either too large or small will cause the
niching method either being unable to distinguish between two
peaks, or prematurely converged. Figs. 14 and 15 show that
r3pso had no difficulty in locating all global peaks on all
Deb’s four functions. For f5 and f7, particles were attracted
toward the single global peak because it has the best-fit �pn.
Since r3pso has overlapping neighborhoods, the influence
from the best-fit �pn on the global peak eventually took over
the population.

For locating not only the global peak, but also the local
peaks in f5 and f7, local hill climbers r2pso − lhc and
r3pso − lhc performed consistently well. Since each niche
performs searches independently of each other, particles that
have located lower peaks are not influenced by particles on
the more dominant peaks. Fig. 16 shows that r2pso − lhc

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 163

(a) f4 (b) f5 (c) f6 (d) f7

Fig. 14. r3pso (with a population size of 50) on the Deb’s four functions (f4 to f7) after 100 iterations.

(a) f4 (b) f5 (c) f6 (d) f7

Fig. 15. Index-position plot for each function shown in Fig. 14.

(a) f5 (b) f7

Fig. 16. r2pso− lhc on f5 and f7 respectively, after 100 iterations (with a
population size of 50).

performed well on these 2 functions. r2pso− lhc did not have
any difficulty with the uneven distances between the peaks.

C. 2-D Multimodal Functions, f8 to f8

The results on f8 Himmelblau suggest that f8 favors more
r2pso − lhc, r3pso − lhc, FER-PSO, and SPSO than the
more connected r2pso and r3pso. Since two out of the four
global peaks are very close to each other, for r2pso and
r3pso there is a tendency for particles on these two peaks to
merge into one niche. This suggests that for functions having
very close global peaks, more restricted or even independent
local hill climbers might be better optimizers. On the other
hand, for functions having many local peaks and only a few
distant global peaks, in order to escape local peaks, more
connected topologies would be better suited. For example,

in the case of f10 Shekel’s foxholes function that has 16
evenly distributed peaks (including one global peak), r2pso

and r3pso outperformed their local hill climber counterparts.
These results are shown in Table II, which is described in the
next section.

D. Success Rates

Table II summarizes the success rates on f1 to f10. A
population size of 50 was used. The PSO niching algorithms
were run until all known global peaks were found, or a
maximum of 100 000 evaluations were reached. Note that ε

and r (niche radius) values were chosen in order to maximally
measure the ability of each algorithm in forming niches in the
vicinities of all known global peaks. The uses of ε and r were
purely for performance measurements. Table II shows that all
ring topology based lbest PSO algorithms and FER-PSO give
comparable or better performance than SPSO. Most noticeably
is that SPSO gives inconsistent performances across different
functions, with very poor performance on f1, f2, f3, and f10,
though scoring perfectly for f4 to f9. A close look reveals
that SPSO has difficulty in handling situations where a global
peak is located at the boundary of the search space, such as
f1 to f3. For f10, SPSO was more inclined to be trapped to
some of the 15 local peaks than the ring topology lbest PSOs.
Table III shows the number of evaluations for each algorithm
to achieve the success rates presented in Table II. SPSO is
certainly the fastest for f4 to f9, but for other functions, the
ring topology lbest and FER-PSO are better. Two additional
factors are not considered here: 1) both SPSO and FER-
PSO would have a higher cost on sorting the population;

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

164 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

TABLE II

Success Rates for f1 to f10 Functions

fnc ε r r2pso (%) r3pso (%) r2pso-lhc (%) r3pso-lhc (%) FER-PSO (%) SPSO (%)
f1 0.1 0.5 98 100 94 78 88 24
f2 0.1 0.5 100 96 98 88 100 22
f3 5 0.5 100 96 96 96 98 40
f4 0.01 0.01 100 100 100 100 100 100
f5 0.01 0.01 98 100 100 100 100 100
f6 0.01 0.01 98 98 100 100 100 100
f7 0.01 0.01 100 100 100 100 100 100
f8 0.1 0.5 92 74 100 98 98 100
f9 0.01 0.5 100 100 100 100 100 100
f10 0.01 0.5 100 100 72 78 100 50

TABLE III

Averaged Number of Evaluations Over 50 Runs (Mean and One Standard Error) for Results Presented in Table VII

fnc ε r r2pso r3pso r2pso-lhc r3pso-lhc FER-PSO SPSO
f1 0.1 0.5 3.46E+3(1974.95) 2.62E+03(874.07) 7.39E+03(3348.05) 2.32E+04(5834.66) 1.44E+04(4535.92) 7.72E+04(5859.19)
f2 0.1 0.5 2.96E+03(1520.06) 5.34E+03(2764.73) 4.34E+03(2229.64) 1.31E+04(4588.84) 2.11E+03(227.71) 7.83E+04(5856.06)
f3 5 0.5 9.78E+02(186.65) 4.65E+03(2784.21) 4.71E+03(2783.41) 6.73E+03(3088.01) 2.66E+03(1992.22) 6.33E+04(6773.53)
f4 0.01 0.01 3.76E+02(30.55) 4.43E+02(51.80) 3.96E+02(51.01) 4.47E+02(52.75) 3.84E+02(29.01) 3.55E+02(30.55)
f5 0.01 0.01 2.12E+03(1999.53) 1.41E+02(11.22) 1.43E+02(14.64) 1.44E+02(13.68) 1.70E+02(12.78) 1.27E+02(9.39)
f6 0.01 0.01 2.43E+03(1994.23) 2.44E+03(1994.73) 4.56E+02(33.73) 6.23E+02(273.13) 3.71E+02(31.72) 3.43E+02(23.91)
f7 0.01 0.01 1.75E+02(17.91) 1.60E+02(20.20) 1.78E+02(18.14) 1.62E+02(16.88) 1.89E+02(20.17) 1.44E+02(13.82)
f8 0.1 0.5 7.87E+03(2891.69) 2.14E+04(5467.19) 1.49E+03(138.32) 7.38E+03(3347.13) 5.07E+03(1945.99) 1.25E+03(45.95)
f9 0.01 0.5 6.19E+02(24.11) 6.84E+02(30.02) 6.18E+02(30.26) 6.50E+02(25.03) 9.65E+02(53.99) 6.53E+02(32.9)
f10 0.01 0.5 4.36E+03(559.98) 3.51E+03(453.55) 2.97E+04(6277.07) 2.48E+04(5738.45) 3.47E+03(336.15) 4.28E+04(6968.96)

and 2) SPSO was tuned with user specified niche radius
values, but no such parameter is used for the ring topology
lbest PSOs.

E. f11 2-D, 3-D, and f12 1-D

For more challenging functions f11 inverted Shubert 2-D
and 3-D, a population size of 500 was used. And for f12

inverted Vincent 1-D, a population size of 100 was used. As
Table IV shows that the best overall performer is r3pso. Even
r3pso − lhc did well. The worst performer is SPSO, even
though it was given the knowledge to specify a reasonable
niche radius r. Both FER-PSO and SPSO completely failed on
f11 inverted Shubert 3-D. Table V shows the averaged number
of evaluations for the corresponding results in Table IV.
Fig. 17 shows that r3pso was able to locate all 18 global
peaks on f11 inverted Shubert 2-D by iteration 75 in a single
run. Multiple emerged niches are clearly visible.

f11 inverted Shubert 4-D has 324 global peaks. Even with
a large population size, it was becoming difficult to find all
peaks in any run. Hence we measured the number of global
peaks found by each algorithm, instead of using success rate.
We used a population size of 1000, and ran all algorithms for
a maximum of 400 000 evaluations.

For f12 inverted Vincent 2-D and 3-D, there are 36 and
216 global peaks, respectively. The distances between these
global peaks are vastly different, making them difficult for any
niching algorithm relying on a uniform niche radius value. A
population size of 500 and 1000 was used for f12 2-D and
3-D, respectively. All niching variants were run for 200 000
evaluations.

Table VI shows the number of global peaks (averaged over
50 runs) found by all PSO niching variants. None of them was
able to find all global peaks. All lbest PSOs gave much better
results than SPSO on f11 4-D, and comparable results on f12

2-D and 3-D. On f12 Vincent 2-D, Fig. 18 shows that r3pso

was able to develop stable niches on the majority of the global
peaks, without much concern to the vastly different distances
between these peaks.

F. Inverted Rastrigin Function

f13 the inverted Rastrigin function has only a single global
peak, and many local peaks. The number of local peaks
increases exponentially as the dimension increases. To locate
the single global optimum, niching algorithms will have to
overcome these local peaks. We carried out the following
experiment to study the effect of increasing dimensionality on
the performance. We assume that there is no prior knowledge
of the number of global peaks and local peaks, and neither the
distance between the closest global peaks. The only knowledge
we have is the upper and lower bounds of the variables to
be optimized. This is the only information we use to set an
estimated niche radius value. In this case, we set the niche
radius value for SPSO to 5.12, which is half of the distance
between the lower and upper bounds [we did not use (4),
as it assumes the number of optima is known a priori]. Of
course, this niche radius r should have no influence on the
performance of lbest PSOs. We set ε to 5, so that we consider
an algorithm has located the global peak if the difference
between the fitness of the global peak and the best-fit particle is
less than 5. Fig. 19 shows the success rates of all niching PSOs

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 165

TABLE IV

Success Rates on f11 Inverted Shubert 2-D and 3-D, and on f12 Inverted Vincent 1-D

fnc ε r r2pso (%) r3pso (%) r2pso-lhc (%) r3pso-lhc (%) FER-PSO (%) SPSO (%)
f11 (2-D) 0.1 0.5 90 98 98 100 56 49
f11 (3-D) 0.2 0.5 4 100 4 92 0 0
f12 (1-D) 0.01 0.2 94 86 92 90 88 84

TABLE V

Averaged Number of Evaluations Over 50 Runs (Mean and One Standard Error) for the Results Presented

fnc ε r r2pso r3pso r2pso-lhc r3pso-lhc FER-PSO SPSO
f11
(2-D)

0.1 0.5 5.59E+04(2676.00) 3.91E+04(1648.14) 3.78E+04(1480.85) 3.24E+04(581.97) 9.49E+04(1261.83) 6.16E+04(4463.33)

f11
(3-D)

0.2 0.5 1.99E+05(830.26) 7.40E+04(2343.35) 1.98E+05(1789.94) 8.13E+04(5849.36) 2.00E+05(0) 2.00E+05(0)

f12
(1-D)

0.01 0.2 8.31E+03(3371.59) 1.54E+04(4906.90) 9.60E+03(3824.11) 1.47E+04(4344.29) 1.30E+04(4601.37) 1.70E+04(5192.03)

TABLE VI

Averaged Number of Global Peak Solutions Found (Mean and One Standard Error)

fnc ε r r2pso r3pso r2pso-lhc r3pso-lhc SPSO
f11 (4-D) 0.2 0.5 115.8(1.62) 185.52(1.25) 136.78(1.37) 182.6(1.16) 4.5 (0.26)
f12 (2-D) 0.01 0.2 25.18(0.3) 22.82(0.25) 25.88(0.31) 24.78(0.36) 28.6(0.24)
f12 (3-D) 0.01 0.2 76.16(0.65) 66.68(0.66) 84.18(0.61) 82.1(0.56) 74.48(0.59)

TABLE VII

Averaged Number of Global Peak Solutions Found and Time Taken for the Hump Functions (Mean and One Standard Error)

Dims r2pso r3pso r2pso-lhc r3pso-lhc SPSO
8 No. of peaks found 3.68(0.16) 3.80(0.22) 3.60(0.14) 5.24(0.19) 5.56(0.20)

Time taken 6485.00(246.32) 6457.64(39.67) 5382.40(59.67) 5709.76(21.45) 11236.88(498.89)
10 No. of peaks found 2.74(0.19) 3.62(0.21) 0.82(0.13) 3.82(0.18) 4.10(0.20)

Time taken 8921.82(548.39) 8836.20(168.93) 9078.86(346.48) 8202.72(150.62) 38742.14(2249.15)
14 No. of peaks found 2.26(0.14) 2.66(0.16) 0.00(0.00) 1.62(0.16) 0.66(0.11)

Time taken 27205.36(2888.24) 19240.34(1690.72) 42029.00(1983.71) 32436.28(2561.68) 129112.42(2730.24)
18 No. of peaks found 0.60(0.12) 1.58(0.15) 0.00(0.00) 0.04(0.03) 0.00(0.00)

Time taken 91436.94(3721.06) 80859.68(3138.12) 96248.84(815.83) 83970.94(2202.69) 198891.58(4121.75)
20 No. of peaks found 0.16(0.05) 0.68(0.11) 0.00(0.00) 0.00(0.00) 0.00(0.00)

Time taken 150470.64(3352.18) 1144292.68(1898.63) 146460.56(834.42) 143922.56(1347.14) 293197.86(6064.52)

over increasing dimensions from 2 to 15. It is noticeable that
SPSOs performance degraded more rapidly than r2pso and
r3pso. The performance of two local hill climbers r2pso− lhc

and r3pso − lhc also degraded very quickly, which is not
surprising, as they have multiple independent optimizers each
consisting of just two and three particles, respectively. How-
ever, the better connected r2pso and r3pso fared better. The
results suggest that even if the goal is to locate a single global
peak in the presence of a massive number of local peaks,
and with no prior knowledge of the problem domain, it may
be preferable to use lbest PSOs using a ring topology, rather
than a niching method relying on a fixed niche radius value.
Especially r3pso showed a better scalability to increasing
dimensions.

The same experiment was repeated on the rotated version
of f13 inverted Rastrigin function. Comparing Fig. 20 with
Fig. 19, it can be noted that all niching algorithms suffered
from performance loss as a result of rotation of the function.
However, the best performers are still r3pso and r2pso. SPSOs

performance also suffered badly. As remarked by Clerc [21]
and Jason and Middendorf [48], the movements of particles
in a standard PSO have a clear dependency on the coordinate
axes. There is no exception for PSO niching algorithms.
Nevertheless, the ring topology-based lbest PSOs performed
better than SPSO.

G. Generic Hump Functions Up To 20 Dimensions

In the experiments on f14 the generic hump functions,
the radius of each peak was randomly chosen, however, the
distance between any two neighboring peaks must be at least
equal or greater than the radius of one of the two peaks. A
constant height hk = 1.0 and a constant shape factor αk = 1.0
were chosen. An algorithm is said to have found a peak if it
is able to find a solution at least within 0.1 times the radius
of the peak from the peak’s midpoint. The niche radius for
SPSO was set to 0.5. The population size for 8, 10, 14, 18,
and 20 dimensions were set to 300, 400, 500, 600, and 800,
respectively.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

166 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

(a) iteration 10 (b) iteration 50 (c) iteration 75

Fig. 17. Niching behavior of the r3pso (with a population size of 500) on the f11 Inverted Shubert 2-D function over a run.

(a) iteration 10 (b) iteration 50 (c) iteration 140

Fig. 18. Niching behavior of the r3pso (with a population size of 500) on f12 the inverted Vincent 2-D function over a run.

Fig. 19. Success rates for varying dimensions on f13 inverted Rastrigin
function.

Table VII shows the results on the hump functions. No
algorithms were able to find all 10 peaks, hence the number
of peaks found was used as the performance indicator. The
averaged time taken (i.e., milliseconds) by each algorithm is
also included. It can be noted that SPSO performed better than
lbest ring topology based PSOs on dimensions 8 and 10. How-
ever, as the dimension increased further, r3pso became the
best performer, which shows r3pso scaled better than SPSO.
All algorithms suffered from performance degradation as the
dimension increased, among which the local hill climbers

Fig. 20. Success rates for varying dimensions on f13 rotated inverted Rast-
rigin function.

r2pso−lhc and r3pso−lhc were the worst, as one would have
expected. It is also noted that SPSO took a considerable longer
time than lbest PSOs, because it had to sort all individuals in
a population at each iteration.

H. Maintaining Found Optima

A good niching algorithm should be able to locate global
optima and maintain them until the end of a run (see also
Section II). All ring topology lbest PSO niching algorithms
fulfil this requirement, because the memory-swarm (in other

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 167

Fig. 21. Number of global optima found by r3pso over five independent
runs, on f11 inverted Shubert 2-D function (using a population size of 300).

Fig. 22. Success rates for varying population sizes on f11 inverted Shubert
2-D function.

words the population of personal bests) forms a stable network
retaining the best positions (i.e., personal best positions) found
so far by the swarm population. These personal best positions
are only updated if their corresponding current positions are
better. Otherwise, they remain unchanged. This means a parti-
cle will never lose the best position it has found so far. A ring
topology lbest PSO allows different personal best positions to
coexist on a multimodal fitness landscape. In contrast, personal
best positions in a standard PSO tend to become homogenous
eventually converging toward the single global optimum.

Fig. 21 shows five independent runs of r3pso on f11 the
inverted Shubert 2-D function. For each run, r3pso was able
to continuously locate more global peaks and maintain them
until all 18 global peaks were found. All ring topology lbest

PSO niching algorithms share this property; therefore we will
not show other results.

I. Effect of Varying Population Size

For the ring topology lbest PSO niching algorithms, one
important parameter that needs to be specified is population
size. Given a reasonably large population size, these PSOs
are able to locate global optima (and/or local optima) reliably,
especially for low dimensional problems. Fig. 22 shows that
on f11 the inverted Shubert 2-D, with a population size of 450
or above, the ring topology lbest PSOs achieved 90% or above
success rates. In contrast, even with a population size of 500,
SPSO only managed to achieve 60% success rate. Another
similar niching algorithm, SCGA [13], which also required a

user to specify a niche radius parameter, needed a population
size of 1000 or above in order to locate all 18 global peaks.

It is worth noting that the local hill-climber variants r2pso−
lhc and r3pso − lhc performed better than r2pso and r3pso

on f11 2-D. This suggests that when handling low dimensional
problems with multiple global optima in the presence of many
local optima, it may be more effective to have multiple local
hill climbers each optimizing independently than a niching
algorithm with a more connected neighborhood topology.

VIII. Conclusion

Niching as an important technique for multimodal optimiza-
tion has been used widely in the evolutionary computation
research community. Many niching methods, however, are dif-
ficult to use in practice because they require prior knowledge to
specify certain niching parameters. This paper has addressed
this issue by proposing lbest PSO niching algorithms using
a ring topology, which eliminate the need to specify any
niching parameters. We have demonstrated that the lbest PSO
algorithms with a ring topology are able to induce stable
niching behavior. The lbest PSO algorithms with an overlap-
ping ring topology (e.g., r2pso and r3pso) are able to locate
multiple global optima, given a reasonably large population
size, whereas the lbest PSO algorithms with a nonoverlapping
ring topology (e.g., r2pso− lhc and r3pso− lhc) can be used
to locate global as well as local optima, especially for low
dimensional problems. Experimental studies carried out on a
range of multimodal test functions suggest that the lbest PSO
algorithms with a ring topology can provide comparable or
better, and more consistent performance, than some existing
niching PSO algorithms over these test functions. Even with
a comparable or smaller population size, the proposed algo-
rithms can outperform a niching algorithm using a fixed niche
radius, in terms of success rate and the actual number of global
optima found. More importantly, one major advantage over
existing niching algorithms is that no niching parameters are
required. This should pave the way for more widespread use
of this kind of niching algorithms in real-world applications.

As far as we know, this paper is the first attempt showing
that lbest PSOs with ring topology are able to induce stable
niching behavior.1 The findings of this research suggest that
local memory and slow communication topology are the two
key elements for the success of the proposed lbest PSO niching
algorithms. In fact it does not have to be PSO functioning
as a local optimizer. It is foreseeable that other population-
based stochastic optimization methods characterized by these
two key elements can be also used to induce stable niching
behavior. Of course, the proposed ring topology based PSO
is no panacea. If one has the domain knowledge on how
to set niching parameters, using such knowledge might give
even better performance. However, our study here assumes
that there is no such prior knowledge readily available.

Since lbest PSO niching algorithms with an overlapping or
nonoverlapping ring topology tend to generate multiple small

1The source code can be downloaded from the author’s website:
http://goanna.cs.rmit.edu.au/˜xiaodong/rpso/.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 14, NO. 1, FEBRUARY 2010

niches, one interesting future research topic will be studying
how to increase the search capability of small niches so that the
performance of these niches will scale well with increasing di-
mensions. We will be also interested in developing techniques
to adapt or self-adapt the population size, as this is the only
parameter that still needs to be supplied by a user. It will
be also interesting to apply the ring topology based PSO to
tracking multiple peaks in a dynamic environment [16].

Acknowledgment

The author is grateful to Prof. K. Deb for his valuable
comments and suggestions, via personal communication, and
T. Nest for his careful proofreading of the paper.

References

[1] J. Kennedy and R. Eberhart, Swarm Intelligence. San Mateo, CA:
Morgan Kaufmann, 2001.

[2] S. W. Mahfoud, “Niching methods for genetic algorithms,” Ph.D.
dissertation, Univ. Illinois, Urbana, IL, 1995. [Online]. Available:
citeseer.ist.psu.edu/mahfoud95niching.html

[3] K. Koper and M. Wysession, “Multimodal function optimization with
a niching genetic algorithm: a seis-mological example,” Bull. Seismol.
Soc. Am., vol. 89, pp. 978–988, 1999.

[4] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto
genetic algorithm for multiobjective optimization,” in Proc. 1st
IEEE Conf. Evol. Comput., IEEE World Congr. Comput. Intell.,
vol. 1. Piscataway, NJ, Jun. 1994, pp. 82–87. [Online]. Available:
citeseer.ist.psu.edu/horn94niched.html

[5] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, MI, 1975.

[6] S. W. Mahfoud, “Crowding and preselection revisited,” in Proc. Parall.
Prob. Solv. Nat. 2, Amsterdam: North-Holland, 1992, pp. 27–36.
[Online]. Available: citeseer.ist.psu.edu/mahfoud92crowding.html

[7] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” in Proc. 2nd Int. Conf. Genet.
Algorith., Cambridge, MA, 1987, pp. 41–49.

[8] D. Beasley, D. R. Bull, and R. R. Martin. (1993, Summer). A
sequential niche technique for multimodal function optimization.
Evol. Comput. [Online]. 1(2), pp. 101–125, 1993. Available:
citeseer.ist.psu.edu/beasley93sequential.html

[9] G. R. Harik, “Finding multimodal solutions using restricted tournament
selection,” in Proc. 6th Int. Conf. Genet. Algorith., San Francisco,
CA: Morgan Kaufmann, Jul. 1995, pp. 24–31. [Online]. Available:
citeseer.ist.psu.edu/harik95finding.html

[10] M. Bessaou, A. Petrowski, and P. Siarry, “Island model cooperating with
speciation for multimodal optimization,” in Proc. 6th Int. Conf. Parall.
Prob. Solv. from Nat.: PPSN VI, Paris, France: Springer Verlag, 2000,
pp. 16–20. [Online]. Available: citeseer.ist.psu.edu/bessaou00island.html

[11] X. Yin and N. Germay, “A fast genetic algorithm with sharing scheme
using cluster analysis methods in multi-modal function optimization,” in
Proc. Int. Conf. Artif. Neural Netwo. Genet. Algorith., 1993, pp. 450–
457.

[12] A. Petrowski, “A clearing procedure as a niching method for genetic
algorithms,” in Proc. 3rd IEEE Int. Conf. Evol. Comput., Nagoya, Japan,
May 1996, pp. 798–803.

[13] J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species
conserving genetic algorithm for multimodal function optimization,”
Evol. Comput., vol. 10, no. 3, pp. 207–234, 2002.

[14] A. E. R. Brits and F. van den Bergh, “A niching particle swarm
optimizer,” in Proc. 4th Asia-Pacif. Conf. Simul. Evol. Learn. (SEAL
2002), Singapore, Feb. 2002, pp. 692–696.

[15] X. Li, “Adaptively choosing neighborhood bests using species in a
particle swarm optimizer for multimodal function optimization,” in Proc.
Genet. Evol. Comput. Conf. 2004, LNCS 3102. pp. 105–116.

[16] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by
a particle swarm model using speciation,” IEEE Trans. Evol. Comput.,
vol. 10, no. 4, pp. 440–458, Aug. 2006.

[17] J. Kennedy, “Stereotyping: Improving particle swarm performance with
cluster analysis,” in Proc. IEEE Int. Conf. Evol. Comput., La Jolla, CA,
2000, pp. 303–308.

[18] R. Brits, A. Negelbrecht, and F. van den Bergh, “Locating multiple
optima using particle swarm optimization,” Appl. Math. Comput., vol.
189, pp. 1859–1883, 2007.

[19] B. Sareni and L. Krahenbuhl, “Fitness sharing and niching methods
revisited,” IEEE Trans. Evol. Comput., vol. 2, no. 3, pp. 97–106, Sep.
1998.

[20] A. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
New York: Wiley, 2005.

[21] M. Clerc, Particle Swarm Optimization. London, U.K.: ISTE Ltd., 2006.
[22] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm

theory,” in Proc. 6th Int. Symp. Micromach. Hum. Sci., Nagoya, Japan,
1995, pp. 39–43.

[23] J. Kennedy and R. Mendes, “Population structure and particle
swarm performance,” in Proc. 2002 Cong. Evol. Comput., 2002,
pp. 1671–1675.

[24] A. Engelbrecht, B. Masiye, and G. Pampara, “Niching ability of basic
particle swarm optimization algorithms,” in Proc. IEEE Swarm Intell.
Symp., 2005, Pretoria, South Africa, Jun. 2005, pp. 1–4.

[25] D. Cavicchio, “Adapting search using simulated evolution,” Ph.D. dis-
sertation, Univ. Michigan, Ann Arbor, 1970.

[26] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press, 1975.

[27] D. E. Goldberg, K. Deb, and J. Horn, “Massive multimodality,
deception, and genetic algorithms,” in Proc. Parall. Prob. Solv. Nat.
2 (PPSN 2). Amsterdam: Elsevier Science Publishers, B. V., 1992.
[Online]. Available: citeseer.ist.psu.edu/goldberg92massive.html

[28] P. J. Darwen and X. Yao, “A Dilemma for Fitness Sharing with a Scaling
Function,” in Proc. 2nd IEEE Int. Conf. Evol. Comput., Piscataway, NJ,
1995. [Online]. Available: citeseer.ist.psu.edu/darwen95dilemma.html

[29] G. Singh and K. Deb, “Comparisons of multi-modal optimization
algorithms based on evolutionary algorithms,” in Proc. Genet. Evol.
Comput. Conf. 2006 (GECCO ’06), Washington D.C., pp. 1305–1312.

[30] M. Jelasity and J. Dombi (1998). GAS, a concept on modeling
species in genetic algorithms. Artif. Intell. [Online]. 99(1). Available:
citeseer.ist.psu.edu/jelasity98gas.html

[31] O. Shir and T. Bäck, “Niche radius adaptation in the cms-es niching
algorithm,” in Proc. 9th Int. Conf. Parall. Prob. Solv. Nat. (PPSN), LNCS
4193. Reykjavik, Iceland: Springer, 2006, pp. 142–151.

[32] S. Bird and X. Li, “Adaptively choosing niching parameters in
a PSO,” in Proc. Genet. Evol. Comput. Conf. (GECCO ’06),
Seattle, WA: ACM, pp. 3–10. [Online]. Available: http://doi.acm.org/
10.1145/1143997.1143999

[33] S. Bird and X. Li, “Enhancing the robustness of a speciation-based
PSO,” in Proc. 2006 IEEE Cong. Evol. Comput., Vancouver, BC,
Canada: IEEE Press, Jul. 16–21, 2006, pp. 843–850. [Online].
Available: http://ieeexplore.ieee.org/servlet/opac?punumber=11108

[34] M. Clerc and J. Kennedy, “The particle swarm—explosion, stability, and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.

[35] K. Parsopoulos and M. Vrahatis, “Modification of the particle swarm
optimizer for locating all the global minima,” Artificial Neural Networks
and Genetic Algorithms, Springer, 2001, pp. 324–327.

[36] K. Parsopoulos and M. Vrahatis, “On the computation of all global
minimizers through particle swarm optimization,” IEEE Trans. Evol.
Comput., vol. 8, no. 3, pp. 211–224, Jun. 2004.

[37] R. Brits, A. Negelbrecht, and F. van den Bergh, “Solving systems of
unconstrained equations using particle swarm optimizers,” in Proc. IEEE
Conf. Syst., Man, Cybernet., Pretoria, South Africa, Oct. 2002, pp. 102–
107.

[38] X. Li, “Multimodal function optimization based on fitness-euclidean
distance ratio,” in Proc. Genet. Evol. Comput. Conf. 2007, pp. 78–
85.

[39] I. Schoeman and A. Engelbrecht, “Using vector operations to identify
niches for particle swarm optimization,” in Proc. 2004 IEEE Conf.
Cybernet. Intell. Syst., Singapore, Dec. 2004, pp. 361–366.

[40] Y. Davidor, “A naturally occurring niche & species phenomenon: The
model and first results,” in Proc. 4th Int. Conf. Genet. Algorith., San
Mateo, CA: Morgan Kaufmann, Jul. 1991, pp. 257–263.

[41] Z. Perry, “Experimental study of speciation in ecological niche theory
using genetic algorithms (doctoral dissertation),” Ph.D. dissertation,
Univ. Michigan, Ann Arbor, 1984.

[42] K. Deb, “Genetic algorithms in multimodal function optimization, the
Clearinghouse for Genetic Algorithms,” M.S thesis and Rep. 89002,
Univ. Alabama, Tuscaloosa, 1989.

[43] K. Deb and D. Goldberg, “An investigation of niche and species
formation in genetic function optimization,” in Proc. 3rd Int. Conf.
Genet. Algorith., 1989, pp. 42–50.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

LI: NICHING WITHOUT NICHING PARAMETERS: PARTICLE SWARM OPTIMIZATION USING A RING TOPOLOGY 169

[44] A. W. Iorio and X. Li, “Rotated test problems for assessing the
performance of multiobjective optimization algorithms,” in Proc. 8th
Annu. Conf. Genet. Evol. Comput. (GECCO ’06), New York, pp. 683–
690.

[45] D. Ackley, “An empirical study of bit vector function optimization, in
Genetic Algorithms Simulated Annealing, London, U.K.: Pitman, 1987,
pp. 170–204.

[46] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. New York: Springer-Verlag, 1996.

[47] A. Törn and A. Zilinskas, Global Optimization, volume 350. New York:
Springer-Verlag, 1987.

[48] S. Jason and M. Middendorf, “On trajectories of particles in PSO,” in
Proc. 2007 IEEE Swarm Intell. Symp. (SIS 2007). Piscataway, NJ: IEEE
Service Center, Feb. 2007, pp. 38–44.

Xiaodong Li (SM’07) received the B.Sc. degree
from Xidian University, Xi’an, China, in 1988, and
the Dip.Com. and Ph.D. degrees in information
science from the University of Otago, Dunedin, New
Zealand, in 1992 and 1998, respectively.

Currently, he is with the School of Computer Sci-
ence and Information Technology, RMIT University,
Melbourne, Australia. His research interests include
evolutionary computation, neural networks, complex
systems, and swarm intelligence.

Dr. Li is an Associate Editor of the IEEE Trans-

actions on Evolutionary Computation and International Journal of
Swarm Intelligence Research. He is a Member of the IASR Board of Editors
for the Journal of Advanced Research in Evolutionary Algorithms.

Authorized licensed use limited to: RMIT University. Downloaded on February 3, 2010 at 01:10 from IEEE Xplore. Restrictions apply.

