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1 Introduction

Many practical optimization problems are dynamic in the sense that the best
solution changes in time. An optimization algorithm, therefore, has to both
find and subsequently track the changing optimum. Examples include the
arrival of new jobs in scheduling, changing expected profits in portfolio opti-
mization, and fluctuating demand.

Clearly, if the changes in the problem instance are radical, the best one can
do is to repeatedly solve the optimization problem from scratch. However, in
most practical applications the changes are gradual. If this is the case, it should
be possible to speed up optimization after a problem change by utilizing some
of the information on the fitness landscape gathered during the optimization
process so far. In recent years, appropriately modified evolutionary algorithms
(EAs) have been shown to achieve this successfully; see, e.g., [11, 23]; the focus
of this chapter is to present similar advances within the context of particle
swarm optimization.

Particle swarm optimization (PSO) is a versatile population-based opti-
mization technique, in many respects similar to evolutionary algorithms. Ba-
sically, particles “fly” above the fitness landscape, while a particle’s movement
is influenced by its attraction to its neighborhood best (the best solution found
by members of the particle’s social network), and its personal best (the best
solution the particle has found so far). PSO has been shown to perform well
for many static problems [32], and is introduced in more detail in Section 2.

The application of PSO to dynamic problems has been explored by var-
ious authors [9, 7, 14, 17, 19, 20, 21, 32, 29, 38]. The overall consequence of
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this work is that PSO, just like EAs, must be modified for optimal results
in dynamic environments. There are two main difficulties that need to be
addressed:

1. Outdated memory: If the problem changes, a previously good solution
stored as neighborhood or personal best may no longer be good, and will
mislead the swarm towards false optima if the memory is not updated.

2. Diversity loss: In normal operation, the swarm contracts around the
best solution found during the optimization. As has been demonstrated,
the time taken for a partially converged swarm to re-diversify, find the
shifted peak, and then re-converge is quite deleterious to performance [4].

A number of adaptations have been applied to PSO in order to solve
these difficulties; memories can be refreshed or forgotten and swarms may
be re-diversified through randomization, repulsion, and dynamic information
exchange and with the use of multi-populations. An account of these adap-
tations, and a summary of how PSO can detect change (this is especially
important when change is unpredictable), is presented in Section 3. A more
detailed review of our own work on PSO algorithms, the species PSO and the
multi-swarm PSO, is described and extended in Section 4. These approaches
are empirically tested and compared in Section 5. The chapter concludes with
a summary and some ideas for future work.

2 Particle Swarm Optimization

Optimization with particle swarms (see Chap. 2 for a detailed introduction)
has two major ingredients, the particle dynamics and the particle informa-
tion network. The particle dynamics are derived from swarm simulations in
computer graphics [34], and the information sharing component is inspired by
social networks [18, 25]. These ingredients make PSO a robust and efficient
optimizer of real-valued objective functions (although PSO has also been suc-
cessfully applied to combinatorial and discrete problems). PSO is an accepted
computational intelligence technique, sharing some qualities with evolution-
ary computation [1]. For an introduction to PSO see also Chap. 2 of this book.

In PSO, population members (particles) move over the search space ac-

cording to

v(t+1)
x(t+1)

v(t) +a(t+1) (1)
x(t) +v(t+1) (2)

where a, v, x, and ¢ are acceleration, velocity, position and time (iteration
counter) respectively.

A particle’s acceleration a is primarily governed by attraction to two so-
lutions: its personal best and its neighborhood best. Particles possess a mem-
ory of the best (with respect to an objective function) location that they
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have visited in the past, their personal best or pbest, and of its fitness. In
addition, particles have access to the best location of any other particle in
their neighborhood, usually denoted as neighborhood best or gbest. Naturally,
these two locations will coincide if the particle has the best local best in its
neighborhood. Several neighborhood topologies have been tried, with the fully
connected network remaining a popular choice for unimodal problems. With
this neighborhood structure, every particle will share information with every
other particle in the swarm so that there is a single gbest global best attractor
representing the best location found by the entire swarm.

The particles experience a linear or spring-like attraction, weighted by a
random number, towards each attractor. Convergence towards a good solution
will not follow from these dynamics alone; the particle movement must pro-
gressively contract. This contraction is implemented by Clerc and Kennedy
with a constriction factor x, x < 1, [16]. For our purposes here, the Clerc-
Kennedy PSO will be taken as the canonical swarm; x replaces other energy
draining factors such as decreasing ‘inertial weight’ and velocity clamping.

Overall, the acceleration of particle ¢ in Eq.1 is given by

a; = x[cer - (Pg — %) +ce2 - (Pi —x3)] — (1 = x)v; (3)

where €7 and €5 are vectors of random numbers drawn from the uniform dis-
tribution ¢[0,1], ¢ > 2 is the spring constant and p;, p, are personal and
neighborhood attractors. This formulation of the particle dynamics empha-
sizes constriction as a frictional force, opposite in direction and proportional
to velocity. Clerc and Kennedy derive a relation for x(c): standard values are
¢ = 2.05 and y = 0.729843788. The complete PSO algorithm for maximizing
an objective function f is summarized as Algorithm 2.

3 Addressing the Challenges in Dynamic Environments

As has been mentioned in Section 1, in dynamic environments, PSO suffers
from outdated memory and lost diversity. This section summarizes the ap-
proaches proposed in the literature to address these challenges. Because many
of these approaches explicitly react to a change in the landscape, we start by
discussing ways to detect a change.

3.1 Detecting a Change

In many applications, a change is known to the system, e.g., in scheduling,
when a new job arrives and has to be integrated into the schedule. If the
time of a change is not known, it has to be detected. In the literature, this is
usually done by simply re-evaluating one or more solutions, and concluding
that a change has occurred if the fitness value of at least one of these solu-
tions has changed [14, 20]. How many solutions and which ones to re-evaluate
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Algorithm 2 Canonical PSO
FOR EACH particle 4
Randomly initialize v;,x; = p;
Evaluate f(p;)
g = argmax f(pi)
REPEAT
FOR EACH particle ¢
Update particle position x; according to Eqs. 1, 2 and 3
Evaluate f(x;)
//Update personal best
IF f(x;) > f(ps) THEN
Pi = X;
//Update global best
IF f(x;) > f(py) THEN
py = argmax f(p;)
UNTIL termination criterion reached

may depend on the particular application. Usually, the best solution found so
far is re-evaluated, which prevents the algorithm from converging around a
previously good solution which is no longer good.

In [22], a change in the environment is detected from observing the algo-
rithm behavior, which has the advantage of also working in noisy environments
when the above re-evaluation scheme might lead to false alarms.

3.2 Memory Update

If the environment changes, the particle memory (namely the best location
visited in the past, and its corresponding fitness) may no longer be valid, with
potentially disastrous effects on the search.

This problem is typically solved in one of two ways: re-evaluating the
memory or forgetting the memory [14]. In the latter, each particle’s memory
is simply set to the particle’s current position, and the global best is updated
making sure that p, = argmax f(p;).

3.3 The Problem of Lost Diversity

If the environment changes after the swarm has converged to a peak, it takes
time for the population to re-diversify and re-converge, making it slow in
tracking a moving optimum.

The diversity loss was examined in [3] based on the swarm diameter |5/,
defined as the largest distance, along any axis, between any two particles.
When a change occurs and the new optimum location is within the collapsing
swarm, there is a good chance that a particle will find itself close to the new
optimum within a few iterations and the swarm will successfully track the
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moving target. The swarm as a whole has sufficient diversity. However, if
the new optimum is outside the swarm’s expansion, the low velocities of the
particles (which are of order |S|) will inhibit re-diversification and tracking,
and the swarm can even oscillate about a false attractor and along a line
perpendicular to the true optimum, in a phenomenon known as linear collapse
[6]. [4] uses these considerations to examine under what conditions a swarm
can track a single moving optimum.

Because of the problem of convergence, either a diversity increasing mech-
anism should be invoked at change (or at predetermined intervals), or suf-
ficient diversity has to be ensured at all times [8]. There are four principle
mechanisms proposed in the literature for either re-diversification or diversity
maintenance: randomization [20], repulsion [6], dynamic networks [21, 37] and
multi-populations [30, 7]. They will be discussed in turn in the following.

3.4 Re-diversification

Hu and Eberhart [20] study a number of re-diversification mechanisms. They
all involve randomization of the entire or part of the swarm after a change.
Since randomization implies information loss, there is a danger of erasing too
much information and effectively re-starting the swarm. On the other hand,
too little randomization might not introduce enough diversity to cope with the
change. In the multi-swarm approaches (see below), it has been suggested to
always keep one swarm searching, and randomize the least-fit swarm whenever
all swarms have converged [8]. The way quantum particles are used in this
chapter, as described in Section 4.1, can also be seen as a form of local re-
diversification.

3.5 Repulsion

A constant degree of swarm diversity can be maintained at all times through
some type of repulsive mechanism. Repulsion can be either between parti-
cles, or from an already-detected optimum. For example, Krink et al. [36]
study finite-size particles as a means of preventing premature convergence.
The hard sphere collisions produce a constant diversification pressure. Alter-
natively, Parsopoulos and Vrahatis [32] place a repeller at an already-detected
optimum, in an attempt to divert the swarm and find new optima. Neither
technique, however, has been applied to the dynamic scenario.

An example of repulsion that has been tested in a dynamic context is the
atom analogy [6, 5, 9, 7]. In this model, a swarm is comprised of ‘charged’” and
‘neutral’ particles. The charged particles repel each other, leading to a cloud
of charged particles orbiting a contracting, neutral, PSO nucleus (as shown
in Figure 1). Charge enhances diversity in the vicinity of the converging PSO
subswarm, so that optimum shifts within this cloud should be traceable. Good
tracking (outperforming canonical PSO) has been demonstrated for unimodal
dynamic environments of varying severities [4].
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Fig. 1. An example of a swarm containing both neutral and charged particles. A
solid circle denotes a neutral particle, whereas a hollow circle denotes a charged par-
ticle. |ST| and |S™| denote the size of the charged and neutral swarms, respectively.

In [7, 8], the charged particle idea has been simplified to the quantum
particle, which does not follow the usual particle movement laws, but instead
is re-generated in each iteration at a random position in a vicinity around the
swarm’s global best. Quantum particles have been shown to be easier to con-
trol, to be computationally faster and to perform better than charged particles
in [7, 8]. More details on quantum particles are discussed in Section 4.1.

3.6 Dynamic Network Topology

Adjustments to the information-sharing topology can be made with the in-
tention of reducing, maybe temporarily, the desire to move towards the global
best position, thereby enhancing population diversity. Li and Dam [37] use
a grid-like neighborhood structure, while Janson and Middendorf [21] apply
a tree-like structure. Both papers report improvements over unmodified PSO
for unimodal dynamic environments. In the latter approach, the particles can
change places in the hierarchy, In [22], it has been additionally suggested to
break up the tree into sub-trees after a change, so that they can independently
search for a new optimum for a while, until they are joined again.

A division of the swarm into subswarms is intuitively helpful in dynamic
multi-modal environments, where several promising regions of the search space
can be tracked simultaneously. This is the core idea of the speciation PSO
(SPSO) proposed in [27, 30], and the multi-swarm PSO (MPSO) proposed in
[7, 8]. SPSO uses a fixed swarm size and dynamically divides the swarm into
subswarms based on a technique known as clearing [33]. MPSO, on the other
hand, has a set of swarms of predetermined size, and adjusts the number of
such swarms during the run, thereby also changing the overall population size.
These two approaches are examined in more detail below.
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4 Multi-swarms and Speciation

The authors of this chapter have independently proposed two different ap-
proaches which divide the swarm into a number of subswarms: the multi-
swarm PSO (MPSO, [7, 8]) and the speciation-based PSO (SPSO, [27, 31, 28]).
The motivation for both approaches is that in a dynamic environment, it is
useful to maintain information about several promising regions of the search
space. This proposition was already the motivation behind the self-organizing
scouts approach [11] and has recently been confirmed also in [12]. By dividing
up the swarm, the subswarms may simultaneously track different promising
regions of the search space. This is particularly helpful if the environment
changes in a way that makes a previous local optimum the new global opti-
mum. If one of the subswarms was tracking the local optimum or a nearby
region, the new global optimum is immediately found.

In this section, we describe the previously proposed MPSO and SPSO
in detail and also present some new extensions. The approaches are then
compared empirically in Section 5. Because both approaches now use quantum
particles, these are discussed first.

4.1 Quantum Particles

The quantum particles have been proposed in [7] as a means to maintaining a
certain level of diversity within a swarm. They have been inspired by atomic
models. In a classical atom, a number of electrons orbit, at various distances,
a small ball of nucleons. The picture is altered in the quantum atom; the elec-
trons do not orbit in deterministic paths but are distributed in a probability
‘cloud’ around the nucleus. The PSO atom consists of a nucleus of normal PSO
particles moving under the normal update rules. Typically this nucleus will be
shrinking in size as it converges on an optimum. The nucleus is surrounded by
quantum particles. Quantum particles do not follow PSO dynamics but are
placed at positions around the center of the nucleus, defined by p,, according
to a probability distribution. As a result, they do not converge, but maintain
a constant level of diversity.

Different probability distributions are conceivable. It is reasonable to as-
sume that the quantum probability distribution should be spherically sym-
metric, i.e., shells of constant density centered on p,. In the following, three
different distributions are considered: The Gaussian distribution, the uniform
volume distribution (UVD), and a non-uniform volume distribution (NUVD);
see Figure 2 for examples in a two-dimensional space. The UVD in d dimen-
sions can be generated as follows [15]:

1. Generate a point x; from A[0,1] for 1 <14 < d.

2. Calculate the distance of x; to the origin dist = Zz:li z2.
3. Select a value u from U[0, 1].
4. The new point will be 7.ouq - xi%.
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Gaussian distribution in 2D (std dev = 0.5) Uniform volume distribution in 2D (r=1.0) Non-uniform volume distribution in 2D (r = 0.5)
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Fig. 2. 1,000 sampling points for a Gaussian distribution, a uniform volume distri-
bution (UVD), and a non-uniform volume distribution (NUVD), in two dimensions.

Teloud 18 @ parameter defining the radius of the distribution.

The above procedure can be modified to generate other distributions by
simply changing the distribution for u. For example, instead of selecting u
from U[0,1] in Step 3, Gaussian N[0, o] can be used with o set to roughly é,
since in a Gaussian distribution with 30 away from the mean would cover 99%
of all possible samples. This would create a distribution with higher density
closer to mean. When changing the calculation of the new solution in Step 4
t0 Teloud * Xigjer, one obtains the non-uniform volume distribution (NUVD)
where the density decreases linearly with distance from the center.

Quantum particles are somehow related to the bare-bones PSO proposed
by Kennedy, where each dimension of the new position of a particle is ran-
domly selected from a Gaussian distribution with the mean being the average
of p; and pg and the standard deviation o being the distance between p; and

pe [24]:

Pi +P
xi o N (2 PE ps — pg ) @)

Richer and Blackwell also reported work on PSO variants employing Gaus-
sian distribution [35], as well as the more general Lévy distribution*. Algo-
rithms employing a Lévy or Cauchy distribution, which both have a long
fat tail, are more capable of escaping local optima than the Gaussian counter-
part. Escape from local optima is profitable in circumstances in which a single
global optimum must be found. In the context of tracking moving peaks in a
multi-modal dynamic environment, we are more interested in finding multiple
peaks in parallel so that when peaks move the optimizer still has a chance to
relocate them. Distributions that can provide good sampling in an adjacent
area of the peaks would be more suitable; hence the Gaussian distribution is
preferred.

4 The shape of the Lévy distribution can be controlled by a parameter a. For o = 2
it is equivalent to Gaussian distribution, whereas for a = 1 it is equivalent to the
Cauchy distribution [35].
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4.2 Multi-swarm PSO

The multi-swarm PSO (MPSO) was originally proposed in [7] and then ex-
tended in [8] and [2]. It maintains diversity on two levels: the swarm is divided
into a number of subswarms which are forced to different areas of the search
space (diversity between swarms), and each swarm has some quantum parti-
cles to ensure diversity within the swarm.

Basic Features

The MPSO proposed in [8] uses the following mechanisms:

Change Detection and Outdated Memory: For change detection, in
each iteration, a subswarm’s global best is re-evaluated. If the fitness value
has changed, a change is detected and all of the subswarm’s personal best
are re-evaluated before commencing.

Multiple Swarms: The particles in MPSO are divided into a number of
M independent subswarms. Each subswarm in MPSO has a fixed number
of particles. Information sharing within a swarm is global, i.e., any good
position found by any particle (neutral or quantum) is available to any
other. It is known that a global information topology between particles
produces better optimization of a uni-modal environment, whereas a local
topology is preferred in the multi-modal situation. Even if the landscape is
multi-modal, the role of the neutral PSO is to climb up a single peak. The
diversity needed to find peaks stems from a dynamic interaction between
separate swarms (exclusion, see below) rather than information transfer
between social neighborhoods of a single swarm.

Exclusion: Intuitively, several swarms sitting on the same local optimum
are not very helpful; they should explore different promising regions of
the search space. To this end, a so-called exclusion operator is employed.
Swarm exclusion forbids two swarms moving to within r., of each other,
where the distance between swarms is defined as the distance between
their p,’s. When exclusion is invoked, the worse swarm, as judged by the
current best values f(p,), is randomized in the entire search space.
Anti-convergence: Exclusion makes sure that the different swarms con-
verge to different local optima. In order to be able to detect also new,
emerging peaks, MPSO contains an additional mechanism termed anti-
convergence in [8]: Whenever all swarms have converged, the least-fit
swarm (as judged again by the current best values f(pgy)) is randomized
in the entire search space. Thereby, a swarm is considered as converged
when its expansion, i.e., the radius of the smallest circle encompassing the
neutral particles, is less than r.,,,. Anti-convergence is particularly im-
portant if the number of swarms is significantly smaller than the number
of local optima, in which case each swarm might converge to and get stuck
on a different local optimum.
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e Quantum Particles: Each swarm in MPSO consists of a number N° of
neutral particles and a number N9 of quantum particles. The quantum
particles are generated in each iteration according to a UVD distribution
with parameter r¢joyuq around the swarm’s py.

Parameter Settings

MPSO as described so far introduces a number of new parameters: the number
M of swarms, the number of quantum particles N9, the exclusion distance
rezel, and the quantum cloud radius 7¢j0.q. Several guidelines for setting these
parameters are provided in [8] and shall be briefly summarized here. Intu-
itively, there is a relationship between the distance a local optimum shifts, s,
and the quantum cloud parameter r.,.q. It is expected that these factors are
of the same order of magnitude so that a quantum particle might be found
close to the new optimum. Previous experiments have shown that r.5,q = 0.5s
is a good default setting. ..., can be estimated by assuming that all p peaks
occupy the same portion of the search space X?. The radius 740, of the basin
of attraction of a peak is then p - rgoa = X% or Theq = X/pl/d. The exclu-
sion radius 7. is thus set to rpoq. The multi-swarm cardinality M can be
estimated from the number of optima, p. If possible we would expect that
M > p is undesirable since free swarms absorb valuable function evaluations
and there is no need to have many more swarms than peaks. Similarly, many
fewer swarms than peaks means the multi-swarm is in danger of missing good
locations.

Self-adaptation of the Number of Swarms

Because usually the number of peaks is not known beforehand, the number of
swarms, M, might be difficult to set. For this reason, in [2], a self-adaptation
mechanism for the number of swarms has been proposed. The mechanism for
this is quite simple. The multi-swarm will need a new, patrolling swarm, if all
current swarms are converging. On the other hand, too many free swarms will
absorb function evaluations and one should be removed. If there is more than
one free swarm, the choice for removal is arbitrary and the worst of the free
swarms is removed, as judged by f(pg). This birth/death mechanism removes
the need for the anti-convergence operator, and for specifying the multi-swarm
cardinality M.

The number of swarms M (¢) is then dynamic and at any iteration ¢ given
by

M(0) =1
_ME-1)+1, Myree=0 (5)
M(t) = {M(t — 1) — 1, Myree > Negcess

where Ny eess 1S a parameter specifying the desired number of free swarms,
and a free swarm is a swarm whose expansion is larger than r.y,. An intuitive
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choice is to allow just a single free swarm, negzeess = 1, as one swarm roaming
around and searching for new peaks should be sufficient. Setting negzeess = 00
means that no swarm can ever be removed and the multi-swarm can only
grow.

When the number of swarms is adapted, 7., can also be adapted by
assuming that M corresponds to the number of peaks:

X
Texcl = W (6)

where X is the extent of the search space in each dimension.

Note that this adaptation scheme, by changing the number of swarms, also
changes the overall number of particles. In practice, the number of swarms
should be bounded. Too many particles will slow down the PSO, as each
particle is processed less frequently. But in the empirical tests reported below,
no such bound was used.

Particle Conversion

Finally, let us propose another modification of the original MPSO. In the
original MPSO, each population has a fixed number of neutral and quantum
particles. Intuitively, quantum particles are most useful at or just after an en-
vironmental change, where they provide the tracking that a tightly converged
swarm cannot perform. Their role during environmentally stable periods is
less clear. Thus, we propose here to convert all neutral particles to quantum
particles for one iteration immediately after a change has been detected. After
this iteration, they are reverted back to neutral. We expect that this mech-
anism might allow us to reduce the number of permanent quantum particles
in a population.
The overall algorithm is summarized in Algorithm 3.

4.3 Speciation-Based PSO

Other than the just-discussed MPSO which uses fixed swarms with a fixed
number of particles each, the speciation-based PSO (SPSO) is able to dynam-
ically distribute particles to species. It was inspired by a clearing procedure
proposed in [33]. SPSO was developed based on the notion of species [27].
The definition of species depends on a parameter r,, which denotes the radius
measured in Euclidean distance from the center of a species to its boundary.
The center of a species, the so-called species seed, is always the best-fit particle
in the species. All particles that fall within distance r¢ from the species seed
are classified as the same species.

Algorithm 4 summarizes the steps for determining species seeds [26]. By
performing this algorithm at each iteration step, each different species seed
can be identified for a different species and the seed’s p; can be used as the
pg for particles belonging to that species accordingly [27, 31].
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Algorithm 3 Multi-Swarm

//Initialization
Begin with a single free swarm, M =1
FOR EACH particle ni
Randomly initialize vy, Xpni = Pni
Evaluate f(pni)
FOR EACH swarm n

Png = argmax{ f(pni)}

REPEAT
// Adapt number of swarms
IF all swarms have converged THEN

Generate a new swarm.

ELSE IF (Mfree > Negcess) THEN

Remove worst swarm.

FOR EACH swarm n

// Test for Change

Evaluate f(png).

IF new value is different from last iteration THEN
Convert all particles to quantum particles for one iteration.
Re-evaluate each particle attractor.

Update swarm attractor.

FOR EACH particle i of swarm n
// Update Particle
Move particle depending on particle type.

// Update Attractor

Evaluate f(Xni)-

IF f(%Xn:) > f(pni) THEN
Pni i= Xnji.

IF f(xni) > f(Png) THEN
Png ‘= Xni

// Ezxclusion.

FOR EACH swarm m # n
IF swarm attractor png is within reze; of pmg THEN

IF f(Png) < f(Pmg) THEN
Re-initialize swarm n

ELSE
Re-initialize swarm m

FOR EACH particle in re-initialized swarm
Re-evaluate function value.
Update swarm attractor.

UNTIL number of function evaluations performed > maz
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Algorithm 4 Algorithm for determining species seeds

//Lsorteda - a list of particles sorted in their decreasing f(pi) values
//S - alist of dominating particles identified as species seeds
S=10
REPEAT
Get the best unprocessed p € Lsorted
found — FALSE
FOR all s € S
IF d(s,p) < rs THEN
found — TRUE
break
IF not found THEN
let S« SU{p}
UNTIL reaching the end of Lsorted

Basically Algorithm 4 sorts all particles in decreasing order of the fitness
values of their personal bests p;°. The species seed set S is initially set to ().
All particles’ p; are checked in turn (from best to least fit) against the species
seeds found so far. If a particle’s p; does not fall within the radius r4 of all
the seeds of S, then this particle will become a new seed and be added to
S. Figure 3 provides an example to illustrate the working of this algorithm.
In this case, applying the algorithm will identify s;, so and s3 as the species
seeds. Note also that if seeds have their radii overlapped (e.g., s2 and s3 here),
the first identified seed (such as s3) will dominate over those less fit seeds in
the list Lgorreq. For example, so dominates s3; therefore p should belong to
the species led by s3. This has the nice side-effect of helping SPSO to locate
the fitter peaks before the less fit ones.

The identified species seeds represent particles that are highly fit and at
least distance rs away from each other. Since a species seed is the best-fit
particle’s p; within a species, all particles belonging to the same species can be
made to follow their species seed’s p; as their leader (i.e., neighborhood best).
Each species acts as a separate PSO with all its particles moving according to
the conventional particle velocity rules. The sorting of particles, determination
of species seeds, and allocation of species seeds as leaders to particles are
performed at each iteration, which have the effect of moving particles within
the same species to positions that make them even fitter. Because species are
formed around different peaks in parallel, species seeds will provide the right
guidance for particles to converge towards different peaks that exist on the
fitness landscape. Comparing with the multi-swarm concept introduced in the
earlier sections, a species in SPSO is equivalent to an individual swarm of the

5 Note that in our previous implementation, the fitness values of current particle
positions x; were sorted [27, 28]. We changed to use particle’s personal best p;
because it is a more stable point compared with x;
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Fig. 3. An example of determining species seeds from a population of particles. s1,
s2, and s3 are chosen as the species seeds; for the other particles, arrows indicate
which species seed they are attracted to. Note that p falls within the radius rs of
two seeds but follows so as the seed which was identified earlier.

multi-swarm model, but the particles are re-distributed to species dynamically
in each iteration, resulting in a variable number of species with different sizes.

To detect whether a change has occurred, SPSO simply re-evaluates the
recorded personal best positions of the top ¢ best species seeds at each itera-
tion. A change is considered to have occurred if any of these t re-evaluations is
different from its corresponding personal best’s recorded fitness. All particles’
personal bests are then reset to their associated current positions since these
recorded personal bests are outdated.

Species Cap, Quantum Swarm, and Anti-convergence

This section describes several useful techniques incorporated into SPSO to
enhance its performance in dynamic environments [28].

Since the algorithm for identifying species seeds favors those seeds with
higher fitness values resulting in more particles being allocated to fitter species
than to less fit ones, on a multi-modal fitness landscape this may result in too
many particles assigned to just a few very best peaks while leaving other lower
peaks unoccupied. In order to distribute more evenly the number of particles
across different species, a parameter p,,.. can be used to set a maximum
number of particles that a species is allowed [30]. This means that only the
best-fit pyq. particles will be allocated as members of a species. Least-fit
members that cause the species population to exceed p,,q. are reinitialized
as randomly generated new particles into the search space, as a side-effect
helping SPSO better explore the search space.

The quantum atom model described in Section 4.1 is also adopted in SPSO,
but as described in [28], only triggered by convergence: When the neutral par-
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ticles belonging to a species converge below a pre-specified threshold (largest
distance between any pair of particles), half of the neutral particles are con-
verted to quantum particles around the species seed to form a ‘quantum cloud’.

Anti-convergence was first proposed and used as an effective mechanism for
global information sharing in the multi-swarm model [8] (see also Section 4.2).
This idea can be adopted in SPSO to reduce the number of less fit species
[28] and to improve information sharing among species. Anti-convergence is
carried out simply by replacing the least-fit species and reinitializing them into
the search space at each iteration step. While this seems drastic, note that the
speciation procedure usually results in some isolated particles forming species
of size 1. Anti-convergence as implemented here randomizes these until they
either discover a promising region or are close enough to join a larger species.

4.4 Improving Local Convergence

SPSO is shown to be an effective optimizer for solving static multi-modal
problems [31], and with enhancements described in the previous section, it
can be used for handling multi-modal problems in a dynamic environment
[28]. In order to track moving peaks, SPSO must be able to locate peaks and
follow them as closely as possible if they have moved. It is observed that SPSO
can consistently locate the majority of the peaks most of the time. However,
relocating moved peaks with a satisfactory convergence speed (so as to reduce
the offline error) still remains as a challenge. Techniques promoting faster
local convergence would be desirable to tackle this problem.

The convergence-triggered strategy as described above and in [28] keeps
the particles in a species spread out so that the species will have a better
chance to recapture the peak if it has moved again. The downside is that
these quantum particles contribute little to the local convergence of the species
most of the time. Although changes occur only occasionally, at each iteration
quantum particles are generated to form a ‘cloud’ spreading out around the
species seed, rather than being used to converge towards the species attractor,
like the neutral particles.

In this study, instead of using the usual quantum ‘cloud’ approach, for
one iteration after a change has been detected, all particles are moved as
quantum particles, i.e., to a randomly selected position according to a given
distribution. Also, we found that centering the distribution not around the
species’ seed, but around the center of species seed and particle position, has
slight advantages. After this, all particles will move again as neutral particles
according to their allocated seed and personal best positions, following the
standard PSO velocity update rules. This new variant of SPSO is summarized
in Algorithm 5.
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Algorithm 5 SPSO with local sampling

//Initialization
FOR EACH particle @
Randomly initialize v;,X;, pi = X;
REPEAT
FOR EACH particle 4
Evaluate f(x;)
//Update personal best
IF f(xi) > f(pi) THEN
Pi < Xi
IF change is detected THEN
Pi < Xj
//Following steps are carried out at each iteration
Sort particles in descending order of their p; fitness values
Identify species seeds from the above sorted list based on 7
pi of each species seed is assigned as the leader (neighborhood best) to
all particles belonging to the same species
IF numParticles > pmer THEN
Anti-convergence to replace the excess particles with new particles
Replace particles in the least-fit species by initializing them
Adjust all particle positions according to Egs. (1) and (2)
//Invoke local sampling only if change is detected
IF change is detected THEN
Generate a new particle for each particle by local sampling
UNTIL number of function evaluations performed > max

5 Empirical Results

5.1 Moving Peaks Benchmark and Experimental Setup

For empirical tests, we used the publicly available moving peaks benchmark
(MPB) [10]. Tt consists of p peaks changing in height and width, and moving by
a fixed shift length s in random directions every K evaluations. The peaks are
constrained to move in a search space of extent X in each of the d dimensions,
[0, X]4.

Unless stated otherwise, the parameters have been set as follows: the search
space has five dimensions X® = [0,100]°, there are p = 10 peaks, the peak
heights vary randomly in the interval [30, 70], and the peak width parameters
vary randomly within [1,12]. The peaks change position every K = 5000
evaluations by a distance of s = 1 in a random direction, and their movements
are uncorrelated (the MPB coefficient A = 0). These parameter settings are
summarized in Table 1. They correspond to Scenario 2 in [10] and have been
used to facilitate comparison with other published results. The termination
condition for each experiment is 100 peak changes, corresponding to 500,000
function evaluations.
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Table 1. Standard settings for the moving peaks benchmark

Parameter Setting
Number of peaks p 10
Number of dimensions d 5
Peak heights € [30, 70]
Peak widths €[1,12]
Evals between changes 5000
Change severity s 1.0
Correlation coefficient A 0

Scenario 2 actually specifies a family of benchmark functions, since the
initial location, initial height and width of the peaks, and their subsequent
development is determined by a pseudorandom number generator. All our
results are based on averages over 50 runs, where each run uses a different
random number seed for the optimization algorithm as well as the MPB. The
primary performance measure is the offline error [13] which is the average
over, at every point in time, the error of the best solution found since the last
change of the environment. This measure is always greater than or equal to 0
and would be 0 for perfect tracking.

Unless specified otherwise, PSO acceleration parameters y and ¢ are set to
standard values 0.72984 and 2.05, respectively. For MPSO, parameters were
set according to the guidelines from Section 4.2, and negcess Was set to 1. For
SPSO, the overall population size was set to 100, p,q. Was set to 10, and
t = 5 best species seeds were re-evaluated to detect a change.

5.2 Optimal Swarm Size

We begin by determining the optimum neutral swarm size for a single sta-
tionary peak in five dimensions. Since canonical PSO does not use the local
shape of the function, all spherically symmetric peaks are equivalent. Table
5.2 reports on tests of the neutral subswarm, which is a canonical PSO. The
results demonstrate that a small, five-particle swarm is the best hill climber in
5 dimensions. We will therefore set the number of neutral particles in MPSO
swarms to five.

5.3 Quantum Particles in MPSO

In previous experiments [8], it was shown that a swarm’s particles should be
divided equally into neutral and quantum particles performed, and swarms
with five neutral and five quantum particles yielded best results. However, in
Section 4.2, we have proposed converting the neutral particles to quantum
particles for one iteration after a change has been detected, hoping this would
allow us to reduce the number of quantum particles in a swarm.
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Table 2. Performance of canonical PSO for a single cone, f(x) = |x* — x|. The
table shows the best f attained after 2,500 evaluations, averaged over 100 runs with
differing initial configurations and cone position

Number of particles f (std error)
1 65.62 (2.37)
6.86( 1.00)
0.0072 (0.0066)
5.43E-8 (4.17)
3.64E-10 (1.52E-10)
1.18E-9 (3.59E-10)
9.40E-9 (1.90E-9)
6.64E-8 (1.52E-8)
2.87E-7 (5.34E-8)
9.13E-7 (1.12E-7)
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Table 5.3 shows results for MPSO on the MPB (p = 10, s = 1.0) for various
swarm configurations. A configuration with a neutral particles and b quantum
particles is denoted as (a +b). As can be seen, even the (54 0) configuration,
which has no permanent quantum particles (only the converted particles at the
iteration immediately following function change), performs remarkably well.
The optimum configuration appears to have just one permanent quantum
particle for both values of n¢ycess- Without particle conversion after a change,
a (5 + 1) MPSO obtains an offline error of only 2.05 (0.08). This confirms
our hope that we might be able to reduce the overall number of particles
due to the conversion method. It also demonstrates the importance of the
exclusion operator which continuously repositions swarms until they find a
peak to settle on. After this happens, swarm diversity is not required and the
neutral particles will rapidly converge to the center of the peak. The presence
of a small amount of diversity, i.e., just one quantum particle, presumably
helps tracking in the few iterations just after the function change.

Comparing the results for nezcess = 1 and Negeess = 3, we see that dif-
ferences are small, but slightly better results are obtained with three rather
than one patrolling swarms. So, Nezcess can be used for fine-tuning if neces-
sary, but nezcess = 1 seems a good and intuitively justifiable default setting.
This was also confirmed in some additional tests with only one peak or 200
peaks, where nezcess = 1 performed slightly better than negcess = 3.

5.4 Quantum Distribution in SPSO

The following experiments look at the influence of the quantum distribution
in scenarios with p = 10 peaks and with shift severity s € {1,5}.

Table 5.4 provides the results on offline errors using Gaussian, UVD and
NUVD distribution respectively. These results are also visualized in Figure 4.
The best offline error for Gaussian distribution is 1.73, at ¢ = 0.3. The best
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Table 3. Variation of average offline error with swarm configuration and excess
parameter for MPSO. The data is for 50 runs of MPB, scenario 2, p = 10, and s =
1.0 and with 500,000 evaluations per run

Configuration|oe (std error), nezcess = 1|0e (std error), negcess = 3
5+0 1.80 (0.08) 1.85 (0.07)
541 1.73 (0.08) 1.69 (0.07)
542 1.85 (0.09) 1.69 (0.06)
543 1.82 (0.09) 1.83 (0.07)
5+ 4 1.77 (0.07) 1.88 (0.07)
545 1.85 (0.09) 1.92 (0.08)

Table 4. Offline errors for sampling using UVD and NUVD distribution with radius
Teloud, and Gaussian with standard deviation o (set to 7cioud). The shift severity
value s = 1.0 and p = 10

Teloud| Gaussian UVD NUVD
0.05 |1.86 (0.06) 2.24 (0.07) 2.31 (0.07)
0.1 |1.82 (0.06) 1.97 (0.07) 2.02 (0.07)
0.2 |1.84 (0.07) 1.72 (0.06) 1.78 (0.04)
0.3 |1.73 (0.05) 1.74 (0.07) 1.74 (0.08)
0.4 |1.85 (0.06) 1.64 (0.06) 1.73 (0.06)
)
)
)
)

(0.07)

( (0.07) (

( (0.06) (

( (0.07) (

( (0.06) (

0.5 [2.00 (0.08) 1.77 (0.06) 1.62 (0.05

0.6 [1.94 (0.06) 1.84 (0.08) 1.69 (0.06

0.7 [2.23 (0.06) 1.76 (0.06) 1.66 (0.05

0.8 [2.29 (0.07) 1.79 (0.06) 1.87 (0.07
( 1.78 (0.05) 1.98 (0.06)
( 1.79 (0.06) 1.89 (0.05)
(0.07) 2.01 (0.07) 1.89 (0.05)
(0.09) 2.09 (0.06) 1.95 (0.06)
(0.08) 2.40 (0.09) 2.12 (0.06)

0.9 |2.42 (0.06
1.0 |2.55 (0.06
1.2 12.75 (0.07
1.5 |3.07 (0.09
2.0 |3.48 (0.08
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result for UVD is 1.64 at r.uq = 0.4, and for NUVD is 1.62 at r¢ouq = 0.5.
The differences between the results of UVD and NUVD are insignificant, but
both the best results for UVD (1.64) and NUVD (1.62) are better than the
best for Gaussian (1.73). These results show that sampling more frequently
closer to the mean is not always beneficial for the purpose of the quantum
particles. The reason may be that their task is not local improvement (as, e.g.,
for mutations), but exploration. In any case, the results are are better than the
1.98 reported previously with the convergence-triggered particle diversification
scheme [28].

The scenario with s = 5.0 should be more difficult to track than the s = 1.0
counterpart. Consequently, the performance values summarized in Table 5.4
report higher offline errors. Note that 7¢0,q values in the range [1.0, 5.0] were
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Fig. 4. Offline errors depending on radius 7couq and distribution used for sampling.

Table 5. Offline errors for sampling using Gaussian, UVD, and NUVD distribution,
on scenario 2. The shift severity s = 5.0 and p = 10.

Teloud| Gaussian ~ UVD NUVD
1.0 |4.53(0.10) 4.43(0.10) 4.53(0.12)
1.5 |4.62(0.09) 4.20(0.11) 4.36(0.08)
2.0 5.06(0.09) 4.15(0.08) 4.47(0.09)
2.5 [5.54(0.11) 4.28(0.09) 4.56(0.10)
3.0 [5.68(0.13) 4.43(0.09) 4.62(0.08)
3.5 (6.29(0.11) 4.58(0.13) 4.79(0.11)
(0.11) )

(0.13) )

(0.17) )

— N — T

4.0 16.40(0.11) 4.61(0.12) 4.97(0.10
4.5 |7.15(0.13
5.0 [7.85(0.17

4.85
4.93

0.11) 4.86
0.12) 5.20

0.11
0.11

NN N N S N T
NN N N N S S

used to reflect our assumption that reeug & s/2 should be a good default
value, which is also confirmed with the empirical data.

Again, UVD performs better than NUVD and Gaussian. The best offline
error was obtained by UVD with an offline error 4.15, at r.jouq = 2.0.

5.5 Adapting the Number of Swarms

Both MPSO and SPSO have mechanisms to adapt the number of swarms over
time. While MPSO starts with a single swarm and adds additional swarms
as needed, SPSO usually starts with many swarms, slowly converging to the
required number of swarms to cover all peaks.

Fig. 5 shows a typical SPSO simulation run for an MPB problem with
p =10 and s = 1. As expected, SPSO starts with a large number of species
seeds, but over iterations this number decreases to a value close to the number
of existing peaks (if they are found). Anti-convergence is particularly effective
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Fig. 5. The number of species seeds is decreasing over the run of a (basic) SPSO
model on an MPB problem with ten peaks.
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Fig. 6. The number of swarms in MPSO for a ten peak MPB problem.

during the early stage of the run in replacing the least-fit species with new
particles that can be better used to explore other parts of the search space.
Although it is possible that anti-convergence may remove a species that has
already occupied a peak, the chance of this being the best-fit peak is small
since the removed species is always the least-fit species. Furthermore, the
best-fit peak is most likely watched and tracked by the fittest species.

The number of swarms in a typical MPSO run for a ten-peak MPB problem
and with nezcess = 3 is shown in Figure 6. The figure displays both the number
of converged swarms at any stage of the optimization, and the number of free
swarms, where a swarm is deemed to be converging if its spatial extent is less
than a convergence radius. This distance is dynamically determined by Eq. 6.

In the environment with 200 peaks and s = 5, SPSO with a population size
of 100 is no longer able to cover all the peaks, and fluctuates between 20 and 30
species. MPSO, although potentially able to add an arbitrary number of sub-
populations, converges only slightly higher to around 32 subpopulations. One
reason for this convergence is certainly that of the 200 peaks, several smaller
peaks are “covered” by higher peaks and thus not visible to the swarm, or
they are too close to be regarded as separate peaks. Another reason may be
that increasing the number of subpopulations also increases the total num-
ber of particles and thus slows down convergence, which leads to a slower
convergence of swarms and thus fewer new swarms being spawned.
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5.6 Comparing MPSO and SPSO

In this section, we compare MPSO and SPSO on four scenarios: shift severity
s € {1,5} and number of peaks p € {10,200}. Default parameters are used
e, Teoud = 0.5s (SPSO, MPSO), nepeess = 1 (MPSO), prmar = p (SPSO)
and the UVD distribution (MPSO, SPSO). The exclusion radius and number
of swarms (MPSO) are set dynamically according to Egs. 5 and 6.

Table 6. Comparison of MPSO and SPSO on four test scenarios. Offline error and
standard error

s p | MPSO SPSO

1 10 (1.73 (0.08) 1.77 (0.06
1200(2.18 (0.02) 2.88 (0.04
5 10 3.52 (0.11) 4.28 (0.09
5200(3.93 (0.03) 4.36 (0.05

NN AN
= = I

For s = 1 and p = 200, the average offline error of MPSO was found
to be 2.12(0.02), a figure which compares favorably with the best previous
adaptive MPSO result without particle conversion and Nepcess = 4 of 2.37
(0.03) [2]. This is also slightly better than the 10 (5 + 5) MPSO result of 2.26
(0.03) of the original version in [8], although it does not require us to specify
the number of swarms. For SPSO, the offline error obtained is 2.88 (0.04),
i.e., slightly worse. One possible explanation is that SPSO can not adjust the
overall number of particles, and that the individual species are becoming too
small to successfully track the moving peaks.

Both approaches suffer significantly as the shift severity is increased to
s = b5, although it seems that MPSO is slightly better in this scenario.

6 Conclusions

This chapter has reviewed the application of particle swarms to dynamic op-
timization. The canonical PSO algorithm must be modified for good per-
formance in dynamic environments. In particular the problems of outdated
memory information and diversity loss must be addressed. Two promising
PSO variants are the multi-swarm PSO (MPSO) and the speciation-based
PSO (SPSO). They both maintain diversity by dividing the swarm into sev-
eral subswarms. While MPSO starts with a single swarm and adds additional
swarms as needed (all consisting of a predefined number of particles), SPSO
has a fixed overall number of particles and dynamically distributes particles
to swarms, usually starting with many swarms, slowly converging to the re-
quired number of swarms to cover all peaks. Also, they both use a mechanism
to maintain diversity within a swarm. We have described MPSO and SPSO in
detail and suggested new variations of both. For both approaches, we suggest



Particle Swarms for Dynamic Optimization Problems 215

a reduction of the number of permanent quantum particles and a conversion of
all neutral particles to quantum particles for one iteration only after a change
has been detected. This approach seems to be more efficient as it speeds up
convergence towards local peaks by maximizing its use of neutral particles.
On the other hand, it still provides the diversity necessary to recapture a
peak after it has moved. Also, we looked at the influence of the probability
distribution for the quantum particles on performance.

As the empirical results showed, both variants outperform their previously
published originals. Among the examined distributions, the uniform volume
distribution outperformed the distributions with higher sampling probability
around the species’ best. On the other hand, the best possible radius is signif-
icantly less than the actual distance a peak shifts. The reason for the benefit
of the uniform distribution is probably that the task for the quantum particles
is exploration and tracking, rather than fine-tuning, which is better done by
the neutral particles. The reason for the smaller radius is probably that as
particles generated still possess velocities, placing them too close to the new
peak might not be necessarily better, as the particles tend to ‘overshoot’ the
optimum frequently.

Overall, the performance of MPSO and SPSO is comparable on slowly
changing problems with fewer peaks, but MPSO seemed to be able to better
cope with many peaks, while SPSO seems to be better when the changes are
more severe.

Future work will aim at making both approaches more flexible, allowing
MPSO to adapt the number of particles within a species, and SPSO to adapt
the overall number of particles.
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