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Abstract. Multi-objective problems with parameter interactions can
present difficulties to many optimization algorithms. We have investi-
gated the behaviour of Simplex Crossover (SPX), Unimodal Normally
Distributed Crossover (UNDX), Parent-centric Crossover (PCX), and
Differential Evolution (DE), as possible alternatives to the Simulated
Binary Crossover (SBX) operator within the NSGA-II (Non-dominated
Sorting Genetic Algorithm II) on four rotated test problems exhibiting
parameter interactions. The rotationally invariant crossover operators
demonstrated improved performance in optimizing the problems, over a
non-rotationally invariant crossover operator.

1 Introduction

Traditional genetic algorithms that use low mutation rates and fixed step sizes
have significant trouble with problems with interdependent relationships between
decision variables, but are perfectly suited to many of the test functions currently
used in the evaluation of genetic algorithms [1]. These test functions are typically
linearly separable and can be decomposed into simpler independent problems.
Unfortunately, many real-world problems are not linearly separable, although
linear approximations may sometimes be possible between decision variables.

Interdependencies between variables can be introduced into a real-coded func-
tional problem by rotating the coordinate system of a test function. A rotated
problem cannot be solved efficiently by the directionless step-sizes and low mu-
tation rates that Genetic Algorithms typically use [1]. Although the NSGA-II
is a very robust multi-objective optimization algorithm it suffers from similar
limitations as traditional Genetic Algorithms on these problems.

Previous work has reported on the poor performance of a number of Multi-
objective Evolutionary Algorithms, including the NSGA-II, on a rotated prob-
lem [2]. NSGA-II uses a crossover technique called Simulated-Binary Crossover
(SBX) [3,4], combined with a uniform crossover operator in which half the time
parameters of an offspring solution are replaced with parameters from a par-
ent solution. This crossover technique searches effectively along the principle
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coordinate axes of the decision space. This makes finding more optimal solu-
tions difficult when the decision space is large, and the problem has parameter
interactions. Problems which are rotated, and not aligned with the coordinate
axes typically require correlated self-adapting mutation step sizes in order to
efficiently search for optimal solutions [1].

Differential Evolution (DE) has previously demonstrated rotationally invari-
ant behaviour in the single objective and multiobjective domain [5,6,7]. Simplex
Crossover (SPX), Parent Centric Crossover (PCX), and unimodal Normal Dis-
tribution Crossover (UNDX-m) have also demonstrated rotationally invariant
behaviour on single objective test problems. This provides the motivation to
study the worth of these multi-parent crossover techniques on rotated multi-
objective optimization problems, where such characteristics are desirable.

Experiments have been conducted on rotated problem from [7]. These prob-
lems were rotated arbitrarily and uniformly in the decision space in order to test
the rotationally invariant behaviours of the crossover operators.

In Section 2 we will briefly introduce the crossover operators used in this
study, followed by Section 3, where the methodology and parameters associ-
ated with the experiments are discussed. Section 4 discusses the results of these
experiments, followed by the conclusions drawn from this study in Section 5.

2 Background

The NSGA-II uses a simulated binary crossover operator [4] with uniform cross-
over to generate offspring parameter values. The SBX operator takes two par-
ents and produces two offspring, but does not have the property of rotational
invariance because the correlation between the location of parents, and the lo-
cation of offspring which are generated, is lost under a rotation of the decision
space. The discrete crossover of variables also results in non-rotationally invari-
ant behaviour. For example, if an offspring vector has a parameter replaced by a
parent parameter, as it might under some uniform crossover scheme, rotational
invariance is destroyed [8]. It has been shown that the SBX has a zero proba-
bility of generating some points in the space between two parents [9], although
in the new version of SBX implemented in the latest revision of NSGA-II, this
problem has been addressed by generating offspring in quadrants adjacent to the
location of the parents, as well as surrounding the parents.

The UNDX crossover [10] has demonstrated excellent performance in optimiz-
ing highly epistatic functions [11]. It generates offspring around a centroid region
specified by a number of parents. It has been applied to some difficult real world
problems such as design of optical lens systems [12]. A multi-parent variant of
the UNDX was proposed, called UNDX-m [13]. The UNDX-m covers the search
space more effectively by having a greater diversity of offspring generated, and
it is this variant that we will be considering.

The PCX [14,15] is similar to the UNDX-m, but instead of distributing the
offspring around the centroid of a number of parents, the offspring distribute
around the parents themselves.
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The Simplex crossover (SPX) was originally proposed in [16]. It generates a
simplex from a number of parents. This simplex is expanded, and offspring are
generated inside the expanded region.

The other reproduction technique studied here is Differential Evolution, which
differs from other EAs in the mutation and recombination phase. Differential
Evolution has also been applied to multi-objective problems [17,18,19,20,6,7].
Unlike stochastic techniques such as Genetic Algorithms and Evolutionary Strat-
egies, where perturbation occurs in accordance with a random quantity, Differen-
tial Evolution uses weighted differences between solution vectors to perturb the
population. The variant of differential evolution used in this study is known as
DE/current-to-rand/1 [8]. In order to maintain diversity, a Log-normal dithering
operator was employed as well [21]. This operator maintains rotational invari-
ance, while helping to randomly perturb individuals within the population.

3 Experiments

In order to test each of the crossover techniques, the crossover operator of NSGA-
II was replaced with one of the rotationally invariant crossover operators. For
the SPX, UNDX-m, and PCX, a single set of parents was randomly selected each
generation from the mating pool. These parents were used to generate 100 new
offspring individuals. For the DE and SBX variants, parents were randomly se-
lected from the mating pool, and this was repeatedly done in a single generation
for each of the 100 offspring generated. A population size of 100 individuals was
used for each of the algorithms on each of the test problems. A number of the
crossover techniques investigated here have not previously been studied within
the NSGA-II framework, and we expect that some of the choices of our parame-
ter settings to be sub-optimal for the problems explored. It is not our intention
to perform a comparative study in order to find the best parameter settings of
these crossover techniques, but we do expect non-specifically tuned settings to
demonstrate improvements in the performance of the NSGA-II with the rota-
tionally invariant behaviour of the DE, SPX, UNDX-m, and PCX operators. A
number of appropriate parameter settings have been reported for these operators
and we have utilised these reported settings where possible. It should be noted
that these settings were reported with respect to single-objective optimization
problems. We leave a more detailed comparative study of these operators on
rotated multi-objective problems, as an area of future study.

For the DE variant of NSGA-II, F was set to 0.8 and K was set to 0.6.
Suggestions from the literature helped guide our choice of parameter values for
the NSDE [5]. The factor which controls the spread of the distribution for F in
the dithering operator was set to 0.5 [21].

In the SPX operator, the simplex size, ε, determines the size of the expanded
simplex, and we have used

√
n + 1 which was used in previous studies in the

single objective domain, where n is the decision space dimension. A mutation
rate of 0.1 was also used with the UNDX-m, PCX, SPX, and SBX variants, using
the mutation operator in NSGA-II. For the UNDX-m operator, the parameters
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σξ = 1√
m

and ση= 0.35√
n−m

were recommended in [13] and we have used these
values in this study. For the PCX, the σξ and ση parameters were set to 0.7
and 0.2 respectively. The PCX variant is sensitive to the σξ parameter. If σξ is
too small the offspring generated do not spread across the Pareto-optimal front.
In the UNDX-m and PCX version of NSGA-II, m was assigned a value of 3.
The NSGA-II used a crossover rate of 0.9, but the other variants each used a
crossover rate of 1.0.

Experiments were conducted on the unimodal problem R1, R2, R3, and R4,
from [7]. Each of these problems incorporates features which are designed to trap
points from progressing along the Pareto-optimal front. Problem R1 is unimodal.
Problem R2 is discontinuous in the objective space. Problem R3 has a non-uniform
mapping between the decision and objective spaces. Problem R4 is deceptive and
has a non-local Pareto-optimal front which can trap points from progressing to the
global Pareto-optimal front. These problems are described in more detail in [7].
The problems are also 10-dimensional in the decision space. Rotations were per-
formed in the decision space, on each plane, using a random uniform rotation ma-
trix generated using the technique described in [7]. The rotation introduces non-
linear dependencies between all parameters. Each algorithm was run 50 times on
each test problem, for a total of 800 generations (80,000 problem evaluations) for
each run. A new random uniform rotation matrix was generated for each run of
each algorithm. For the purposes of evaluating the algorithms, the generational
distance metric was employed, as well as its inverse, in order to measure both the
convergence to the Pareto-optimal front, and the diversity of solutions across the
front [6]. The GD(Q,P*) metric measure the convergence of the non-dominated set
Q, towards the Pareto-optimal set P. Similarly, the GD(P*,Q) metric measure the
average distance of P to Q, thereby quantifying the degree that Q covers the set
P. As both measures approach zero, one can expect good coverage of the Pareto-
optimal set, as well as good convergence.

4 Discussion and Results

Previous work has reported on problem R1 [7] and the tendency of the NSGA-
II to migrate non-dominated solutions away from the Pareto-optimal region, as
well as the difficulty in expanding across the Pareto-optimal front because of
these easily favoured non-dominated solutions.

Each of the rotationally invariant crossover operators apparently yields supe-
rior performance over the SBX on this relatively simple problem, with respect to
both convergence to the Pareto-optimal front and coverage across the front. The
boxplots in Figure 1 also demonstrates that the variation in both the GD(Q,P*)
which measures convergence, and the GD(P*,Q) which measure spread, is rela-
tively low for the SPX, DE, UNDX, and PCX variants.

Over successive generations, the SBX operator generates non-dominated so-
lutions which skew away from the Pareto-optimal front [7]. In Problem R2, the
Pareto-optimal front is discontinuous. This characteristic exacerbates this be-
haviour further, because the infeasible regions do not allow better non-dominated



314 A. Iorio and X. Li

DE UNDX SPX PCX SBX

R1

DE UNDX SPX PCX SBX

R2

DE UNDX SPX PCX SBX

R3

DE UNDX SPX PCX SBX

R4

Fig. 1. Boxplots of the GD(Q, P∗) and GD(P∗, Q) for problem R1, R2, R3, and R4.
The GD(Q, P∗) boxplot is always to the left of the GD(P∗, Q) boxplot.

solutions to be found through independent perturbations of the decision vari-
ables when the problem is rotated, as can be seen with the SBX in Figure 2.
Contrasting this, from Figure 2, DE does manage to find a variety of solutions
close to the Pareto-optimal region. In the boxplots of Figure 1 it is apparent that
there is a high variation in the convergence and diversity of the non-dominated
solutions found with SBX on R2. The measured convergence and diversity is
also worse than the other rotationally invariant operators.

For Problem R3, the NSGA-II wih SBX achieved a rather good spread of
non-dominated solutions, but was not able to converge sufficiently to the Pareto-
optimal front. Each of the rotationally invariant crossover operators outper-
formed the SBX on this problem as well.

Problem R4 is highly multimodal, and deceptive. When this problem is ro-
tated, a number of regions can hamper SBX from increasing the spread of solu-
tions across a non-dominated front. This is apparent in the boxplot of Figure 1
as well, where the average of the GD(P*,Q) metric is significantly worse than
the rotationally invariant schemes.
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Fig. 2. 50 runs of the NSGA-II with SBX and DE Problem R2
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Fig. 3. Average GD(Q, P∗) and GD(P∗, Q) for problem R2 over 300 generations

From the boxplots in Figure 1 it is apparent that the DE variant demonstrated
very competitive performance with respect to the spread of solutions on Problem
R1, R2, and R3. It is also of relevance that the number of evaluations required
can be significantly reduced through the use of rotationally invariant crossover
operator in the presence of parameter interactions. This is demonstrated by the
plots in Figure 3. These plots demonstrate the superior performance on Problem
R2 of the DE, SPX, UNDX, and PCX variants, in comparison with the base-
line NSGA-II with SBX. It is apparent that the rotationally invariant crossover
operators have faster convergence to the Pareto-optimal front, while also main-
taining a diverse set of solutions across the front. This has important practical
relevance to real-world problems which often exhibit parameter interactions and
also have computationally expensive evaluations of solutions.

5 Conclusion

This paper has described an empirical study of the effects that rotation of prob-
lems has on the NSGA-II. Rotation can trap the search on four problems with the
properties of uni-modality, discontinuous Pareto-optimal fronts, a non-uniform
mapping between the objective and decision space, and a problem with a decep-
tive front. We have demonstrated that on these four problems, that the UNDX,
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SPX, and DE outperformed the SBX, taking into consideration the performance
metrics for convergence to the Pareto-optimal front and distribution of solutions
across the front.

There are a number of future avenues of work which may be worthwhile
considering, such as the effect of rotation on problems with more than two ob-
jectives, and when the dimensionality of the decision space increases. One would
expect an increase in difficulty with an increase in the decision space dimension,
with degraded non-dominated solutions becoming even more likely with non-
rotationally invariany algorithms, because there will be far more non-dominated
solutions generated which are not Pareto-optimal.

Secondly, it would be useful to conduct further tests on problems which do
not have a linearly distributed Pareto-optimal set. This could be achieved using
the Okabe framework for constructing multiobjective test problems [22].
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