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Abstract—Self-adaptive differential evolution (SaDE) is a well-
known DE variant, which has received considerable attention
since it was developed. SaDE gradually adapts its trial vector
generation strategy and the accompanying parameter setting
via learning the preceding performance of multiple candidate
strategies and their associated parameter settings. This work
systematically investigates SaDE on the CEC-2013 real-parameter
single-objective optimization testbed. Parameter sensitivity anal-
ysis is carried out by using advanced statistical hypothesis test-
ing methods, aiming to detect statistically significantly superior
parameter settings. This analysis reveals that SaDE is actually
less sensitive to the parameter choice since quite a number
of parameter settings can lead to the statistically significantly
better performance than the other settings. Based on this finding,
we report SaDE’s performance using one of the parameter
settings advocated by sensitivity analysis and statistically com-
pare this performance with that of a widely used classic DE
(DE/rand/1/bin). The comparison results significantly favor SaDE.

I. INTRODUCTION

Differential evolution (DE) [1]–[3], as proposed by Storn
and Price in 1995, is an effective and powerful optimiza-
tion method for solving real-parameter black-box optimization
problems. Over the past decades, there has been a large body
of research works on improving the performance of DE [4]–
[13], empirically or theoretically studying the behavior of DE
[14], applying various DE based algorithms to challenging
optimization tasks [3]. It is well-known that DE’s performance
depends on the choice of search strategies and the accompa-
nying control parameters, which is highly problem-dependent.
Furthermore, a search strategy even equipped with the best-
calibrated parameter setting may not demonstrate consistent
effectiveness in various sub-regions of the search space ex-
plored at different optimization stages. This has motivated
many research efforts on investigating the adaption of search
strategies and parameters in DE.

Among these works, a self-adaptive differential evolution
algorithm, proposed in [9], [10], deserves special mention.
This algorithm is capable of gradually adapting the its trial
vector generation strategy and the accompanying parameter
setting via learning the preceding performance of multiple
candidate strategies and their associated parameter settings.
SaDE involves only two control parameters, i.e., population
size (NP) and learning period (LP). Since its invention, SaDE
has received considerable attention as evidenced by its high ci-
tation counts (the most cited paper among all papers published

in the 2009 IEEE Transactions on Evolutionary Computation
(TEVC)) and the winner of the 2012 IEEE TEVC outstanding
paper award. Many derivatives of the original SaDE algorithm
have been proposed with an aim to further improve SaDE’s
performance [11], [13], [15].

This paper systematically investigates SaDE’s performance
on the newly proposed CEC-2013 real-parameter single-
objective optimization testbed. This testbed consists of 28 test
functions, improving its predecessor CEC-2005 with additional
test functions, non-linear transformations and modified defi-
nitions of composition functions. In this paper, we evaluate
SaDE, using a range of 30 potentially effective parameter
settings, on all 28 CEC-2013 test functions at three dimen-
sion sizes (10D, 30D and 50D). We also conduct parameter
sensitivity analysis over all 28 functions at each dimension
size using advanced statistical hypothesis testing methods (the
Iman and Davenport test followed by the Hochberg procedure
[16], [17]). The results reveal that SaDE is less sensitive to the
parameter choice, as evidenced by quite a number of parameter
settings ([NP, LP] ∈ [50, 70, 100] × [30, 50, 70]) leading
to the statistically significantly similar performance which is
significantly better than the other settings. This finding is
consistent with the conclusions in the original work [10] but
is deduced in a statistically rigorous manner. Furthermore,
we report the results using one of the superior parameter
settings (NP:50, LP:50) advocated by sensitivity analysis, and
compare these results with those of a widely-used classic DE
(DE/rand/1/bin) employing a typically suggested parameter
setting (NP:50, CR:0.9, F:0.5) using the Wilcoxon’s signed
rank test [18].

The remaining paper is organized as the following. First,
a brief review on DE is provided in Section II, followed by
a description of SaDE in III. Section IV reports and analyzes
experimental results. Section V concludes this paper.

II. DIFFERENTIAL EVOLUTION

As a highly effective algorithm for solving real-parameter
black-box optimization problems, DE together with its variants
has been thoroughly described in [1]–[3]. Let us consider
a real-parameter single-objective minimization problem: for
a function f : X ⊆ RD → Y ⊆ R, the aim is to
find x∗ ∈ X such that ∀x ∈ X, f(x∗) ≤ f(x). Suppose
xi,g = {x1

i,g, . . . , x
D
i,g} represent the i-th decision vector

of dimension size D at the g-th generation. Let Pg =
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Algorithm 1 Trial Vector Generation Procedure in DE/rand/1/bin
Input: NP, CR, F, xi,g = {x1

i,g, . . . , x
D
i,g}

Output: ui,g = {u1
i,g, . . . , u

D
i,g}

1: Randomly select in {1, . . . ,NP} three mutually exclusive indices that are distinct from i:
do r1 = ceil(randu(1,NP))
while r1 6= i
do r2 = ceil(randu(1,NP))
while r2 6= i and r2 6= r1
do r3 = ceil(randu(1,NP))
while r3 6= i and r3 6= r1 and r3 6= r2

2: jrand = ceil(randu(1, D))
3: for j = 1→ D do

4: uj
i,g =

{
xj
r1,g + F · (xj

r2,g − xj
r3,g) if randu(0, 1) ≤ CR or j = jrand

xj
i,g otherwise

5: end for
NOTE: (1) randu(a, b) is a uniform random number generator sampling in [a, b].

(2) ceil(c) takes on the smallest integer larger than or equal to c.

{x1,g, . . . ,xNP,g} denote the population of size NP at the
g-th generation, and its offspring population represented by
Pg+1 = {x1,g+1, . . . ,xNP,g+1}. In the initial population of
DE, i.e., P0, each decision vector xi,0, i = 1, . . . ,NP is
generated by sampling along each element of the decision
vector a uniform random number between the lower and upper
bounds of the corresponding vector element. At each gener-
ation, e.g., the g-th generation, an offspring ui,g (so-called
trial vector) is generated with respect to each decision vector
xi,g (so-called target vector) in the population for the current
generation using mutation and recombination operations. The
pseudo-code of this trial vector generation procedure in the
context of a classic DE strategy (DE/rand/1/bin) is depicted in
Algorithm 1. Then, DE employs a greedy replacement scheme
to generate the population at the (g+1)-th generation, i.e.,
Pg+1. Specifically, the “offspring” trial vector ui,g will enter
Pg+1 if f(ui,g) is smaller or equal to f(xi,g). Otherwise, the
“parent” target vector xi,g will be retained in Pg+1. The above
procedure is repeated generation by generation until certain
termination criteria are met. For more detailed information on
DE’s implementations, readers can refer to [1], [2].

DE differs from other evolutionary algorithms by its unique
self-referential mutation scheme. Classic DE algorithms are
typically denoted by “DE/x/y/z” where “x” defines the base
vector generation scheme, “y” defines how many pairs of
population members are used to establish the vector difference
and “z” defines the recombination scheme. Among classic DE
strategies, DE/rand/1/bin is most widely used, which involves
three control parameters: population size (NP), crossover rate
(CR) and mutation scale factor (F). Previous works have
empirically or theoretically demonstrated that the performance
of classic DE algorithms crucially depends on the proper pa-
rameter setting, which is highly problem-dependent. Although
the trial-and-error scheme may deduce certain satisfying pa-
rameter setting, it may require demanding computational costs,
which is not practically feasible. Existing research works on
DE’s parameter configuration can be generally divided into
three categories: (1) Fixed schemes use a fixed parameter
setting derived from theoretical or empirical studies during the
searching process [1], [2], [14]; (2) Control schemes use certain
pre-specified rules to update the parameter setting during the

searching process [6]; (3) Adaptive schemes adaptively alter
the parameter setting by learning its historical impact on the
searching performance during the searching process [4], [5],
[7]–[11], [13], which have become recent research trends.

III. SELF-ADAPTIVE DIFFERENTIAL EVOLUTION (SADE)

In addition to the parameter setting, DE’s performance also
relies on the choice of trial vector generation strategies, which
is highly problem-dependent. For example, DE/rand/1/bin
is more proficient in solving multi-modal problems than
DE/best/1/bin while the latter can efficiently solve uni-modal
problems. Furthermore, a trial vector generation strategy can
demonstrate its intrinsic efficacy only if it is equipped with
suitable parameter settings. As a result, the trial-and-error
scheme is still infeasible due to prohibitive computational
costs. On the other hand, one single strategy even armed with
well-calibrated parameter settings cannot guarantee consistent
effectiveness at different searching stages since sub-regions of
the search space explored at varying searching stages may not
always prefer this strategy. This fact motivated the study of
strategy adaptation in DE.

A differential evolution with strategy adaptation algorithm,
so-called SaDE, was proposed in [9], [10], which can gradually
adapt the employed trial vector generation strategy and the
accompanying parameter setting in favor of varying searching
stages via learning the preceding performance of multiple
candidate strategies and their associated parameter settings.
Specifically, SaDE features a pool of potentially effective yet
complementary trial vector generation strategies. During the
population’s evolution, with respect to each target vector in
the population for the current generation, one strategy will be
chosen from this pool based on the selection probabilities of
all available strategies, which are calculated from the success
rate of each strategy for generating promising trial vectors
(those that can enter the population for the next generation)
within a certain number of preceding generations, so-called
learning period (LP). This selected strategy is then applied
to the corresponding target vector to generate the trial vector.
As for the parameter setting associated with such a selected
strategy, we only consider adapting CR while randomizing F
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and manually pre-specifying NP. The rationale behind this is
as follows:

1) CR is sensitive to the the properties of the searching
landscape and thus should better be adapted for varying
searching stages. SaDE archives the CR values associated
with each strategy which had generated promising trial
vectors within the preceding LP generations. The median
of those recorded CR values with respect to each strategy
is calculated at the end of the current generation, and
used as the mean value in the normal distribution with
standard deviation 0.1 to generate the CR values used by
the corresponding strategy in the next generation.

2) F is closely related to the convergence speed. Usually,
large F values favor exploration and thus slow down
the convergence while small values favor exploitation
and thus speed up the convergence. SaDE randomizes F
according to the normal distribution with mean value 0.5
and standard deviation 0.3, which makes the values of F
to almost fall into [-0.4, 1.4]. As a result, both exploration
(large F values) and exploitation (small F values) capa-
bilities are well retained throughout the searching course.

3) NP is influenced by the problem scale and complexity
as well as the available computational budget. SaDE
leaves it as a user-specified parameter, which should
be determined as per any knowledge about the problem
(e.g., the problem dimension size) and the computational
budget.

SaDE allows the initial LP generations to accumulate the
searching performance to be learnt. During this period, all
strategy selection probabilities are set to be equal and the
mean value in the normal distribution for generating the CR
values is set to 0.5. To avoid the invalid calculation of selection
probabilities when the success rates of all strategies are null
or when any strategy is never selected within the preceding
LP generations, a small constant value (0.01) is introduced as
depicted in Algorithm 2, which illustrates the pseudo-code of
the original SaDE algorithm.

IV. EXPERIMENTS

We test SaDE under six NP values (30, 50, 70, 100, 200 and
300) and five LP values (5, 10, 30, 50, 70) on 28 test functions
contained in the CEC-2013 testbed at three problem dimension
sizes (10D, 30D and 50D). We report all performance measures
required in the protocol of the CEC-2013 testbed [19] as well
as the success rate, the expected running time to succeed (ERT)
[20], [21] and the empirical cumulative distribution function
(ECDF) [21] of the number of function evaluations at success
and the best achieved object function error value at termination.

To find out a statistically reliable rule-of-thumb on how
to choose the parameters of SaDE, we conduct parameter
sensitivity analysis using advanced statistical hypothesis test-
ing methods, i.e., the Iman and Davenport test followed by
the Hochberg procedure [16], [17], to compare 30 parameter
settings over all 28 test functions at 10D, 30D and 50D,
respectively. We report SaDE’s performance in regard to one
of the superior parameter settings identified by such sen-
sitivity analysis. Furthermore, we compare the performance
of SaDE using this identified parameter setting with that of
DE/rand/1/bin using a typically used parameter setting (NP:50,

CR:0.9, F:0.5) on all 28 test functions at 10D, 30D and 50D,
respectively, using the Wilcoxon’s signed rank test [18].

A. Experimental Setup

The CEC-2013 testbed involves 28 numerical test func-
tions, categorized into uni-modal functions (f1-f5), multi-
modal functions (f6-f20) and composition functions (f21-f28),
which extends its predecessor CEC-2005 testbed. The detailed
description of the CEC-2013 testbed can be referred to in [19].

We test SaDE under 30 parameter settings ([NP, LP] ∈
[30, 50, 70, 100, 200, 300] × [5, 10, 30, 50, 70]) on each
of 28 test functions at three problem dimension sizes (10D,
30D and 50D), respectively. These settings include those of
typical parameter configurations for SaDE [10]. We also test
DE/rand/1/bin using a commonly suggested parameter setting
(NP:50, CR:0.9, F:0.5) for the purpose of the performance
comparison with SaDE.

SaDE using 30 parameter settings and DE/rand/1/bin using
the parameter setting (NP:50, CR:0.9, F:0.5) are executed
51 times with respect to each test function at each problem
dimension size. Each of 51 runs uses distinct random seeds.
For any individual run, SaDE using each of 30 parameter
settings as well as DE/rand/1/bin using the parameter setting
(NP:50, CR:0.9, F:0.5) employ the same random seed.

Two stopping criteria are used here [19]: (1) the maximum
number of function evaluations (maxFEvals), set to 104 times
the problem dimension size, is reached. (2) The object function
error value (FEV), defined as the difference between the
objective function value of the best solution found so far and
that of the globally optimal solution, is less than or equal to
10−8. In this case, we set FEV to 10−8 instead of zero as
suggested in the CEC-2013 protocol since the latter way may
dramatically decrease the average FEV at termination if only
a few runs reach 10−8.

We use MATLAB to implement all algorithms. The algo-
rithm execution platform is a Windows PC with the Intel Xeon
E5-2630 CPU at 2.3 GHz.

The algorithm’s performance is measured by the following:

1) the best, worse, median and mean (standard deviation) of
the FEVs achieved when the algorithm terminates over
51 runs;

2) the success rate (SR) over 51 runs. An execution run is
claimed to succeed once the algorithm achieves the FEV
smaller than 10−8;

3) the expected running time to succeed (ERT) [20], [21].
This performance index estimates the expected number
of function evaluations to succeed. It is computed by the
total number of function evaluations when the algorithm
succeeds or terminates (without succeeding) summed over
51 runs and divided by the total number of successful
runs. If all runs fail, this measure is invalid;

4) the empirical cumulative distribution function (ECDF)
[21] of the number of executed function evaluations
at success and the best achieved FEVs at termination
over 51 runs of all 28 test functions at three problem
dimension sizes (10D, 30D and 50D), respectively. This
measure illustrates the efficiency and effectiveness of an
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TABLE I. PARAMETER SENSITIVITY ANALYSIS RESULTS BY USING ADVANCED STATISTICAL HYPOTHESIS TESTING METHODS ON ALL 28 CEC-2013
TEST FUNCTIONS AT PROBLEM DIMENSION SIZES 10D, 30D AND 50D, RESPECTIVELY. AMONG 30 TESTED PARAMETER SETTINGS ([NP, LP] ∈ [30, 50,

70, 200, 300] × [5, 10, 30, 50, 70]), THOSE LEADING TO THE STATISTICALLY BETTER PERFORMANCE (AT THE SIGNIFICANCE LEVEL 0.05) OVER OTHERS
WITH RESPECT TO 10D, 30D AND 50D PROBLEMS ARE DENOTED BY 10, 30 AND 50 AND SEPARATED IN ORDER BY “/” IN THEIR CORRESPONDING TABLE
CELLS. “-” INDICATES THE CORRESPONDING PARAMETER SETTING IS STATISTICALLY SIGNIFICANTLY WORSE THAN SOME OTHER PARAMETER SETTINGS

FOR SOLVING ALL 28 TEST FUNCTIONS AT CERTAIN PROBLEM DIMENSION SIZES.

Parameter Population Size (NP)
Learning Period (LP) 30 50 70 100 200 300

5 -/-/- -/-/- -/-/- -/-/- -/-/- -/-/-
10 -/-/- -/-/- 10/-/- -/-/50 -/-/- -/-/-
30 -/-/- 10/30/50 10/30/50 10/30/50 -/-/50 -/-/-
50 -/-/- 10/30/50 10/30/50 10/30/50 -/-/50 -/-/-
70 -/-/- 10/30/50 10/30/50 -/30/50 -/-/50 -/-/-

TABLE II. PERFORMANCE (PFM) OF SADE USING ONE PARAMETER SETTING (NP:50 AND LP:50) ADVOCATED BY PARAMETER SENSITIVITY
ANALYSIS ON 28 CEC-2013 TEST FUNCTIONS AT PROBLEM DIMENSION SIZES (DIM) 10D, 30D AND 50D, RESPECTIVELY. BEST, WORST, MEDIAN,

MEAN (STD) REPRESENT THE BEST, WORST, MEDIAN, MEAN (STANDARD DEVIATION) OF THE FEVS AT EXECUTION TERMINATION OVER 51 RUNS,
RESPECTIVELY. SR AND ERT STAND FOR THE SUCCESS RATE AND THE EXPECTED RUNNING TIME TO SUCCEED. ERT IS DENOTED BY “-” (INVALID)

WHEN ALL 51 RUNS FAIL.

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

10D

Best 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.44e-06 2.02e+01 7.56e-04 1.00e-08 1.00e-08 9.95e-01 9.95e-01 1.00e-08
Worst 1.00e-08 6.31e-02 5.48e+02 3.99e-03 1.00e-08 9.81e+00 4.18e+00 2.05e+01 5.25e+00 5.67e-02 1.00e-08 9.95e+00 1.25e+01 1.25e-01
Median 1.00e-08 1.00e-08 4.23e-03 3.91e-07 1.00e-08 9.81e+00 7.06e-03 2.04e+01 1.11e+00 2.46e-02 1.00e-08 4.16e+00 4.87e+00 1.00e-08
Mean 1.00e-08 1.66e-03 1.24e+01 1.83e-04 1.00e-08 5.77e+00 1.30e-01 2.04e+01 1.40e+00 2.28e-02 1.00e-08 4.48e+00 5.47e+00 1.59e-02
Std 0.00e-00 9.12e-03 7.65e+01 6.37e-04 0.00e-00 4.88e+00 5.91e-01 6.65e-02 1.25e+00 1.61e-02 0.00e-00 1.57e+00 3.06e+00 3.02e-02
SR 1.00 0.71 0.35 0.35 1.00 0.41 0.00 0.00 0.00 0.10 1.00 0.00 0.00 0.76
ERT 1.08e+04 1.17e+05 2.36e+05 2.67e+05 1.43e+04 1.83e+05 - - - 9.57e+05 2.61e+04 - - 7.80e+04

f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28
Best 1.74e+02 6.77e-01 1.01e+01 1.31e+01 2.15e-01 1.44e+00 2.00e+02 1.00e-08 5.35e+01 1.06e+02 1.08e+02 1.01e+02 3.00e+02 1.00e+02
Worst 9.85e+02 1.50e+00 1.01e+01 3.23e+01 4.89e-01 3.02e+00 4.00e+02 3.50e+01 1.24e+03 2.09e+02 2.06e+02 2.00e+02 3.00e+02 3.00e+02
Median 7.41e+02 1.11e+00 1.01e+01 2.28e+01 3.94e-01 2.20e+00 4.00e+02 8.84e+00 6.59e+02 2.00e+02 2.00e+02 1.06e+02 3.00e+02 3.00e+02
Mean 6.86e+02 1.12e+00 1.01e+01 2.28e+01 3.76e-01 2.23e+00 3.96e+02 1.13e+01 6.55e+02 1.94e+02 1.98e+02 1.27e+02 3.00e+02 2.96e+02
Std 1.99e+02 1.93e-01 2.76e-03 3.26e+00 5.65e-02 3.53e-01 2.80e+01 8.67e+00 2.36e+02 2.44e+01 1.29e+01 3.93e+01 5.45e-02 2.80e+01
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - - - - - 5.08e+06 - - - - - -

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

30D

Best 1.00e-08 1.02e+04 2.39e+00 5.57e+00 1.00e-08 6.37e-03 3.24e+00 2.08e+01 1.19e+01 2.22e-02 1.00e-08 1.99e+01 3.59e+01 1.00e-08
Worst 1.00e-08 8.85e+04 2.55e+07 7.97e+02 1.00e-08 7.23e+01 4.95e+01 2.10e+01 2.87e+01 4.73e-01 9.95e-01 6.24e+01 1.17e+02 1.18e+00
Median 1.00e-08 3.30e+04 1.02e+06 4.75e+01 1.00e-08 8.74e+00 1.69e+01 2.09e+01 1.59e+01 1.16e-01 1.00e-08 3.18e+01 7.35e+01 4.16e-02
Mean 1.00e-08 3.40e+04 3.32e+06 1.03e+02 1.00e-08 8.72e+00 1.92e+01 2.09e+01 1.69e+01 1.52e-01 5.85e-02 3.34e+01 7.21e+01 8.34e-02
Std 0.00e-00 1.63e+04 5.33e+06 1.52e+02 0.00e-00 1.03e+01 1.06e+01 5.21e-02 3.81e+00 1.02e-01 2.36e-01 8.92e+00 2.02e+01 2.25e-01
SR 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.94 0.00 0.00 0.12
ERT 2.52e+04 - - - 4.15e+04 - - - - - 8.84e+04 - - 2.46e+06

f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28
Best 4.09e+03 1.52e+00 3.04e+01 9.17e+01 1.28e+00 9.49e+00 2.00e+02 2.41e+01 2.92e+03 2.11e+02 2.48e+02 2.00e+02 4.22e+02 3.00e+02
Worst 5.95e+03 3.02e+00 3.05e+01 1.42e+02 2.75e+00 1.20e+01 4.44e+02 2.45e+02 5.77e+03 2.47e+02 2.73e+02 3.32e+02 7.30e+02 3.00e+02
Median 4.80e+03 2.39e+00 3.04e+01 1.25e+02 2.11e+00 1.10e+01 3.00e+02 1.12e+02 4.83e+03 2.25e+02 2.62e+02 2.00e+02 5.61e+02 3.00e+02
Mean 4.82e+03 2.38e+00 3.04e+01 1.25e+02 2.08e+00 1.09e+01 3.04e+02 1.14e+02 4.82e+03 2.26e+02 2.62e+02 2.10e+02 5.66e+02 3.00e+02
Std 4.08e+02 3.05e-01 2.82e-03 9.80e+00 2.51e-01 5.18e-01 7.68e+01 3.60e+01 4.72e+02 8.52e+00 5.19e+00 3.45e+01 7.24e+01 0.00e-00
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - - - - - - - - - - - -

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14

50D

Best 1.00e-08 7.34e+04 3.96e+05 6.51e+01 1.00e-08 1.82e+01 2.56e+01 2.10e+01 2.77e+01 4.68e-02 1.00e-08 7.26e+01 1.17e+02 3.75e-02
Worst 1.00e-08 4.22e+05 1.62e+08 2.79e+03 1.00e-08 9.05e+01 7.96e+01 2.12e+01 5.66e+01 4.97e-01 1.29e+01 1.58e+02 2.85e+02 5.05e+00
Median 1.00e-08 1.94e+05 1.79e+07 2.02e+02 1.00e-08 4.34e+01 4.88e+01 2.11e+01 3.58e+01 1.33e-01 1.00e-08 1.00e+02 2.02e+02 8.74e-02
Mean 1.00e-08 1.93e+05 3.33e+07 3.45e+02 1.00e-08 4.51e+01 4.84e+01 2.11e+01 3.63e+01 1.62e-01 5.85e-01 1.03e+02 2.04e+02 4.34e-01
Std 0.00e-00 6.94e+04 3.85e+07 4.63e+02 0.00e-00 9.31e+00 1.04e+01 3.65e-02 5.40e+00 9.17e-02 1.85e+00 1.85e+01 3.57e+01 8.44e-01
SR 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.69 0.00 0.00 0.00
ERT 4.30e+04 - - - 7.70e+04 - - - - - 3.49e+05 - - -

f15 f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28
Best 8.48e+03 2.48e+00 5.08e+01 2.24e+02 3.71e+00 1.83e+01 2.00e+02 1.21e+01 8.74e+03 2.48e+02 3.02e+02 2.00e+02 9.28e+02 4.00e+02
Worst 1.15e+04 3.68e+00 5.09e+01 3.10e+02 7.46e+00 2.17e+01 1.12e+03 5.64e+02 1.21e+04 3.05e+02 3.55e+02 3.99e+02 1.37e+03 3.58e+03
Median 1.03e+04 3.19e+00 5.08e+01 2.60e+02 5.76e+00 2.05e+01 8.36e+02 1.81e+01 1.04e+04 2.73e+02 3.22e+02 2.00e+02 1.15e+03 4.00e+02
Mean 1.02e+04 3.20e+00 5.08e+01 2.64e+02 5.78e+00 2.04e+01 7.74e+02 7.72e+01 1.03e+04 2.76e+02 3.23e+02 2.83e+02 1.16e+03 5.23e+02
Std 6.93e+02 2.95e-01 1.05e-02 1.82e+01 9.42e-01 6.98e-01 3.77e+02 1.18e+02 8.44e+02 1.23e+01 1.08e+01 8.98e+01 1.01e+02 6.14e+02
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - - - - - - - - - - - -

optimization algorithm as computation budgets and target
accuracies vary;

5) the computational complexity measured by CPU-seconds
at three problem dimension sizes (10D, 30D and 50D),
respectively [19].

B. Result Analysis

The original work on SaDE [10] included the empirical
study on SaDE’s parameter sensitivity, which, however, was
not conducted in a statistically rigorous manner. In this paper,
we make up this shortcoming by using advanced statistical
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TABLE III. WILCOXON’S SIGNED RANK TEST RESULTS FOR
COMPARING SADE (NP:50, LP:50) TO DE/RAND/1/BIN (NP:50, CR:0.9,

F:0.5) AT THREE PROBLEM DIMENSION SIZES 10D, 30D AND 50D,
RESPECTIVELY. R− DENOTES THE SUM OF RANKS FOR THE TEST

PROBLEMS IN WHICH SADE PERFORMS BETTER THAN DE/RAND/1/BIN,
AND R+ REPRESENTS THE SUM OF RANKS FOR THE TEST PROBLEMS IN

WHICH SADE PERFORMS WORSE THAN DE/RAND/1/BIN. LARGER RANKS
INDICATE LARGER PERFORMANCE DISCREPANCY.

DIM R− R+ pvalue

10D 5.641e+5 1.494e+5 0.000e+5
30D 6.724e+5 2.140e+5 0.000e+5
50D 6.374e+5 2.437e+5 0.000e+5

TABLE IV. COMPUTATIONAL COMPLEXITY MEASURED BY CPU
SECONDS ( [19]) AT 10D, 30D AND 50D, RESPECTIVELY. T0 MEASURES

THE COMPUTATION TIME OF BASIC OPERATIONS. T1 MEASURES THE
COMPUTATION TIME OF ONE EXECUTION RUN ON TEST FUNCTION f14 . T̂2

CONSIDERS THE VARIATION OF T1 IN DIFFERENT EXECUTION RUNS.

DIM T0 T1 T̂2 (T̂2 − T1)/T0

D = 10
0.152

13.686 13.088 -3.932
D = 30 14.105 14.092 -0.083
D = 50 15.626 15.508 -0.776

hypothesis testing methods to carry out parameter sensitivity
study in order to identify parameter settings (out of many
possibilities) that can lead to the statistically significantly
superior performance. More specifically, we first employ the
Iman and Davenport test [16], [17] to compare 30 parameter
settings over all 28 test functions to see whether there exist
at least two settings that can produce statistically significantly
different results. If this is the case, we then apply the Hochberg
post-hoc procedure [16], [17] to further identify the exact
statistically significantly superior settings. In our work, the
significance level is set to 0.05.

Friedman’s test is a well-known non-parametric two-way
analysis of variance method [18], which can be used to detect
among multiple algorithms whether there exists the statistically
significant difference between the performance of at least two
algorithms. It first converts the original performance measures
of all algorithms in comparison to ranking values based on
which the test statistic is computed. The calculated test statistic
is then converted to the p-value according to the F distribution.
By comparing this p-value to a pre-specified significant level,
we can draw the conclusion on whether at least two compared
algorithms demonstrate the statistically significantly different
performance. The Iman and Davenport test [16], [17] modifies
the Friedman’s test statistic to reduce the undesirable conser-
vative effect of the Friedman’s test. Although the Iman and
Davenport test as well as the Friedman’s test is able to iden-
tify the existence of the statistically significant performance
distinction among multiple compared algorithms, it cannot sep-
arate out which algorithms are significantly different from the
others. To address this issue, some post-hoc procedures can be
employed to perform pairwise performance comparisons under
the control of the family-wise error rate (FWER) [16], [17]. In
this work, the Hochberg procedure is used, as recommended in
[16], [17]. To apply the Hochberg procedure, we need to first
determine a control method, which is chosen as the algorithm
with the lowest ranking value obtained from the Iman and
Davenport test. For more detailed information on the Iman and
Davenport test and the Hochberg post-hoc procedure, readers
can refer to [16]–[18].

As mentioned in [17], the compared algorithm number
and the test problem number would impact the reliability and
power of the tests described above. As advocated in [17],
the tested problem number should be not smaller than two
times and not larger than eight times the compared algorithm
number. For population-based stochastic algorithms that we are
investigating, distinct random seeds may make the population
to traverse in different parts of the search space and thus
lead to the distinct performance even for solving the same
optimization problem. This insight allows us to treat applying
different random seeds to the same test function as different
test problems. Following this understanding, for each test
function at any tested problem dimension size, we choose
6 execution runs under 6 distinct random seeds to serve as
6 different test problems, which produces a total of 168 test
problems for each tested problem dimension size. This makes
the test problem number 5.6 times the tested parameter setting
number, which conforms to what was suggested in [17].

Table I presents the parameter sensitivity analysis results.
We can observe that SaDE is not very sensitive to the pa-
rameter choice: medium population sizes (NP: 50, 70, 100)
and sufficiently long learning periods (LP: 30, 50, 70) can
always lead to the statistically significantly better performance
at almost any tested problem dimension size. This finding
supports the related claims in the original SaDE work [10] in a
statistically rigorous way. It is worth noting that the previously
suggested parameter setting (NP:50, LP:50) is also included in
the advocated list.

Table II shows SaDE’s performance using one superior
parameter setting (NP:50, LP:50) suggested by the above
parameter sensitivity analysis (also by the original SaDE work
[10]). The computational complexity and ECDFs correspond-
ing to such a parameter setting are reported in Table IV
and illustrated in Figure 1, respectively. We can observe that
SaDE’s performance goes down as increasing the problem
dimension size. For 10D problems, SaDE has non-zero SRs
on 10 out of 28 test functions, i.e., f1, f2, f3, f4, f5, f6, f10,
f11, f14 and f22. On six out of the remaining 18 test functions,
i.e., f7, f9, f12, f13, f16 and f19, SaDE reaches FEVs less than
1.00e+00 in at least one run. For 30D problems, SaDE has the
non-zero SRs on four out of 28 test functions, i.e., f1, f5, f11
and f14. Among the remaining 24 test functions, SaDE reaches
FEVs less than 1.00e+00 in at least one run on two functions,
i.e., f6 and f10. For 50D problems, SaDE has the non-zero
SRs on 3 out of 28 test functions, i.e., f1, f5 and f11. Among
the remaining 25 test functions, SaDE reaches FEVs less than
1.00e+00 in at least one run on two functions, i.e., f10 and
f14.

Figure 1 illustrates, for each tested problem dimension size,
the ECDF of the number of executed function evaluations
when the algorithm reaches the pre-specified target FEVs
divided by the dimension size and the ECDF of the best
achieved FEVs at execution termination divided by the pre-
specified target FEVs, which are accumulated over 51 runs
of all CEC-2013 test functions. We can observe that, as for
smaller target FEVs (10−1, 10−4 and 10−8), the proportion of
successful execution runs increases from zero at about 316 ·D
function evaluations with respect to any tested dimension size.
It is worth noting that when the maxFEvals is reached, the
proportion still tends to increase, which means that SaDE may
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achieve even better performance if maxFEvals is increased.

We compare the performance of SaDE using the parameter
setting (NP:50 and LP:50) as advocated by parameter sensi-
tivity analysis with that of DE/rand/1/bin using the parameter
setting (NP:50, CR:0.9 and F:0.5) as typically advised in
previous works by applying the Wilcoxcon’s signed rank test
[18] over all 51 runs of all 28 functions. Table III shows that
SaDE achieves the statistically significantly better performance
than that of DE/rand/1/bin at any tested dimension size.

V. CONCLUSIONS

This paper investigated a well-known DE variant (SaDE)
on the CEC-2013 real-parameter single-objective optimization
testbed. We carried out parameter sensitive analysis using
advanced statistical hypothesis testing methods to compare
30 potentially effective parameter settings over 28 CEC-2013
test functions at 10D, 30D and 50D, respectively. The results
reveal that SaDE is less sensitive to the choice of parameters
since, i.e., under quite a number of parameter settings SaDE
can exhibit the statistically significantly better performance
than the other settings, which supports the related claims in
the original SaDE work in a statistically rigorous manner.
We reported the performance of SaDE using one superior
parameter setting suggested by parameter sensitivity analysis
according to the protocol of the CEC-2013 testbed along
with some additional indices and figures to better depict
SaDE’s performance. Furthermore, we statistically compared
this performance with that of a widely used classic DE strategy
DE/rand/1/bin under a typically advised parameter setting,
which significantly favors SaDE.
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(a) Problem dimension size: 10D
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(b) Problem dimension size: 10D
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(c) Problem dimension size: 30D
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(d) Problem dimension size: 30D
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(e) Problem dimension size: 50D
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(f) Problem dimension size: 50D

Fig. 1. Empirical cumulative distribution function (ECDF) [21] of (a)(c)(e): the number of executed function evaluations (FEvals) when the algorithm succeeds
in reaching certain FEVs (denoted in the legend as TERMFEV: 10e+1, 10e-1, 10e-4 and 10e-8) divided by problem dimension sizes, which is accumulated
over all 51 execution runs of 28 CEC-2013 test functions at problem dimension sizes 10D, 30D and 50D, respectively. (b)(d)(f): the best achieved FEVs at
termination (Df) divided by certain FEVs (denoted in the legend as TERMFEV: 10e+1, 10e-1, 10e-4 and 10e-8), which is accumulated over all 51 execution
runs of 28 CEC-2013 test functions at problem dimension sizes 10D, 30D and 50D, respectively.
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Algorithm 2 The Original SaDE Algorithm
Input: NP, LP

1: Initialize the generation counter g = 0, the strategy selection probability stPbk,g = 1/4, k = 1, . . . , 4, and the CRmk,g =
0.5, k = 1, 2, 3; Set the success and failure archives to empty

2: Initialize the population Pg of NP D-dimensional individuals: Pg = {x1,g, . . . ,xNP,g} with xi,g = {x1
i,g, . . . , x

D
i,g}

3: Evaluate the objective function value of each individual in Pg , i.e., f(xi,g), i = 1, . . . ,NP
4: while the predefined termination criteria are not met do
5: for i = 1→ NP do
6: Select a strategy index ki in {1, 2, 3, 4} based on stPbk,g, k = 1, . . . , 4 using the stochastic universal sampling
7: Randomly generate a F value according to the normal distribution randn(0.5, 0.3)
8: Randomly select in {1, . . . ,NP} five mutually exclusive indices rm,m = 1, . . . , 5 that are distinct from i
9: Generate a mutant vector vi,g = {v1i,g, . . . , vDi,g}:

if (ki == 1) “DE/rand/1/bin” then
vi,g = xr1,g + F · (xr2,g − xr3,g)

end if
if (ki == 2) “DE/current-to-gbest/1/bin” then
vi,g = xi,g + F · (xgbest,g − xi,g) + F · (xr2,g − xr3,g)

end if
if (ki == 3) “DE/rand/2/bin” then
vi,g = xr1,g + F · (xr2,g − xr3,g) + F · (xr4,g − xr5,g)

end if
if (ki == 4) “DE/current-to-rand/1” then
vi,g = xi,g + randu(0, 1) · (xr1,g − xi,g) + F · (xr2,g − xr3,g)

end if
10: Generate a trial vector ui,g = {u1

i,g, . . . , u
D
i,g}:

if (ki == 1) or (ki == 2) or (ki == 3) then
Randomly generate a CR value according to the normal distribution randn(CRmki

, 0.1) subjected to CR ∈ [0, 1]
jrand = ceil(randu(1, D))
for j = 1→ D do

uj
i,g =

{
vji,g if randu(0, 1) ≤ CR or j = jrand

xj
i,g otherwise

end for
else
ui,g = vi,g

end if
11: Evaluate the objective function value of the generated trial vector ui,g

12: if (f(ui,g) ≤ f(xi,g)) then
13: xi,g+1 = ui,g , and store the tuple (g, ki,CR) (if ki == 1, 2 or 3) or (g, ki) (if ki == 4) into the success archive
14: else
15: xi,g+1 = xi,g , and store the tuple (g, ki) into the failure archive
16: end if
17: end for
18: if (g ≥ LP ) then
19: if (g > LP ) then
20: Remove those tuples with the first elements smaller or equal to g − LP from the success and the failure archives
21: end if
22: Calculate Sk,g and Fk,g , k = 1, . . . , 4 as the number of tuples having the second elements equal to k in the success

and failure archives, respectively
23: if (Sk,g + Fk,g > 0) then
24: stPbk,g = Sk,g/(Sk,g + Fk,g) + 0.01
25: else
26: stPbk,g = 0.01
27: end if
28: stPbk,g = stPbk,g/

∑
k=1,...,4 stPbk,g

29: Calculate CRmk,g, k = 1, 2, 3 as the median value of the third elements in those tuples in the success archive having
the second elements equal to k, k = 1, 2, 3

30: end if
31: Increase the generation counter: g = g + 1
32: end while

NOTE: (1) randu(a, b) is a uniform random number generator sampling in [a, b]; (2) randn(a, b) is a Gaussian random
number generator with mean a and standard deviation b; (3) ceil(c) takes on the smallest integer larger than or equal to c.
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