
Swarm Intelligence in Optimization

Christian Blum1 and Xiaodong Li2

1 ALBCOM Research Group
Universitat Politècnica de Catalunya, Barcelona, Spain
cblum@lsi.upc.edu

2 School of Computer Science and Information Technology
RMIT University, Melbourne, Australia
xiaodong@cs.rmit.edu.au

Summary. Optimization techniques inspired by swarm intelligence have become
increasingly popular during the last decade. They are characterized by a decentral-
ized way of working that mimics the behavior of swarms of social insects, flocks of
birds, or schools of fish. The advantage of these approaches over traditional tech-
niques is their robustness and flexibility. These properties make swarm intelligence
a successful design paradigm for algorithms that deal with increasingly complex
problems. In this chapter we focus on two of the most successful examples of op-
timization techniques inspired by swarm intelligence: ant colony optimization and
particle swarm optimization. Ant colony optimization was introduced as a technique
for combinatorial optimization in the early 1990s. The inspiring source of ant colony
optimization is the foraging behavior of real ant colonies. In addition, particle swarm
optimization was introduced for continuous optimization in the mid-1990s, inspired
by bird flocking.

1 Introduction

Swarm intelligence (SI), which is an artificial intelligence (AI) discipline, is
concerned with the design of intelligent multi-agent systems by taking inspi-
ration from the collective behavior of social insects such as ants, termites,
bees, and wasps, as well as from other animal societies such as flocks of birds
or schools of fish. Colonies of social insects have fascinated researchers for
many years, and the mechanisms that govern their behavior remained un-
known for a long time. Even though the single members of these colonies are
non-sophisticated individuals, they are able to achieve complex tasks in coop-
eration. Coordinated colony behavior emerges from relatively simple actions
or interactions between the colonies’ individual members. Many aspects of
the collective activities of social insects are self-organized and work without
a central control. For example, leafcutter ants cut pieces from leaves, bring
them back to their nest, and grow fungi used as food for their larvae. Weaver



44 C. Blum and X. Li

Fig. 1. Ants cooperate for retrieving a heavy prey. (Photographer: Christian Blum)

ant workers build chains with their bodies in order to cross gaps between two
leaves. The edges of the two leaves are then pulled together, and successively
connected by silk that is emitted by a mature larva held by a worker. Another
example concerns the recruitment of other colony members for prey retrieval
(see, for example, Fig. 1).

Other examples include the capabilities of termites and wasps to build
sophisticated nests, or the ability of bees and ants to orient themselves in
their environment. For more examples and a more detailed description see
Chap. 1 of this book, as well as [21, 92]. The term swarm intelligence was first
used by Beni in the context of cellular robotic systems where simple agents
organize themselves through nearest-neighbor interaction [4]. Meanwhile, the
term swarm intelligence is used for a much broader research field [21]. Swarm
intelligence methods have been very successful in the area of optimization,
which is of great importance for industry and science. This chapter aims at
giving an introduction to swarm intelligence methods in optimization.

Optimization problems are of high importance both for the industrial
world as well as for the scientific world. Examples of practical optimization
problems include train scheduling, timetabling, shape optimization, telecom-
munication network design, and problems from computational biology. The
research community has simplified many of these problems in order to ob-
tain scientific test cases such as the well-known traveling salesman problem
(TSP) [99]. The TSP models the situation of a traveling salesman who is
required to pass through a number of cities. The goal of the traveling sales-
man is to traverse these cities (visiting each city exactly once) so that the total
traveling distance is minimal. Another example is the problem of protein fold-
ing, which is one of the most challenging problems in computational biology,
molecular biology, biochemistry, and physics. It consists of finding the func-
tional shape or conformation of a protein in two- or three-dimensional space,
for example, under simplified lattice models such as the hydrophobic-polar
model [169]. The TSP and the protein folding problem under lattice models



Swarm Intelligence in Optimization 45

belong to an important class of optimization problems known as combinato-
rial optimization (CO).

In general, any optimization problem P can be described as a triple (S, Ω, f),
where

1. S is the search space defined over a finite set of decision variables Xi,
i = 1, . . . , n. In the case where these variables have discrete domains we
deal with discrete optimization (or combinatorial optimization), and in the
case of continuous domains P is called a continuous optimization problem.
Mixed variable problems also exist. Ω is a set of constraints among the
variables;

2. f : S → IR+ is the objective function that assigns a positive cost value to
each element (or solution) of S.

The goal is to find a solution s ∈ S such that f(s) ≤ f(s′), ∀ s′ ∈ S (in case
we want to minimize the objective function), or f(s) ≥ f(s′), ∀ s′ ∈ S (in case
the objective function must be maximized). In real-life problems the goal is
often to optimize several objective functions at the same time. This form of
optimization is labelled multiobjective optimization.

Due to the practical importance of optimization problems, many algo-
rithms to tackle them have been developed. In the context of combinatorial
optimization (CO), these algorithms can be classified as either complete or
approximate algorithms. Complete algorithms are guaranteed to find for ev-
ery finite size instance of a CO problem an optimal solution in bounded time
(see [133, 128]). Yet, for CO problems that are NP -hard [65], no polynomial
time algorithm exists, assuming that P �= NP. Therefore, complete meth-
ods might need exponential computation time in the worstcase. This often
leads to computation times too high for practical purposes. In approximate
methods such as SI-based algorithms we sacrifice the guarantee of finding op-
timal solutions for the sake of getting good solutions in a significantly reduced
amount of time. Thus, the use of approximate methods has received more and
more attention in the last 30 years. This was also the case in continuous op-
timization, due to other reasons: Approximate methods are usually easier to
implement than classical gradient-based techniques. Moreover, generally they
do not require gradient information. This is convenient for optimization prob-
lems where the objective function is only implicitly given (e.g., when objective
function values are obtained by simulation), or where the objective function
is not differentiable.

Two of the most notable swarm intelligence techniques for obtaining ap-
proximate solutions to optimization problems in a reasonable amount of com-
putation time are ant colony optimization (ACO) and particle swarm opti-
mization (PSO). These optimization methods will be explained in Sects. 2



46 C. Blum and X. Li

and 3 respectively. In Sect. 4 we will give some further examples of algorithms
for which swarm intelligence was the inspiring source.

2 Ant Colony Optimization

Ant colony optimization (ACO) [52] was one of the first techniques for ap-
proximate optimization inspired by swarm intelligence. More specifically, ACO
is inspired by the foraging behavior of ant colonies. At the core of this be-
havior is the indirect communication between the ants by means of chemical
pheromone trails, which enables them to find short paths between their nest
and food sources. This characteristic of real ant colonies is exploited in ACO
algorithms in order to solve, for example, discrete optimization problems.3

Seen from the operations research (OR) perspective, ACO algorithms be-
long to the class of metaheuristics [18, 68, 80]. The term metaheuristic, first
introduced in [67], derives from the composition of two Greek words. Heuristic
derives from the verb heuriskein (ευρισκειν) which means “to find”, while the
suffix meta means “beyond, in an upper level”. Before this term was widely
adopted, metaheuristics were often called modern heuristics [144]. In addition
to ACO, other algorithms, such as evolutionary computation, iterated local
search, simulated annealing, and tabu search, are often regarded as meta-
heuristics. For books and surveys on metaheuristics see [144, 68, 18, 80].

This section on ACO is organized as follows. First, in Sect. 2.1 we outline
the origins of ACO algorithms. In particular, we present the foraging behavior
of real ant colonies and show how this behavior can be transfered into a tech-
nical algorithm for discrete optimization. In Sect. 2.2 we provide a description
of ACO in more general terms, outline some of the most successful current
ACO variants, and list some representative examples of ACO applications. In
Sect. 2.3, we shortly describe some recent trends in ACO.

2.1 The Origins of Ant Colony Optimization

Marco Dorigo and colleagues introduced the first ACO algorithms in the early
1990s [46, 50, 51]. The development of these algorithms was inspired by the
observation of ant colonies. Ants are social insects. They live in colonies and
their behavior is governed by the goal of colony survival rather than being
focused on the survival of individuals. The behavior that provided the inspi-
ration for ACO is the ants’ foraging behavior, and in particular, how ants
3 Even though ACO algorithms were originally introduced for the application to

discrete optimization problems, the class of ACO algorithms also comprises meth-
ods for the application to problems arising in networks, such as routing and load
balancing (see, for example, [44]), and continuous optimization problems (see,
for example, [159]). In Sect. 2.3 we will shortly deal with ACO algorithms for
continuous optimization.



Swarm Intelligence in Optimization 47

Nest Food ���Nest Food

(a) All ants are in the nest. There is
no pheromone in the environment

(b) The foraging starts. In probabil-
ity, 50% of the ants take the short
path (see the circles), and 50% take
the long path to the food source (see
the rhombs)

���Nest Food � �

�

Nest Food

(c) The ants that have taken the
short path have arrived earlier at
the food source. Therefore, when re-
turning, the probability that they
again take the short path is higher

(d) The pheromone trail on the
short path receives, in probabil-
ity, a stronger reinforcement, and
the probability of taking this path
grows. Finally, due to the evapora-
tion of the pheromone on the long
path, the whole colony will, in prob-
ability, use the short path

Fig. 2. An experimental setting that demonstrates the shortest path finding ca-
pability of ant colonies. Between the ants’ nest and the only food source exist two
paths of different lengths. In the four graphics, the pheromone trails are shown as
dashed lines whose thickness indicates the trails’ strength

can find shortest paths between food sources and their nest. When searching
for food, ants initially explore the area surrounding their nest in a random
manner. While moving, ants leave a chemical pheromone trail on the ground.
Ants can smell pheromone. When choosing their way, they tend to choose, in
probability, paths marked by strong pheromone concentrations. As soon as an
ant finds a food source, it evaluates the quantity and the quality of the food
and carries some of it back to the nest. During the return trip, the quantity of
pheromone that an ant leaves on the ground may depend on the quantity and
quality of the food. The pheromone trails will guide other ants to the food
source. It has been shown in [42] that the indirect communication between
the ants via pheromone trails—known as stigmergy [70]—enables them to find
shortest paths between their nest and food sources. This is explained in an
idealized setting in Fig. 2.

As a first step towards an algorithm for discrete optimization we present in
the following a discretized and simplified model of the phenomenon explained
in Fig. 2. After presenting the model we will outline the differences between
the model and the behavior of real ants. The considered model consists of a



48 C. Blum and X. Li

graph G = (V,E), where V consists of two nodes, namely vs (representing
the nest of the ants) and vd (representing the food source). Furthermore, E
consists of two links, namely e1 and e2, between vs and vd. To e1 we assign
a length of l1, and to e2 a length of l2 such that l2 > l1. In other words, e1

represents the short path between vs and vd, and e2 represents the long path.
Real ants deposit pheromone on the paths on which they move. Thus, the
chemical pheromone trails are modeled as follows. We introduce an artificial
pheromone value τi for each of the two links ei, i = 1, 2. Such a value indicates
the strength of the pheromone trail on the corresponding path. Finally, we
introduce na artificial ants. Each ant behaves as follows: Starting from vs (i.e.,
the nest), an ant chooses with probability

pi =
τi

τ1 + τ2
, i = 1, 2, (1)

between path e1 and path e2 for reaching the food source vd. Obviously, if
τ1 > τ2, the probability of choosing e1 is higher, and vice versa. For returning
from vd to vs, an ant uses the same path as it chose to reach vd,4 and it
changes the artificial pheromone value associated with the used edge. In more
detail, having chosen edge ei an ant changes the artificial pheromone value τi

as follows:
τi ← τi +

Q

li
, (2)

where the positive constant Q is a parameter of the model. In other words,
the amount of artificial pheromone that is added depends on the length of the
chosen path: the shorter the path, the higher the amount of added pheromone.

The foraging of an ant colony is in this model iteratively simulated as
follows: At each step (or iteration) all the ants are initially placed in node
vs. Then, each ant moves from vs to vd as outlined above. As mentioned in
the caption of Fig. 2(d), in nature the deposited pheromone is subject to
an evaporation over time. We simulate this pheromone evaporation in the
artificial model as follows:

τi ← (1 − ρ) · τi , i = 1, 2 (3)

The parameter ρ ∈ (0, 1] is a parameter that regulates the pheromone evap-
oration. Finally, all ants conduct their return trip and reinforce their chosen
path as outlined above.

We implemented this system and conducted simulations with the following
settings: l1 = 1, l2 = 2, Q = 1. The two pheromone values were initialized
to 0.5 each. Note that in our artificial system we cannot start with artificial
pheromone values of 0. This would lead to a division by 0 in Eq. 1. The results
4 Note that this can be enforced because the setting is symmetric, i.e., the choice

of a path for moving from vs to vd is equivalent to the choice of a path for moving
from vd to vs.



Swarm Intelligence in Optimization 49

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150

%
 o

f a
nt

s 
us

in
g 

th
e 

sh
or

t p
at

h

iteration

(a) Colony size: 10 ants

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150

%
 o

f a
nt

s 
us

in
g 

th
e 

sh
or

t p
at

h

iteration

(b) Colony size: 100 ants

Fig. 3. Results of 100 independent runs (error bars show the standard deviation for
each 5th iteration). The x-axis shows the iterations, and the y-axis the percentage
of the ants using the short path

of our simulations are shown in Fig. 3. They clearly show that over time the
artificial colony of ants converges to the short path, i.e., after some time all
ants use the short path. In the case of 10 ants (i.e., na = 10, Fig. 3(a)) the
random fluctuations are bigger than in the case of 100 ants (Fig. 3(b)). This
indicates that the shortest path finding capability of ant colonies results from
a cooperation between the ants.

The main differences between the behavior of the real ants and the behav-
ior of the artificial ants in our model are as follows:

1. While real ants move in their environment in an asynchronous way, the
artificial ants are synchronized, i.e., at each iteration of the simulated
system, each of the artificial ants moves from the nest to the food source
and follows the same path back.

2. While real ants leave pheromone on the ground whenever they move,
artificial ants only deposit artificial pheromone on their way back to the
nest.

3. The foraging behavior of real ants is based on an implicit evaluation of a
solution (i.e., a path from the nest to the food source). By implicit solution
evaluation we mean the fact that shorter paths will be completed earlier
than longer ones, and therefore they will receive pheromone reinforcement
more quickly. In contrast, the artificial ants evaluate a solution with re-
spect to some quality measure which is used to determine the strength of
the pheromone reinforcement that the ants perform during their return
trip to the nest.

Ant System for the TSP: The First ACO Algorithm

The model that we used in the previous section to simulate the foraging
behavior of real ants in the setting of Fig. 2 cannot directly be applied to
CO problems. This is because we associated pheromone values directly with



50 C. Blum and X. Li

solutions to the problem (i.e., one parameter for the short path, and one pa-
rameter for the long path). This way of modeling implies that the solutions
to the considered problem are already known. However, in combinatorial op-
timization we intend to find an unknown optimal solution. Thus, when CO
problems are considered, pheromone values are associated with solution com-
ponents instead. Solution components are the units from which solutions to
the tackled problem are assembled. Generally, the set of solution components
is expected to be finite and of moderate size. As an example we present the
first ACO algorithm, called Ant System (AS) [46, 51], applied to the TSP,
which we mentioned in the introduction and which we define in more detail
in the following:

Definition 1. In the TSP is given a completely connected, undirected graph
G = (V,E) with edge weights. The nodes V of this graph represent the cities,
and the edge weights represent the distances between the cities. The goal is to
find a closed path in G that contains each node exactly once (henceforth called
a tour) and whose length is minimal. Thus, the search space S consists of all
tours in G. The objective function value f(s) of a tour s ∈ S is defined as the
sum of the edge weights of the edges that are in s.

Concerning the AS approach, the edges of the given TSP graph can be
considered solution components, i.e., for each ei,j is introduced a pheromone
value τi,j . The task of each ant consists in the construction of a feasible TSP
solution, i.e., a feasible tour. In other words, the notion of task of an ant
changes from “choosing a path from the nest to the food source” to “con-
structing a feasible solution to the tackled optimization problem”. Note that
with this change of task, the notions of nest and food source lose their meaning.

Each ant constructs a solution as follows. First, one of the nodes of the
TSP graph is randomly chosen as start node. Then, the ant builds a tour in
the TSP graph by moving in each construction step from its current node (i.e.,
the city in which it is located) to another node which it has not visited yet.
At each step the traversed edge is added to the solution under construction.
When no unvisited nodes are left the ant closes the tour by moving from her
current node to the node in which it started the solution construction. This
way of constructing a solution implies that an ant has a memory T to store the
already-visited nodes. Each solution construction step is performed as follows.
Assuming the ant to be in node vi, the subsequent construction step is done
with probability

p(ei,j) =
τi,j∑

{k∈{1,...,|V |}|vk /∈T}
τi,k

,∀ j ∈ {1, . . . , |V |}, vj /∈ T . (4)

Once all ants of the colony have completed the construction of their solution,
pheromone evaporation is performed as follows:



Swarm Intelligence in Optimization 51

CO problem

solution

components

pheromone

model

ACO

probabilistic

solution

construction

pheromone

value

update

pheromone
initialization

Fig. 4. The ACO framework

τi,j ← (1 − ρ) · τi,j ,∀ τi,j ∈ T (5)

Then the ants perform their return trip. Hereby, an ant—having constructed
a solution s—performs for each ei,j ∈ s the following pheromone deposit:

τi,j ← τi,j +
Q

f(s)
, (6)

where Q is again a positive constant and f(s) is the objective function value of
the solution s. As explained in the previous section, the system is iterated—
applying na ants per iteration—until a stopping condition (e.g., a time limit)
is satisfied.

Even though the AS algorithm has proved that the ants’ foraging behavior
can be transferred into an algorithm for discrete optimization, it gas generally
been found to be inferior to state-of-the-art algorithms. Therefore, over the
years several extensions and improvements of the original AS algorithm were
introduced. They are all covered by the definition of the ACO framework,
which we will outline in the following.

2.2 Ant Colony Optimization: A General Description

The ACO framework, as we know it today, was first defined by Dorigo and
colleagues in 1999 [48]. The recent book by Dorigo and Stützle gives a more
comprehensive description [52]. The definition of the ACO framework covers
most—if not all—existing ACO variants for discrete optimization problems.
In the following, we give a general description of this framework.

The basic way of working of an ACO algorithm is graphically shown in
Fig. 4. Given a CO problem to be solved, one first has to derive a finite set C of
solution components which are used to assemble solutions to the CO problem.
Second, one has to define a set of pheromone values T . This set of values



52 C. Blum and X. Li

is commonly called the pheromone model, which is—seen from a technical
point of view—a parameterized probabilistic model. The pheromone model
is one of the central components of ACO. The pheromone values τi ∈ T are
usually associated with solution components.5 The pheromone model is used
to probabilistically generate solutions to the problem under consideration by
assembling them from the set of solution components. In general, the ACO
approach attempts to solve an optimization problem by iterating the following
two steps:

• candidate solutions are constructed using a pheromone model, that is, a
parameterized probability distribution over the solution space;

• the candidate solutions are used to modify the pheromone values in a way
that is deemed to bias future sampling towards high-quality solutions. The
pheromone update aims to concentrate the search in regions of the search
space containing high-quality solutions. It implicitly assumes that good
solutions consist of good solution components.

In the following we give a more detailed description of solution construction
and pheromone update.

Solution Construction

Artificial ants can be regarded as probabilistic constructive heuristics that as-
semble solutions as sequences of solution components. The finite set of solution
components C = {c1, . . . , cn} is hereby derived from the discrete optimization
problem under consideration. For example, in the case of AS applied to the
TSP (see previous section) each edge of the TSP graph was considered a so-
lution component. Each solution construction starts with an empty sequence
s = 〈〉. Then, the current sequence s is at each construction step extended
by adding a feasible solution component from the set N (s) ⊆ C \ s.6 The
specification of N (s) depends on the solution construction mechanism. In the
example of AS applied to the TSP (see previous section) the solution con-
struction mechanism restricted the set of traversable edges to the ones that
connected the ants’ current node to unvisited nodes. The choice of a solution
component from N (s) is at each construction step performed probabilistically
with respect to the pheromone model. In most ACO algorithms the respective
probabilities—also called the transition probabilities—are defined as follows:

p(ci | s) =
[τi]

α · [η(ci)]
β

∑

cj∈N (s)

[τj ]
α · [η(cj)]

β
, ∀ ci ∈ N (s), (7)

5 Note that the description of ACO as given for example in [48] allows pheromone
values also to be associated with links between solution components. However,
for the purpose of this introduction it is sufficient to assume pheromone values
associated with components.

6 Note that for this set operation the sequence s is regarded as an ordered set.



Swarm Intelligence in Optimization 53

where η is an optional weighting function, that is, a function that, sometimes
depending on the current sequence, assigns at each construction step a heuris-
tic value η(cj) to each feasible solution component cj ∈ N (s). The values that
are given by the weighting function are commonly called the heuristic infor-
mation. Furthermore, the exponents α and β are positive parameters whose
values determine the relation between pheromone information and heuristic
information. In the previous section’s TSP example, we chose not to use any
weighting function η, and we set α to 1.

Pheromone Update

Different ACO variants mainly differ in the update of the pheromone val-
ues they apply. In the following, we outline a general pheromone update rule
in order to provide the basic idea. This pheromone update rule consists of
two parts. First, a pheromone evaporation, which uniformly decreases all the
pheromone values, is performed. From a practical point of view, pheromone
evaporation is needed to avoid a too-rapid convergence of the algorithm to-
wards a suboptimal region. It implements a useful form of forgetting, favoring
the exploration of new areas in the search space. Second, one or more solu-
tions from the current and/or from earlier iterations are used to increase the
values of pheromone trail parameters on solution components that are part of
these solutions:

τi ← (1 − ρ) · τi + ρ ·
∑

{s∈Supd|ci∈s}
ws · F (s), (8)

for i = 1, . . . , n. Supd denotes the set of solutions that are used for the up-
date. Furthermore, ρ ∈ (0, 1] is a parameter called evaporation rate, and
F : S �→ IR+ is a so-called quality function such that f(s) < f(s′) ⇒ F (s) ≥
F (s′), ∀s �= s′ ∈ S. In other words, if the objective function value of a solu-
tion s is better than the objective function value of a solution s′, the quality
of solution s will be at least as high as the quality of solution s′. Equation
(8) also allows an additional weighting of the quality function, i.e., ws ∈ IR+

denotes the weight of a solution s.
Instantiations of this update rule are obtained by different specifications of

Supd and by different weight settings. In most cases, Supd is composed of some
of the solutions generated in the respective iteration (henceforth denoted by
Siter) and the best solution found since the start of the algorithm (henceforth
denoted by sbs). Solution sbs is often called the best-so-far solution. A well-
known example is the AS-update rule, that is, the update rule of AS (see
also Sect. 2.1). The AS-update rule, which is well known due to the fact that
AS was the first ACO algorithm to be proposed in the literature, is obtained
from update rule (8) by setting Supd ← Siter and ws = 1, ∀s ∈ Supd. An
example of a pheromone update rule that is more used in practice is the
IB-update rule (where IB stands for iteration-best). The IB-update rule is



54 C. Blum and X. Li

Table 1. A selection of ACO variants

ACO variant Authors Main reference

Elitist AS (EAS) Dorigo [46]
Dorigo, Maniezzo, and Colorni [51]

Rank-based AS (RAS) Bullnheimer, Hartl, and Strauss [26]
MAX–MIN Ant System (MMAS) Stützle and Hoos [164]
Ant Colony System (ACS) Dorigo and Gambardella [49]
Hyper-Cube Framework (HCF) Blum and Dorigo [16]

given by Supd ← {sib = argmax{F (s) | s ∈ Siter}} with wsib
= 1, that is,

by choosing only the best solution generated in the respective iteration for
updating the pheromone values. This solution, denoted by sib, is weighted
by 1. The IB-update rule introduces a much stronger bias towards the good
solutions found than the AS-update rule. However, this increases the danger of
premature convergence. An even stronger bias is introduced by the BS-update
rule, where BS refers to the use of the best-so-far solution sbs. In this case,
Supd is set to {sbs} and sbs is weighted by 1, that is, wsbs

= 1. In practice,
ACO algorithms that use variations of the IB-update or the BS-update rule
and that additionally include mechanisms to avoid premature convergence
achieve better results than algorithms that use the AS-update rule. Examples
are given in the following section.

Well-Performing ACO Variants

Even though the original AS algorithm achieved encouraging results for the
TSP problem, it was found to be inferior to state-of-the-art algorithms for
the TSP as well as for other CO problems. Therefore, several extensions and
improvements of the original AS algorithm were introduced over the years.
An overview is provided in Table 1. These ACO variants mostly differ in the
pheromone update rule that is applied.

In addition to these ACO variants, the ACO community has developed
additional algorithmic features for improving the search process performed by
ACO algorithms. A prominent example is the so-called candidate list strategy,
which is a mechanism to restrict the number of available choices at each
solution construction step. Usually, this restriction applies to a number of
the best choices with respect to their transition probabilities (see Eq. 7). For
example, in the case of the application of ACS (see Table 1) to the TSP,
the restriction to the closest cities at each construction step both improved
the final solution quality and led to a significant speedup of the algorithm
(see [61]). The reasons for this are as follows: First, in order to construct
high-quality solutions it is often enough to consider only the “promising”
choices at each construction step. Second, to consider fewer choices at each
construction step speeds up the solution construction process, because the



Swarm Intelligence in Optimization 55

reduced number of choices reduces the computation time needed to make a
choice.

Applications of ACO Algorithms

As mentioned before, ACO was introduced by means of the proof-of-concept
application to the TSP. Since then, ACO algorithms have been applied to
many optimization problems. First, classical problems other than the TSP,
such as assignment problems, scheduling problems, graph coloring, the max-
imum clique problem, or vehicle routing problems were tackled. More recent
applications include, for example, cell placement problems arising in circuit
design, the design of communication networks, bioinformatics problems, and
problems arising in continuous optimization. In recent years some researchers
have also focused on the application of ACO algorithms to multiobjective
problems and to dynamic or stochastic problems.

The bioinformatics and biomedical fields in particular show an increasing
interest in ACO. Recent applications of ACO to problems arising in these ar-
eas include the applications to protein folding [153, 154], to multiple sequence
alignment [127], to DNA sequencing by hybridization [20], and to the predic-
tion of major histocompatibility complex (MHC) class II binders [86]. ACO
algorithms are currently among the state-of-the-art methods for solving, for
example, the sequential ordering problem [62], the resource constraint project
scheduling problem [120], the open shop scheduling problem [14], assembly
line balancing [15], and the 2D and 3D hydrophobic polar protein folding
problem [154]. In Table 2 we provide a list of representative ACO applica-
tions. For a more comprehensive overview that also covers the application of
ant-based algorithms to routing in telecommunication networks we refer the
interested reader to [52].

2.3 Recent Trends

Theoretical Work on ACO

The first theoretical works on ACO algorithms appeared in 2002. They deal
with the question of algorithm convergence [75, 76, 163]. In other words: will a
given ACO algorithm find an optimal solution when given enough resources?
This is an interesting question, because ACO algorithms are stochastic search
procedures in which the pheromone update could prevent them from ever
reaching an optimum.

Recently, researchers have been dealing with the relation of ACO algo-
rithms to other methods for learning and optimization. The work presented
in [7] relates ACO to the fields of optimal control and reinforcement learning,
whereas [183] describes the common aspects of ACO algorithms and proba-
bilistic learning algorithms such as stochastic gradient ascent (SGA) and the



56 C. Blum and X. Li

Table 2. A representative selection of ACO applications

Problem Authors Reference

Traveling salesman problem Dorigo, Maniezzo, and Colorni [46, 50, 51]
Dorigo and Gambardella [49]
Stützle and Hoos [164]

Quadratic assignment problem Maniezzo [109]
Maniezzo and Colorni [111]
Stützle and Hoos [164]

Scheduling problems Stützle [162]
den Besten, Stützle, and Dorigo [41]
Gagné, Price, and Gravel [59]
Merkle, Middendorf, and Schenk [120]
Blum (resp., Blum and Sampels) [14, 19]

Vehicle routing problems Gambardella, Taillard, and Agazzi [63]
Reimann, Doerner, and Hartl [145]

Timetabling Socha, Sampels, and Manfrin [160]
Set packing Gandibleux, Delorme, and T’Kindt [64]
Graph coloring Costa and Hertz [38]
Shortest supersequence problem Michel and Middendorf [123]
Sequential ordering Gambardella and Dorigo [62]
Constraint satisfaction problems Solnon [161]
Data mining Parpinelli, Lopes, and Freitas [134]
Maximum clique problem Bui and Rizzo Jr [25]
Edge-disjoint paths problem Blesa and Blum [13]
Cell placement in circuit design Alupoaei and Katkoori [2]
Communication network design Maniezzo, Boschetti, and Jelasity [110]
Bioinformatics problems Shmygelska, Aguirre-Hernández, and Hoos [153]

Moss and Johnson [127]
Karpenko, Shi, and Dai [86]
Shmygelska and Hoos [154]
Korb, Stützle, and Exner [93]
Blum and Yábar Vallès [20]

Industrial problems Bautista and Pereira [3]
Blum, Bautista, and Pereira [15]
Silva, Runkler, Sousa, and Palm [156]
Gottlieb, Puchta, and Solnon [69]
Corry and Kozan [37]

Continuous optimization Bilchev and Parmee [6]
Monmarché, Venturini, and Slimane [125]
Dréo and Siarry [54]
Socha and Dorigo [159]
Socha and Blum [158]

Multiobjective problems Guntsch and Middendorf [74]
Lopéz-Ibáñez, Paquete, and Stützle [106]
Doerner, Gutjahr, Hartl, Strauss, and Stummer [45]

Dynamic (or stochastic) problems Guntsch and Middendorf [73]
Bianchi, Gambardella, and Dorigo [5]

Music Guéret, Monmarché, and Slimane [72]

cross-entropy (CE) method. Meuleau and Dorigo have shown in [121] that
ACO’s pheromone update is very similar to stochastic gradient ascent in the
space of pheromone values.

While convergence proofs can provide insight into the working of an al-
gorithm, they are usually not very useful to the practitioner who wants to
implement efficient algorithms. More relevant for practical applications might
be the research efforts that were aimed at a better understanding of the behav-



Swarm Intelligence in Optimization 57

ior of ACO algorithms. Representative works are the ones on negative search
bias [17] and the study of models of ACO algorithms [117, 118]. For a recent
survey on theoretical work on ACO see [47].

Applying ACO to Continuous Optimization Problems

Many practical optimization problems can be formulated as continuous opti-
mization problems, that is, problems in which the decision variables have con-
tinuous domains. While ACO algorithms were originally introduced to solve
discrete problems, their adaptation to solve continuous optimization problems
enjoys increasing attention. Early applications of ant-based algorithms to con-
tinuous optimization include algorithms such as Continuous ACO (CACO) [6],
API [125], and Continuous Interacting Ant Colony (CIAC) [54]. However,
all these approaches are conceptually quite different from ACO for discrete
problems. The latest approach called ACOR, which was proposed by Socha
in [157, 159], is closest to the spirit of ACO for discrete problems. While
ACO algorithms for discrete optimization problems construct solutions by
sampling at each construction step a discrete probability distribution that is
derived from the pheromone information, ACOR utilizes a continuous proba-
bility density function (PDF) for generating solutions. This density function is
produced, for each solution construction, from an archive of solutions that the
algorithm keeps and updates at all times. The archive update corresponds to
the pheromone update in ACO algorithms for discrete optimization problems.
Recently, ACOR was applied to neural network training [158].

Hybridizing ACO with Branch & Bound Derivatives

Beam search (BS) is a classical tree search method that was introduced in
the context of scheduling [131], but has since then been successfully applied
to many other CO problems (e.g., see [40]). BS algorithms are incomplete
derivatives of branch & bound algorithms, and are therefore approximate
methods. The central idea behind BS is to construct a number of kbw (the
so-called beam width) solutions in parallel and non-independently. At each
construction step the algorithm selects at most kbw partial solutions by utiliz-
ing bounding information. Even though both ACO and BS have the common
feature that they are based on the idea of constructing candidate solutions
step-by-step, the ways by which the two methods explore the search space are
quite different. While BS is a deterministic algorithm that uses a lower bound
for guiding the search process, ACO algorithms are adaptive and probabilistic
procedures. Furthermore, BS algorithms reduce the search space in the hope
of not excluding all optimal solutions, while ACO algorithms consider the
whole search space. Based on these observations Blum introduced a hybrid
between ACO and BS which was labelled Beam-ACO [14, 15]. Beam-ACO is
an ACO algorithm in which the standard ACO solution construction mecha-
nism is replaced by a probabilistic beam search procedure. Work that is in a
similar vein can be found in [109, 112].



58 C. Blum and X. Li

ACO and Constraint Programming

Another interesting hybridization example concerns the use of constraint pro-
gramming (CP) techniques (see [114]) for restricting the search performed
by an ACO algorithm to promising regions of the search space. The motiva-
tion for this type of hybridization is as follows: Generally, ACO algorithms
are competitive with other optimization techniques when applied to problems
that are not overly constrained. However, when highly constrained problems
such as scheduling or timetabling are concerned, the performance of ACO
algorithms generally degrades. Note that this is also the case for other meta-
heuristics. The reason is to be found in the structure of the search space:
When a problem is not overly constrained, it is usually not difficult to find
feasible solutions. The difficulty rather lies in the optimization part, namely
the search for good feasible solutions. On the other hand, when a problem is
highly constrained the difficulty is rather in finding any feasible solution. This
is where CP comes into play, because these problems are the target problems
for CP applications. The idea of hybridizing ACO with CP is simple [122]. At
each iteration, first constraint propagation is applied in order to reduce the
remaining search tree. Then, solutions are constructed in the standard ACO
way with respect to the reduced search tree. After the pheromone update,
additional constraints might be added to the system.

Applying ACO in a Multilevel Framework

Multilevel techniques have been employed for quite a long time, especially in
the area of multigrid methods (see [23] for an overview). More recently, they
have been brought into focus by Walshaw for the application to CO. Walshaw
and coworkers applied multilevel techniques to graph-based problems such
as mesh partitioning [177]. The basic idea of a multilevel scheme is simple.
Starting from the original problem instance, smaller and smaller problem in-
stances are obtained by successive coarsening until some stopping criteria are
satisfied. This creates a hierarchy of problem instances in which the problem
instance of a given level is always smaller (or of equal size) to the problem
instance of the next lower level. Then, a solution is computed to the small-
est problem instance and successively transformed into a solution of the next
higher level until a solution for the original problem instance is obtained. At
each level, the obtained solution might be subject to a refinement process, for
example, an ACO algorithm. Applications of ACO in multilevel frameworks
include [94, 95, 20].

3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a population-based stochastic optimiza-
tion technique modelled on the social behaviors observed in animals or insects,



Swarm Intelligence in Optimization 59

e.g., bird flocking, fish schooling, and animal herding [92]. It was originally
proposed by James Kennedy and Russell Eberhart in 1995 [91]. Since its
inception, PSO has gained increasing popularity among researchers and prac-
titioners as a robust and efficient technique for solving difficult optimization
problems. In PSO, individual particles of a swarm represent potential so-
lutions, which move through the problem search space seeking an optimal,
or good enough, solution. The particles broadcast their current positions to
neighboring particles. The position of each particle is adjusted according to its
velocity (i.e., rate of change) and the difference between its current position,
respectively the best position found by its neighbors, and the best position it
has found so far. As the model is iterated, the swarm focuses more and more
on an area of the search space containing high-quality solutions.

PSO has close ties to artificial life models. Early works by Reynolds on
a flocking model Boids [146], and Heppner’s studies on rules governing large
numbers of birds flocking synchronously [78], indicated that the emergent
group dynamics such as the bird flocking behavior are based on local inter-
actions. These studies were the foundation for the subsequent development
of PSO for the application to optimization. PSO is in some way similar to
cellular automata (CA), which are often used for generating interesting self-
replicating patterns based on very simple rules, e.g., John Conway’s Game
of Life. CAs have three main attributes: (1) individual cells are updated in
parallel; (2) the value of each new cell depends only on the old values of the
cell and its neighbors; and (3) all cells are updated using the same rules [149].
Particles in a swarm are analogous to CA cells, whose states are updated in
many dimensions simultaneously.

The term particle swarm was coined by James Kennedy and Russell Eber-
hart, who were responsible for inventing the original PSO. Initially they in-
tended to model the movements of flocks of birds and schools of fish. As
their model further evolved to handle optimization, the visual plots they used
started to display something more like swarms of mosquitoes. The term par-
ticle was used simply because the notion of velocity was adopted in PSO and
particle seemed to be the most appropriate term in this context.

This section on PSO is organized as follows. In Sect. 3.1 we first present
the original PSO developed by Kennedy and Eberhart. This is followed by
descriptions of a number of key improvements and generalizations to the ba-
sic PSO algorithm. We then give an overview of several PSO variants that
represent important progress made in this area, and a list of representative
examples of PSO applications. In Sect. 3.2 we outline some recent trends in
PSO research, including its theoretical works and its application in the areas of
multiobjective optimization, dynamic optimization, and constraint handling.

3.1 Particle Swarm Optimization: An Introduction

In PSO, the velocity of each particle is modified iteratively by its personal best
position (i.e., the best position found by the particle so far), and the best posi-



60 C. Blum and X. Li

tion found by particles in its neighborhood. As a result, each particle searches
around a region defined by its personal best position and the best position
from its neighborhood. Henceforth we use vi to denote the velocity of the ith
particle in the swarm, xi to denote its position, pi to denote the personal best
position and pg the best position found by particles in its neighborhood. In
the original PSO algorithm, vi and xi, for i = 1, . . . , n, are updated according
to the following two equations [91]:

vi ← vi + ϕ1 ⊗ (pi − xi) + ϕ2 ⊗ (pg − xi), (9)
xi ← xi + vi, (10)

where ϕ1 = c1R1 and ϕ2 = c2R2. R1 and R2 are two separate functions
each returning a vector comprising random values uniformly generated in the
range [0,1]. c1 and c2 are acceleration coefficients. The symbol ⊗ denotes point-
wise vector multiplication. Equation (9) shows that the velocity term vi of a
particle is determined by three parts, the “momentum”, the “cognitive”, and
the “social” part. The “momentum” term vi represents the previous velocity
term which is used to carry the particle in the direction it has travelled so far;
the “cognitive” part, ϕ1⊗ (pi −xi), represents the tendency of the particle to
return to the best position it has visited so far; the “social” part, ϕ2⊗(pg−xi),
represents the tendency of the particle to be attracted towards the position
of the best position found by the entire swarm.

Position pg in the “social” part is the best position found by particles in
the neighborhood of the ith particle. Different neighborhood topologies can
be used to control information propagation between particles. Examples of
neighborhood topologies include ring, star, and von Neumann. Constricted
information propagation as a result of using small neighborhood topologies
such as von Neumann has been shown to perform better on complex problems,
whereas larger neighborhoods generally perform better on simpler problems
[116]. Generally speaking, a PSO implementation that chooses pg from within
a restricted local neighborhood is referred to as lbest PSO, whereas choosing
pg without any restriction (hence from the entire swarm) results in a gbest
PSO. Algorithm 1 summarizes a basic PSO algorithm.

Figure 3.1 shows each component of the velocity term vi in vector form,
and the resulting position, xi (updated), for the ith particle. Note that the
inertia coefficient w is used to scale the previous velocity term, normally to
reduce the “momentum” of the particle. More discussion on w will be provided
in the next section.

Earlier studies showed that the velocity as defined in Eq. (9) has a tendency
to explode to a large value, resulting in particles exceeding the boundaries of
the search space. This is more likely to happen especially when a particle is
far from pg or pi. To overcome this problem, a velocity clamping method
can be adopted where the maximum allowed velocity value is set to Vmax

in each dimension of vi. This method does not necessarily prevent particles



Swarm Intelligence in Optimization 61

Algorithm 1 The PSO algorithm, assuming maximization
Randomly generate an initial swarm
repeat

for each particle i do
if f(xi) > f(pi) then pi ← xi

pg = max(pneighbours)
Update velocity (see Eq. (9))
Update position (see Eq. (10))

end for
until termination criterion is met

Fig. 5. Visualizing PSO components as vectors

from leaving the search space nor from converging. However, it does limit the
particle step size, thereby preventing further divergence of particles.

Inertia Weight

Observe that the positions pi and pg in Eq. (9) can be collapsed into a single
term p without losing any information:

vi ← vi + ϕ ⊗ (p − xi), (11)
xi ← xi + vi, (12)

where p = ϕ1pi+ϕ2pg

ϕ1+ϕ2
, and ϕ = ϕ1 +ϕ2. Note that p represents the weighted

average of the pi and pg. It can be seen that the previous velocity term
in Eq. (11) tends to keep the particle moving in the current direction. A
coefficient inertia weight, w, can be used to control this influence on the new
velocity. The velocity update (see Eq. (9)) can be now revised as:



62 C. Blum and X. Li

vi ← wvi + ϕ1 ⊗ (pi − xi) + ϕ2 ⊗ (pg − xi) (13)

The inertia-weighted PSO can converge under certain conditions even
without using Vmax [33]. For w > 1, velocities increase over time, causing
particles to diverge eventually beyond the boundaries of the search space.
For w < 0, velocities decrease over time, eventually reaching 0, resulting in
convergence behavior. Eberhart and Shi suggested the use of a time-varying
inertia weight, gradually decreasing its value typically from 0.9 to 0.4 (with
ϕ = 4.0) [55].

Clerc described a general PSO algorithm that uses a constriction coeffi-
cient. Among the models suggested, the Constriction Type 1 PSO is equiva-
lent to the inertia-weighted PSO [33]. The velocity update in Eq. (13) can be
rewritten as:

vi ← χ(vi + ϕ1 ⊗ (pi − xi) + ϕ2 ⊗ (pg − xi)), (14)

where χ = 2∣
∣
∣2−ϕ−

√
ϕ2−4ϕ

∣
∣
∣
, and ϕ = c1 + c2, ϕ > 4. If ϕ is set to 4.1, and

c1 = c2 = 2.05, then the constriction coefficient χ will be 0.7298. Applying
χ in Eq. (14) results in the previous velocity scaled by 0.7298, and the “cog-
nitive” and “social” parts multiplied by 1.496 (i.e., 0.7298 times 2.05). Both
theoretical and empirical results suggested that the above configuration using
a constant constriction coefficient χ = 0.7298 ensures convergent behavior
[55] without using Vmax. However, early empirical studies by Eberhart and
Shi suggested that it may be still a good idea to use velocity clamping to-
gether with the constriction coefficient, which showed improved performance
on certain problems.

Fully Informed Particle Swarm

Equation (11) indicates that a particle tends to converge towards a point de-
termined by p = ϕ1pi+ϕ2pg

ϕ1+ϕ2
, where ϕ = ϕ1+ϕ2. In the fully informed particle

swarm (FIPS) as proposed by Mendes [116], p can be further generalized to
any number of terms:

p =

∑
k∈N r[0, cmax

|N | ] ⊗ pk
∑

k∈N ϕk
, (15)

where pk denotes the best previous position found by the kth particle in N ,
which is a set of neighbors including the current particle itself. Note again
that the division is a point wise operator here. If we set k = 2, p1 = pi,
and p2 = pg, with both pi,pg ∈ N , then the Constriction Type 1 PSO is
just a special case of the more general PSO defined in Eq. (11). A significant
implication of Eq. (15) is that it allows us to think more freely about employing
terms of influence other than just pi and pg [116] [90].



Swarm Intelligence in Optimization 63

PSO Variants

Although the canonical PSO was designed for continuous optimization, it can
be extended to operate on binary search spaces. Kennedy and Eberhart devel-
oped a simple binary PSO by altering the velocity term in the canonical PSO
into a probability threshold to determine if xi is 0 or 1 [92]. PSO can be also
extended to solve discrete or mixed (continuous and discrete) optimization
problems [180, 32]. PSO can be adapted to work with discrete variables by
simply discretizing the values after using them in the velocity and position
update equations. Clerc provided several examples of PSO applied to com-
binatorial problems such as the knapsack, the traveling salesman, and the
quadratic assignment problems [32].

An adaptive PSO version, tribes, was developed by Clerc [32], where the
swarm size is determined by strategies for generating new particles as well
as for removing poorly performing particles. The concept of a tribe is used
to group particles that inform each other. Clerc’s goal was to develop a PSO
which can find the parameters on its own (e.g., swarm size), and still maintain
a relatively good performance.

Kennedy proposed a PSO variant, bare-bones PSO, which does not use the
velocity term [89]. In the bare-bones PSO each dimension of the new position
of a particle is randomly selected from a Gaussian distribution with the mean
being the average of pi and pg and the standard deviation being the distance
between pi and pg:

xi ← N
(

pi + pg

2
, ||pi − pg||

)

(16)

Note that there is no velocity term used in Eq. (16). The new particle posi-
tion is simply generated via the Gaussian distribution. Sampling distributions
other than Gaussian can also be employed [32, 147].

It has been observed that the canonical PSO tends to prematurely con-
verge to local optima. To combat this problem, several PSO variants have
incorporated a diversity maintenance mechanism. For example, ARPSO (at-
tractive and repulsive PSO) was proposed to use a diversity measure to trigger
an alternation between phases of attraction and repulsion [148]. A dissipative
PSO was described in [179] to increase randomness. Similarly, a PSO with
self-organized criticality was introduced in [107]. A PSO variant based on
fitness-distance-ratio (FDR-PSO) was proposed in [173], to encourage inter-
actions among particles that are both fit and close to each other. FDR-PSO
was shown to give superior performance to the canonical PSO. FDR-PSO
can be seen as using a dynamically defined neighborhood topology. Various
neighborhood topologies have been adopted to restrict particle interactions
[165, 116]. In particular, the von Neumann neighborhood topology has been
shown to provide good performance across a range of test functions [116]. In
[83], an H-PSO (Hierarchical PSO) was proposed, where a hierarchical tree
structure is adopted to restrict the interactions among particles. Each particle



64 C. Blum and X. Li

is influenced only by its own personal best position and by the best position
of the particle that is directly above it in the hierarchy. Another recently pro-
posed PSO, CLPSO [105], which is in some way similar to FDR-PSO, allows
incorporation of learning from more previous personal best positions. Gaus-
sian distribution was employed in a PSO variant as a mutation operator in
[79]. A cooperative PSO, similar to those previously developed coevolutionary
algorithms, was also proposed in [171].

PSO variants have also been developed for solving multimodal optimiza-
tion problems, where multiple equally good optima are sought. Niching meth-
ods such as crowding and fitness sharing that have been developed for evolu-
tionary algorithms can be easily incorporated into PSO algorithms. Some rep-
resentative PSO niching variants include NichePSO [142], SPSO (Speciation-
based PSO) [101, 135, 8], and a PSO algorithm using a stretching function
[138].

Applications of PSO Algorithms

PSO algorithms have been applied to optimization problems ranging from
classical problems such as scheduling, the traveling salesman problem, neural
network training, and task assignment, to highly specialized applications such
as reactive power and voltage control [180], biomedical image registration
[176], and even music composition [10]. In recent years, PSO is also a popular
choice of many researchers for handling multiobjective optimization [155] and
dynamic optimization problems [102].

One of the earliest applications of PSO was the evolution of neural net-
work structures. Eberhart et al. used PSO to replace the traditional back-
propagation learning algorithm in a multilayer perceptron [57]. Because of its
fast convergence behavior, using PSO for neural network training can some-
times save a considerable amount of computation time compared with other
optimization methods.

Table 3 shows a list of examples of PSO applications that can be found in
the literature. For more information on PSO applications we refer the inter-
ested reader to [32].

3.2 Recent Trends

Theoretical Work on PSO

Since PSO was first introduced by Kennedy and Eberhart in 1995 [91], several
studies have been carried out on understanding the convergence properties of
PSO [33, 132, 170, 168]. Since an analysis of the convergence behavior of a
swarm of multiple interactive particles is difficult, many of these works focus
on studying the convergence behaviors of a simplified PSO system.

Kennedy provided the first analysis of a simplified particle behavior in [88],
where particle trajectories for a range of variable choices were given. In [132],



Swarm Intelligence in Optimization 65

Table 3. A representative selection of PSO applications

Problem Authors Reference

Traveling salesman problem Onwubolu and Clerc [130]
Flowshop scheduling Rameshkumar, Suresh and Mohanasundaram [143]
Task assignment Salman, Imtiaz and Al-Madani [150]
Neural networks Kennedy, Eberhart, and Shi [92]

Mendes, Cortez, Rocha, and Neves [115]
Conradie, Miikkulaninen and Aldrich [35]
Gudisz and Venayagamoorthy [71]
Settles, Rodebaugh and Soule [152]

Bioinformatics Correa, Freitas and Johnson [36]
Georgiou, Pavlidis, Parsopoulos and Vrahatis [66]

Industrial applications Katare, Kalos and West [87]
Marinke, Matiko, Araujo and Coelho [113]

Reactive power and voltage control Yoshida, Kawata, et. al [180]
PID controller Gaing [60]
Biomedical image registration Wachowiak et. al [176]
Floor planning Sun, Hsieh, Wang and Lin [166]
Quantizer design Zha and Venayagamoorthy [182]
Power systems Venayagamoorthy [174]
Clustering analysis Chen and Ye [30]
Constraint handling Pulido and Coello [140]

Liang and Suganthan [104]
Electromagnetic applications Mikki and Kishk [124]
Multiobjective problems Moore and Chapman [126]

Coello and Lechuga [34]
Fieldsend and Singh [58]
Hu and Eberhart [81]
Parsopoulos and Vrahatis [137]
Li [100]

Dynamic problems Carlisle and Dozier [28]
Hu and Eberhart [82]
Eberhart and Shi [56]
Carlisle and Dozier [29]
Blackwell and Branke [11, 12]
Jason and Middendorf [84]
Parrott and Li [135]
Li, Blackwell, and Branke [102]

Music Blackwell and Bentley [10]

Ozcan and Mohan showed that a particle in a one-dimensional PSO system,
with its pi, pg, ϕ1, and ϕ2 kept constant, follows the path of a sinusoidal
wave, where the amplitude and frequency of the wave are randomly decided.

A formal theoretical analysis of the convergence properties of a simplified
PSO was provided by Clerc [33]. Clerc [33] represented the PSO system as
defined in equations (11) and (12) as a dynamic system in state-space form.
By simplifying the PSO to a deterministic dynamic system, its convergence
can be shown based on the eigenvalues of the state matrix. A similar work was
also carried out by Bergh and Engelbrecht [170], where regions of parameter
space that guarantee convergence are identified. The conditions for conver-
gence derived from both studies [33, 170] are: w < 1 and w > 1

2 (c1 + c2) − 1.
In a more recent work [172], Bergh and Engelbrecht generalized the above

analysis by including the inertia weight w, and also provided a formal conver-
gence proof of particles in this representation. Furthermore, they studied the



66 C. Blum and X. Li

particle trajectory with a relaxed assumption to allow stochastic values for
ϕ1 and ϕ2. They demonstrated that a particle can exhibit a combination of
divergent and convergent behaviors with certain probabilities when different
values of ϕ1 and ϕ2 are used.

In [85], Kadirkamanathan et al. recently provided a new approach to the
convergence analysis of PSO without the assumption of non-random PSO. The
analysis of stochastic particle dynamics was made feasible by representing
particle dynamics as a nonlinear feedback controlled system as formulated
by Lure [53]. The convergence analysis was carried out using the concept of
passive systems and Lyapunov stability [175]. Some conservative conditions
for convergence were derived in this study.

PSO for Multiobjective Optimization

Multiobjective optimization (MO) problems represent an important class of
real-world problems. Typically such problems involve trade-offs. For example,
a car manufacturer may wish to maximize its profit, but meanwhile also to
minimize its production cost. These objectives are typically conflicting to
each other. For example, a higher profit could increase the production cost.
Generally, there is no single optimal solution. Often the manufacturer needs to
consider many possible “trade-off” solutions before choosing the one that suits
its need. The curve or surface (for more than two objectives) describing the
optimal trade-off solutions between objectives is known as the Pareto front.
A multiobjective optimization algorithm is required to find solutions as close
as possible to the Pareto front, while maintaining a good solution diversity
along the Pareto front.

To apply PSO to multiobjective optimization problems, several issues have
to be taken into consideration:

1. How to choose pg (i.e., a leader) for each particle? The PSO needs to favor
non-dominated particles over dominated ones, and drive the population
towards different parts of the Pareto front, not just towards a single point.
This requires that particles be allocated to different leaders.

2. How to identify non-dominated particles with respect to all particles’ cur-
rent positions and personal best positions? And how to retain these solu-
tions during the search process? One strategy is to combine all particles’
personal best positions and current positions, and then extract the non-
dominated solutions from the combined population.

3. How to maintain particle diversity so that a set of well-distributed solu-
tions can be found along the Pareto front? Some classic niching methods
(e.g., crowding or sharing) can be adopted for this purpose.

The first PSO for solving multiobjective optimization was proposed by
Moore and Chapman in 1999 [126]. An lbest PSO was used, and pg was
chosen from a local neighborhood using a ring topology. All personal best



Swarm Intelligence in Optimization 67

positions were kept in an archive. At each particle update, the current posi-
tion is compared with solutions in this archive to see if the current position
represents a non-dominated solution. The archive is updated at each iteration
to ensure it contains only non-dominated solutions.

Interestingly it was not until 2002 that the next publication on PSO for
multiobjective optimization appeared. In [34], Coello and Lechuga proposed
MOPSO (Multiobjective PSO) which uses an external archive to store non-
dominated solutions. The diversity of solutions is maintained by keeping only
one solution within each hypercube which is predefined by a user in the ob-
jective space. In [137], Parsopoulos and Vrahatis adopted a more traditional
weighted-sum approach. However, by using gradually changing weights, their
approach was able to find a diverse set of solutions along the Pareto front. In
[58], Fieldsend and Singh proposed a PSO using a dominated tree structure to
store non-dominated solutions found. The selection of leaders was also based
on this structure. To maintain a better diversity, a turbulence operator was
adopted to function as a ‘mutation’ operator in order to perturb the velocity
value of a particle.

With the aim of increasing the efficiency of extracting non-dominated solu-
tions from a swarm, Li proposed NSPSO (Non-dominated Sorting PSO) [100],
which follows the principal idea of the well-known NSGA II algorithm [39].
In NSPSO, instead of comparing solely a particle’s personal best with its po-
tential offspring, all particles’ personal best positions and offspring are first
combined to form a temporary population. After this, domination comparisons
for all individuals in this temporary population are carried out. This approach
will ensure more non-dominated solutions can be discovered through the dom-
ination comparison operations than the above-mentioned multiobjective PSO
algorithms.

Many more multiobjective PSO variants have been proposed in recent
years. A survey conducted by Sierra and Coello in 2006 shows that there are
currently 25 different PSO algorithms for handling multiobjective optimiza-
tion problems. Interested readers should refer to [155] for more information
on these different approaches.

PSO for Dynamic Optimization

Many real-world optimization problems are dynamic and require optimization
algorithms capable of adapting to the changing optima over time. For exam-
ple, traffic conditions in a city change dynamically and continuously. What
might be regarded as an optimal route at one time might not be optimal
the next minute. In contrast to optimization towards a static optimum, in a
dynamic environment the goal is to track as closely as possible the dynami-
cally changing optima. Figure 6 shows an example of a three-peak dynamic
environment.

A defining characteristic of PSO is its fast convergent behavior and in-
herent adaptability [92]. Particles can adaptively adjust their positions based



68 C. Blum and X. Li

-1
-0.5

0
0.5

1 -1

-0.5

0

0.5

10

0.5

1

1.5

2

2.5

3

3.5

4

(a) Before

-1
-0.5

0
0.5

1 -1

-0.5

0

0.5

10

0.5

1

1.5

2

2.5

3

3.5

4

(b) After

Fig. 6. Three-peak dynamic environment, before and after movement of optima.
Note that the small peak to the right of the figure becomes hidden and that the
highest point switches optimum

on their dynamic interactions with other particles in the population. This
makes PSO especially appealing as a potential solution to dynamic optimiza-
tion problems. Several studies have suggested various approaches to applying
PSO to solve dynamic optimization problems [28, 29, 56, 82, 103, 11, 12, 135].
These studies showed that the original PSO must be adapted to meet the addi-
tional challenges presented by dynamic optimization problems. In particular,
the following questions need to be addressed:

1. How do we detect a change that has actually occurred?
2. Which response strategies are appropriate to use once a change is de-

tected?
3. How do we handle the issue of ‘out-of-date’ memory as particles’ personal

best positions become invalid once the environment has changed?
4. How do we handle the trade-off issue between convergence (in order to

locate optima) and diversity (in order to relocate changed optima)?

One of the early works on using PSO for dynamic optimization was by
Eberhart and Shi in [56], where they used an inertia-weighted PSO to track the
optimum of a three-dimensional unimodal parabolic function which changes
its maxima every 100 iterations. It was found under certain circumstances that
the PSO’s performance was comparable to or better than that of previously
published evolutionary algorithms.

For detection, Carlisle and Dozier used a sentry particle which is randomly
chosen at each iteration [28]. The sentry particle gets evaluated before each
iteration and compares its fitness with its previous fitness value. If the two
values are different, indicating the environment has changed, then the whole
population gets alerted and several possible responses can then be triggered.
A simple strategy was also proposed by Hu and Eberhart to re-evaluate pg

and a second-best particle to detect if a change has occurred [82].
Various response strategies have been proposed. To deal with the issue

of ‘out-of-date’ memory as the environment changes, Carlisle and Dozier pro-



Swarm Intelligence in Optimization 69

posed to periodically replace all personal best positions by their corresponding
current positions when a change has been detected [29]. This allows particles
to forget their past experience and use only up-to-date knowledge about the
new environment. Hu and Eberhart studied the effects of re-randomizing var-
ious proportions of the swarm to maintain some degree of diversity in order
to better track the optima after a change [82]. However, this approach suffers
from possible information loss since the re-randomized portion of the pop-
ulation does not retain any information that might be useful from the past
iterations.

In order to maintain better particle diversity throughout a run, Blackwell
and Bentley introduced charged swarms where mutually repelling charged
particles orbit a nucleus of neutral particles (conventional PSO particles) [9].
Whereas the charged particles allow the swarm to better adapt to changes in
the environment, the neutral particles play the role of continuing to converge
towards the optimum.

Inspired by multi-population EA approaches such as the self-organizing
scouts [24], Blackwell and Branke proposed an interacting multi-swarm PSO
as a further improvement to the charged swarms [11]. The multi-swarm PSO
aims at maintaining multiple swarm populations on different peaks. Multiple
swarms are prevented from converging to the same optimum by randomizing
the worse of two swarms that come too close. The multi-swarm PSO also re-
places the charged particles with quantum particles whose position is solely
based on a probability function centered around the swarm attractor. The re-
sulting multi-quantum swarms outperform charged and standard PSOs on the
moving peaks function. This multi-swarm approach is particularly attractive
because of its improved adaptability in a more complex multimodal dynamic
environment where multiple peaks exist and need to be tracked.

With a similar aim to locate and track multiple peaks in a dynamic envi-
ronment, Parrott and Li in [101, 135] proposed a species-based PSO (SPSO)
incorporating a speciation algorithm first proposed by Pétrowski [139]. The
SPSO uses a local “species seed” which provides the local pg to particles
whose positions are within a user-specified radius of the seed. This encour-
ages swarms to converge onto multiple local optima instead of a single global
optimum, hence developing multiple sub-populations in parallel. In addition,
the dynamic SPSO uses a parameter pmax to limit the number of particles
allowed in a species (or swarm), with the excess particles reinitialized at ran-
dom positions in the total search space. In [102], Li et al. also demonstrated
that the quantum particle model in [11] can be incorporated into SPSO to
improve its optima-tracking performance for the moving peaks problem [24].

In another work [84], Janson and Middendorf proposed a PSO using a
dynamic and hierarchical neighborhood structure to handle dynamic opti-
mization problems. They demonstrated that such a structure is useful for
maintaining some particle diversity in a dynamic environment.



70 C. Blum and X. Li

PSO for Constraint Handling

Many real-world problems require an optimization algorithm to find solutions
that satisfy a certain number of constraints. The most common approach for
solving constrained problems is the use of a penalty function, where the con-
strained problem is transformed into an unconstrained one, by penalizing the
constraints and creating a single objective function. Parsopoulos and Vrahatis
proposed a PSO where non-stationary penalty functions are used [136]. The
penalty value is dynamically modified during a run. This method is prob-
lem dependent; however its results are generally superior to those obtained
through stationary functions. In Toscano and Coello’s PSO algorithm [141],
if both particles compared are infeasible, then the particle that has the lowest
value in its total violation of constraints wins. One major disadvantage of
using penalty functions, in which case all constraints must be combined into
a single objective function (this is also called the weighted-sum approach),
is that a user must specify a weight coefficient for each constraint. However,
finding optimal weight coefficients is no easy task. A preferred approach is a
multiobjective one where the concept of “dominance” can be used to identify
better solutions which are non-dominated solutions with respect to the cur-
rent population. The merit of this multiobjective approach is that the user is
no longer required to specify any weight coefficient.

Another useful technique as described by Clerc is “confinement by di-
chotomy” [32], which makes use of an iterative procedure to find points that
are close to the boundaries defined by constraints. Both the dichotomy and
multiobjective methods are general enough that they are applicable to most
constrained optimization problems.

4 Further Examples of Swarm Intelligence in
Optimization

ACO and PSO are two very successful examples of swarm intelligence, yet
there are many more applications based on SI principles. Some representative
examples are given in the following.

4.1 Applications Inspired by the Division of Labour

Algorithms based on the division of labour in ant colonies and wasp colonies
are an important example of the use of swarm intelligence principles in tech-
nical applications. Much of the relevant works go back to the study of Wil-
son [178], who showed that the concept of division of labour in colonies of
ants from the Pheidole genus allows the colony to adapt to changing demands.
Workers in these colonies are generally divided into two groups: Small minors
and larger majors. The minors are mostly doing quotidian tasks, whereas the



Swarm Intelligence in Optimization 71

majors do seed milling, storing of abdominal food, or defense tasks. By exper-
imentally reducing the number of minors, Wilson observed that some of the
majors switched to tasks usually fulfilled by minors. The division of labour
was later modelled by Theraulaz et al. [167] and Bonabeau et al. [22] by means
of response threshold models. The model permits a set of threshold values for
each individual, one threshold value for each type of task. A threshold value,
which may be fixed or dynamically changing over time, can be interpreted as
the degree of specialization for the respective task. Furthermore, each task
emits a stimulus in order to attract the attention of the individuals, which—
depending on the stimulus and the corresponding threshold value—decide
whether to accept or to decline the task.

The above-mentioned response threshold models inspired several techni-
cal applications. Campos et al. [27], Cicirello and Smith [31], and Nouyan et
al. [129] deal with a static, or a dynamic task allocation problem where trucks
have to be painted in a number of painting booths. Another application con-
cerns media streaming in peer-to-peer networks. Here, a peer must adapt to
changes in the supply and demand of media streams. For this purpose, Sasabe
et al. [151] propose a novel caching algorithm based on a response threshold
model. In [181], Yu and Ram propose a multi-agent system for the schedul-
ing of dynamic job shops with flexible routing and sequence-dependent setups
based on the division of labour in social insects. Finally, Merkle et al. [119]
use a response threshold model for the self-organized task allocation for com-
puting systems with reconfigurable components.

4.2 Ant-Based Clustering and Sorting

In 1991 Deneubourg et al. [43] proposed a model to describe the clustering as
well as the sorting behavior of ants. Here, clustering refers to the gathering
of items in order to form heaps. This happens, for example, when ants of the
species Pheidole pallidula cluster the bodies of dead nest mates (also known
as cemetery formation). Sorting, on the other hand, refers to the spatial ar-
rangement of different objects according to their properties, a behavior which
can be observed, for example, in nests of the species Leptothorax unifasciatus.
Ants of this species compactly cluster eggs and microlarvae at the center of
the brood area, whereas the largest larvae are placed at the periphery of the
brood area. In computer simulations in [43] ants were modelled as agents ran-
domly moving in their environment in which items were initially scattered.
Agents were able to pick up items, to transport them, and to drop them. The
probabilities for these actions were derived from the distribution of items in
the agents’ local neighborhood. For example, items that are isolated had a
higher probability of being picked up. As a result, a clustering and sorting of
items in the agents environment was obtained.



72 C. Blum and X. Li

Mostly based on the above mentioned model by Deneubourg et al., several
algorithms for clustering and sorting appeared in the literature. The first one
was an algorithm proposed in [108] that extended the original model in order
to be able to handle numerical data. Later papers deal with the models’ use for
the two-dimensional visualization of document collections such as Web data
(see, for example, [77]) and for graph partitioning (see, for example, [97]).

4.3 Other Applications

Recently, research on swarm robotics has taken much inspiration from swarm
intelligence. For example, the path finding and orientation skills of the desert
ant Cataglyphis were used as an archetype for building a robot orientation
unit [98]. Models for the division of labor between members of an ant colony
were used to regulate the joint work of robots (see, for example, [1]). In [96]
the collective transport of ants inspired the design of controllers of robots
for doing coordinated work. More detailed and up-to-date information can be
found in Chap. 3 of this book.

Acknowledgements

This work was supported by grants TIN2005-08818 (OPLINK) and TIN2007-
66523 (FORMALISM) of the Spanish government, and by the EU project
FRONTS (FP7-ICT-2007-1) funded by the European Comission under the
FET Proactive Initiative Pervasive Adaptation. In addition, Christian Blum
acknowledges support from the Ramón y Cajal program of the Spanish Min-
istry of Science and Technology of which he is a research fellow.

References

1. W. Agassounoun, A. Martinoli, and R. Goodman. A scalable, distributed
algorithm for allocating workers in embedded systems. In Terry Bahill, editor,
Proceedings of the 2001 IEEE Systems, Man and Cybernetics Conference, pages
3367–3373. IEEE Press, 2001.

2. S. Alupoaei and S. Katkoori. Ant colony system application to macrocell
overlap removal. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 12(10):1118–1122, 2004.

3. J. Bautista and J. Pereira. Ant algorithms for a time and space constrained
assembly line balancing problem. European Journal of Operational Research,
177(3), 2007.

4. G. Beni. The concept of cellular robotic systems. In Proceedings of the IEEE
International Symposium on Intelligent Systems, pages 57–62. IEEE Press,
Piscataway, NJ, 1988.



Swarm Intelligence in Optimization 73

5. L. Bianchi, L. M. Gambardella, and M. Dorigo. An ant colony optimization
approach to the probabilistic traveling salesman problem. In J. J. Merelo,
P. Adamidis, H.-G. Beyer, J.-L. Fernández-Villacanas, and H.-P. Schwefel, ed-
itors, Proceedings of PPSN VII, Seventh International Conference on Parallel
Problem Solving from Nature, volume 2439 of Lecture Notes in Computer Sci-
ence, pages 883–892. Springer, Berlin, Germany, 2002.

6. B. Bilchev and I. C. Parmee. The ant colony metaphor for searching continuous
design spaces. In T. C. Fogarty, editor, Proceedings of the AISB Workshop on
Evolutionary Computation, volume 993 of Lecture Notes in Computer Science,
pages 25–39. Springer, Berlin, Germany, 1995.

7. M. Birattari, G. Di Caro, and M. Dorigo. Toward the formal foundation of ant
programming. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant Algo-
rithms – Proceedings of ANTS 2002 – Third International Workshop, volume
2463 of Lecture Notes in Computer Science, pages 188–201. Springer, Berlin,
Germany, 2002.

8. S. Bird and X. Li. Adaptively choosing niching parameters in a PSO. In
Mike Cattolico, editor, Genetic and Evolutionary Computation Conference,
GECCO 2006, Proceedings, Seattle, Washington, USA, July 8-12, 2006, pages
3–10. ACM, 2006.

9. T. Blackwell and P. J. Bentley. Dynamic search with charged swarms. In Proc.
the Workshop on Evolutionary Algorithms Dynamic Optimization Problems
(EvoDOP 2003), pages 19–26, 2002.

10. T. Blackwell and P. J. Bentley. Improvised music with swarms. In David B.
Fogel, Mohamed A. El-Sharkawi, Xin Yao, Garry Greenwood, Hitoshi Iba, Paul
Marrow, and Mark Shackleton, editors, Proceedings of the 2002 Congress on
Evolutionary Computation CEC 2002, pages 1462–1467. IEEE Press, 2002.

11. T. Blackwell and J. Branke. Multi-swarm optimization in dynamic environ-
ments. In EvoWorkshops, volume 3005 of Lecture Notes in Computer Science,
pages 489–500. Springer, 2004.

12. T. Blackwell and J. Branke. Multi-swarms, exclusion and anti-convergence
in dynamic environments. IEEE Transactions on Evolutionary Computation,
10(4):459–472, 2006.

13. M. Blesa and C. Blum. Ant colony optimization for the maximum edge-disjoint
paths problem. In G. R. Raidl, S. Cagnoni, J. Branke, D. W. Corne, R. Drech-
sler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori, R. Rothlauf, G. D.
Smith, and G. Squillero, editors, Applications of Evolutionary Computing, Pro-
ceedings of EvoWorkshops 2004, volume 3005 of Lecture Notes in Computer
Science, pages 160–169. Springer, Berlin, Germany, 2004.

14. C. Blum. Beam-ACO—Hybridizing ant colony optimization with beam search:
An application to open shop scheduling. Computers & Operations Research,
32(6):1565–1591, 2005.

15. C. Blum, J. Bautista, and J. Pereira. Beam-ACO applied to assembly line bal-
ancing. In M. Dorigo, L. M. Gambardella, A. Martinoli, R. Poli, and T. Stützle,
editors, Ant Colony Optimization and Swarm Intelligence – Proceedings of
ANTS 2006 – Fifth International Workshop, volume 4150 of Lecture Notes
in Computer Science, pages 96–107. Springer, Berlin, Germany, 2006.

16. C. Blum and M. Dorigo. The hyper-cube framework for ant colony opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics – Part B,
34(2):1161–1172, 2004.



74 C. Blum and X. Li

17. C. Blum and M. Dorigo. Search bias in ant colony optimization: On the role
of competition-balanced systems. IEEE Transactions on Evolutionary Com-
putation, 9(2):159–174, 2005.

18. C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

19. C. Blum and M. Sampels. An ant colony optimization algorithm for shop
scheduling problems. Journal of Mathematical Modelling and Algorithms,
3(3):285–308, 2004.

20. C. Blum and M. Yábar Vallès. Multi-level ant colony optimization for DNA
sequencing by hybridization. In F. Almeida, M. Blesa, C. Blum, J. M. Moreno,
M. Pérez, A. Roli, and M. Sampels, editors, Proceedings of HM 2006 – 3rd In-
ternational Workshop on Hybrid Metaheuristics, volume 4030 of Lecture Notes
in Computer Science, pages 94–109. Springer-Verlag, Berlin, Germany, 2006.

21. E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, New York, NY, 1999.

22. E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Fixed response thresholds
and the regulation of division of labor in social societies. Bulletin of Mathe-
matical Biology, 60:753–807, 1998.

23. A. Brandt. Multilevel computations: Review and recent developments. In
S. F. McCormick, editor, Multigrid Methods: Theory, Applications, and Super-
computing, Proceedings of the 3rd Copper Mountain Conference on Multigrid
Methods, volume 110 of Lecture Notes in Pure and Applied Mathematics, pages
35–62. Marcel Dekker, New York, 1988.

24. J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer
Academic Publishers, Norwell, MA, 2002.

25. T. N. Bui and J. R. Rizzo Jr. Finding maximum cliques with distributed
ants. In K. Deb et al., editor, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2004), volume 3102 of Lecture Notes in
Computer Science, pages 24–35. Springer, Berlin, Germany, 2004.

26. B. Bullnheimer, R. Hartl, and C. Strauss. A new rank-based version of the
Ant System: A computational study. Central European Journal for Operations
Research and Economics, 7(1):25–38, 1999.

27. M. Campos, E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Dynamic
scheduling and division of labor in social insects. Adaptive Behavior, 8(3):83–
96, 2000.

28. A. Carlisle and G. Dozier. Adapting particle swarm optimization to dynamic
environments. In the Proceedings of the International Conference on Artificial
Intelligence (ICAI 2000), pages 429–434, Las Vegas, Nevada, USA, 2000.

29. A. Carlisle and G. Dozier. Tracking changing extrema with adaptive parti-
cle swarm optimizer. In Proceedings of the 5th Biannual World Automation
Congress, pages 265–270, Orlando FL, USA, 2002.

30. C.-Y. Chen and F. Ye. Particle swarm optimization algorithm and its applica-
tion to clustering analysis. In IEEE International Conference on Networking,
Sensing and Control, volume 2, pages 789–794, 2004.

31. V. A. Cicirello and S. S. Smith. Wasp-like agents for distributed factory coor-
dination. Journal of Autonomous Agents and Multi-Agent Systems, 8:237–266,
2004.

32. M. Clerc. Particle Swarm Optimization. ISTE Ltd, UK, 2006.



Swarm Intelligence in Optimization 75

33. M. Clerc and J. Kennedy. The particle swarm—explosion, stability, and con-
vergence in a multidimensional complex space. IEEE Transactions on Evolu-
tionary Computation, 6:58–73, 2002.

34. C. Coello Coello and M. Salazar Lechuga. MOPSO: A Proposal for Multiple
Objective Particle Swarm Optimization. In Congress on Evolutionary Compu-
tation (CEC 2002), volume 2, pages 1051–1056, Piscataway, New Jersey, May
2002. IEEE Service Center.

35. A.V.E. Conradie, R. Miikkulaninen, and C. Aldrich. Adaptive control uti-
lizing neural swarming. In Proc. of Genetic and Evolutionary Computation
Conference (GECCO), New York, USA, 2002.

36. E.S. Correa, A. Freitas, and C.G. Johnson. A new discrete particle swarm
algorithm applied to attribute selection in a bioinformatics data set. In GECCO
2006: Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation, volume 1, pages 35–42, Seattle, Washington, USA, 2006. ACM
Press.

37. P. Corry and E. Kozan. Ant colony optimization for machine layout problems.
Computational Optimization and Applications, 28(3):287–310, 2004.

38. D. Costa and A. Hertz. Ants can color graphs. Journal of the Operational
Research Society, 48:295–305, 1997.

39. K. Deb, A. Pratap, S. Agrawal, and T. Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: NSGA II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

40. F. Della Croce, M. Ghirardi, and R. Tadei. Recovering beam search: enhancing
the beam search approach for combinatorial optimisation problems. In Proceed-
ings of PLANSIG 2002 – 21st workshop of the UK Planning and Scheduling
Special Interest Group, pages 149–169, 2002.

41. M. L. den Besten, T. Stützle, and M. Dorigo. Ant colony optimization for
the total weighted tardiness problem. In M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, editors, Proceedings of
PPSN VI, Sixth International Conference on Parallel Problem Solving from
Nature, volume 1917 of Lecture Notes in Computer Science, pages 611–620.
Springer, Berlin, Germany, 2000.

42. J.-L. Deneubourg, S. Aron, S. Goss, and J.-M. Pasteels. The self-organizing
exploratory pattern of the Argentine ant. Journal of Insect Behaviour, 3:159–
168, 1990.

43. J.-L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and
L. Chrétien. The dynamics of collective sorting: Robot-like ants and ant-like
robots. In Proceedings of the First International Conference on Simulation of
Adaptive Behaviour: From Animals to Animats 1, pages 356–365. MIT Press,
Cambridge, MA, 1991.

44. G. Di Caro and M. Dorigo. AntNet: Distributed stigmergetic control for com-
munications networks. Journal of Artificial Intelligence Research, 9:317–365,
1998.

45. K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stummer. Pareto
ant colony optimization: A metaheuristic approach to multiobjective portfolio
selection. Annals of Operations Research, 131:79–99, 2004.

46. M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian). PhD
thesis, Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.

47. M. Dorigo and C. Blum. Ant colony optimization theory: A survey. Theoretical
Computer Science, 344(2-3):243–278, 2005.



76 C. Blum and X. Li

48. M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5(2):137–172, 1999.

49. M. Dorigo and L. M. Gambardella. Ant Colony System: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolution-
ary Computation, 1(1):53–66, 1997.

50. M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy.
Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano,
Italy, 1991.

51. M. Dorigo, V. Maniezzo, and A. Colorni. Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics
– Part B, 26(1):29–41, 1996.

52. M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge,
MA, 2004.

53. C. A. Dosoer and M. Vidyasagar. Feedback Systems: Input–Ouput Properties.
Academics, New York, 1975.

54. J. Dréo and P. Siarry. A new ant colony algorithm using the heterarchical con-
cept aimed at optimization of multiminima continuous functions. In M. Dorigo,
G. Di Caro, and M. Sampels, editors, Ant Algorithms – Proceedings of ANTS
2002 – Third International Workshop, volume 2463 of Lecture Notes in Com-
puter Science, pages 216–221. Springer, Berlin, Germany, 2002.

55. R. Eberhart and Y. Shi. Comparing inertia weights and constriction factors
in particle swarm optimization. In Proc. of IEEE Int. Conf. Evolutionary
Computation, pages 84–88, 2000.

56. R. C. Eberhart and Y. Shi. Tracking and optimizing dynamic systems with
particle swarms. In Proc. the 2001 Congress on Evolutionary Computation
(CEC 2001), pages 94–100. IEEE Press, 2001.

57. R. C. Eberhart, P. K. Simpson, and R. W. Dobbins. Computational Intelligence
PC Tools. Academic Press, Boston, 1996.

58. J. E. Fieldsend and S. Singh. A multiobjective algorithm based upon particle
swarm optimisation, an efficient data structure and turbulence. In Proceed-
ings of the 2002 UK Workshop on Computational Intelligence, pages 37–44,
Birmingham, UK, September 2002.

59. C. Gagné, W. L. Price, and M. Gravel. Comparing an ACO algorithm with
other heuristics for the single machine scheduling problem with sequence-
dependent setup times. Journal of the Operational Research Society, 53:895–
906, 2002.

60. Z. L. Gaing. A particle swarm optimization approach for optimum design of
PID controller in AVR system. IEEE Transactions on Energy Conversion,
19(2):384–391, June 2004.

61. L. M. Gambardella and M. Dorigo. Solving symmetric and asymmetric TSPs
by ant colonies. In T. Baeck, T. Fukuda, and Z. Michalewicz, editors, Proceed-
ings of the 1996 IEEE International Conference on Evolutionary Computation
(ICEC’96), pages 622–627. IEEE Press, Piscataway, NJ, 1996.

62. L. M. Gambardella and M. Dorigo. Ant Colony System hybridized with a
new local search for the sequential ordering problem. INFORMS Journal on
Computing, 12(3):237–255, 2000.

63. L. M. Gambardella, É. D. Taillard, and G. Agazzi. MACS-VRPTW: A multiple
ant colony system for vehicle routing problems with time windows. In D. Corne,
M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 63–76.
McGraw-Hill, London, UK, 1999.



Swarm Intelligence in Optimization 77

64. X. Gandibleux, X. Delorme, and V. T’Kindt. An ant colony optimisation
algorithm for the set packing problem. In M. Dorigo, M. Birattari, C. Blum,
L. M. Gambardella, F. Mondada, and T. Stützle, editors, Proceedings of ANTS
2004 – Fourth International Workshop on Ant Colony Optimization and Swarm
Intelligence, volume 3172 of Lecture Notes in Computer Science, pages 49–60.
Springer, Berlin, Germany, 2004.

65. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

66. V. Georgiou, N. Pavlidis, K. Parsopoulos, and M. Vrahatis. Optimizing the
performance of probabilistic neural networks in a bioinformatics task. In Pro-
ceedings of the EUNITE 2004 Conference, pages 34–40, 2004.

67. F. Glover. Future paths for integer programming and links to artificial intelli-
gence. Computers & Operations Research, 13:533–549, 1986.

68. F. Glover and G. Kochenberger, editors. Handbook of Metaheuristics. Kluwer
Academic Publishers, Norwell, MA, 2002.

69. J. Gottlieb, M. Puchta, and C. Solnon. A study of greedy, local search, and ant
colony optimization approaches for car sequencing problems. In S. Cagnoni,
J. J. Romero Cardalda, D. W. Corne, J. Gottlieb, A. Guillot, E. Hart, C. G.
Johnson, E. Marchiori, J.-A. Meyer, M. Middendorf, and G. R. Raidl, editors,
Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2003,
volume 2611 of Lecture Notes in Computer Science, pages 246–257. Springer,
Berlin, Germany, 2003.

70. P.-P. Grassé. La reconstruction du nid et les coordinations inter-individuelles
chez bellicositermes natalensis et cubitermes sp. La théorie de la stigmergie:
Essai d’interprétation des termites constructeurs. Insectes Sociaux, 6:41–81,
1959.

71. V. G. Gudise and G. K. Venayagamoorthy. Comparison of particle swarm op-
timization and backpropagation as training algorithms for neural networks. In
IEEE Swarm Intelligence Symposium 2003 (SIS 2003), pages 110–117, Indi-
anapolis, Indiana, USA, 2003.

72. C. Guéret, N. Monmarché, and M. Slimane. Ants can play music. In M. Dorigo,
M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, ed-
itors, Proceedings of ANTS 2004 – Fourth International Workshop on Ant
Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notes in
Computer Science, pages 310–317. Springer, Berlin, Germany, 2004.

73. M. Guntsch and M. Middendorf. Pheromone modification strategies for ant
algorithms applied to dynamic TSP. In E. J. W. Boers, J. Gottlieb, P. L.
Lanzi, R. E. Smith, S. Cagnoni, E. Hart, G. R. Raidl, and H. Tijink, editors,
Applications of Evolutionary Computing: Proceedings of EvoWorkshops 2001,
volume 2037 of Lecture Notes in Computer Science, pages 213–222. Springer,
Berlin, Germany, 2001.

74. M. Guntsch and M. Middendorf. Solving multiobjective permutation prob-
lems with population based ACO. In C. M. Fonseca, P. J. Fleming, E. Zitzler,
K. Deb, and L. Thiele, editors, Proceedings of the Second International Con-
ference on Evolutionary Multi-Criterion Optimization (EMO 2003), volume
2636 of Lecture Notes in Computer Science, pages 464–478. Springer, Berlin,
Germany, 2003.

75. W. J. Gutjahr. A graph-based ant system and its convergence. Future Gener-
ation Computer Systems, 16(9):873–888, 2000.



78 C. Blum and X. Li

76. W. J. Gutjahr. ACO algorithms with guaranteed convergence to the optimal
solution. Information Processing Letters, 82(3):145–153, 2002.

77. J. Handl and B. Meyer. Improved ant-based clustering and sorting in a doc-
ument retrieval interface. In J. J. Merelo, P. Adamidis, H.-G. Beyer, J.-L.
Fernández-Villacanas, and H.-P. Schwefel, editors, Proceedings of PPSN VII,
Seventh International Conference on Parallel Problem Solving from Nature,
volume 2439 of Lecture Notes in Computer Science, pages 913–923. Springer,
Berlin, Germany, 2002.

78. F. Heppner and U. Grenander. A stochastic nonlinear model for coordinated
bird flocks. In S. Krasner, editor, The Ubiquity of Chaos, Washington, DC,
1990. AAAS Publications.

79. N. Higashi and H. Iba. Particle swarm optimization with Gaussian mutation.
In Proc. of the 2003 IEEE Swarm Intelligence Symposium (SIS’03), pages 72–
79, 2003.

80. H. H. Hoos and T. Stützle. Stochastic Local Search: Foundations and Applica-
tions. Elsevier, Amsterdam, The Netherlands, 2004.

81. X. Hu and R. Eberhart. Multiobjective optimization using dynamic neigh-
borhood particle swarm optimization. In Proceedings of the 2002 Congress on
Evolutionary Computation CEC 2002, pages 1677–1681. IEEE Press, 2002.

82. X. Hu and R. C. Eberhart. Adaptive particle swarm optimisation: detection
and response to dynamic systems. In Proc. Congress on Evolutionary Compu-
tation, pages 1666–1670, 2002.

83. S. Janson and M. Middendorf. A hierarchical particle swarm optimizer and its
adaptive variant. IEEE Transactions on Systems, Man, and Cybernetics, Part
B, 35(6):1272–1282, 2005.

84. S. Janson and M. Middendorf. A hierarchical particle swarm optimizer for noisy
and dynamic environments. Genetic Programming and Evolvable Machines,
7(4):329–354, 2006.

85. V. Kadirkamanathan, K. Selvarajah, and P. Fleming. Stability analysis of
the particle dynamics in particle swarm optimizer. IEEE Transactions on
Evolutionary Computation, 10(3):245–255, June 2006.

86. O. Karpenko, J. Shi, and Y. Dai. Prediction of MHC class II binders using the
ant colony search strategy. Artificial Intelligence in Medicine, 35(1-2):147–156,
2005.

87. S. Katare, A. Kalos, and D. West. A hybrid swarm optimizer for efficient
parameter estimation. In Proceedings of the 2004 Congress on Evolutionary
Computation CEC 2004), pages 309–315. IEEE Press, 2004.

88. J. Kennedy. The behaviour of particles. In Evolutionary Programming VII:
Proceedings of the 7th Annual Conference, volume 1447 of Lecture Notes in
Computer Science, pages 581–589, San Diego, CA, 1998. Springer, Berlin, Ger-
many.

89. J. Kennedy. Bare bones particle swarms. In Proceedings of the IEEE Swarm
Intelligence Symposium 2003 (SIS 2003), pages 80–87, Indianapolis, Indiana,
USA, 2003.

90. J. Kennedy. In search of the essential particle swarm. In Proc. of the 2006
IEEE Congress on Evolutionary Computation, pages 6158–6165. IEEE Press,
2006.

91. J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of
the 1995 IEEE International Conference on Neural Networks, volume 4, pages
1942–1948. IEEE Press, Piscataway, NJ, 1995.



Swarm Intelligence in Optimization 79

92. J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. Morgan Kauf-
mann Publishers, San Francisco, CA, 2004.

93. O. Korb, T. Stützle, and T. E. Exner. PLANTS: Application of ant colony
optimization to structure-based drug design. In M. Dorigo, L. M. Gambardella,
A. Martinoli, R. Poli, and T. Stützle, editors, Ant Colony Optimization and
Swarm Intelligence – Proceedings of ANTS 2006 – Fifth International Work-
shop, volume 4150 of Lecture Notes in Computer Science, pages 247–258.
Springer, Berlin, Germany, 2006.

94. P. Korošec, J. Šilc, and B. Robič. Mesh-partitioning with the multiple ant-
colony algorithm. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella,
F. Mondada, and T. Stützle, editors, Proceedings of ANTS 2004 – Fourth
International Workshop on Ant Colony Optimization and Swarm Intelligence,
volume 3172 of Lecture Notes in Computer Science, pages 430–431. Springer,
Berlin, Germany, 2004.

95. P. Korošec, J. Šilc, and B. Robič. Solving the mesh-partitioning problem with
an ant-colony algorithm. Parallel Computing, 30:785–801, 2004.

96. C. R. Kube and E. Bonabeau. Cooperative transport by ants and robots.
Robotics and Autonomous Systems, 30:85–101, 2000.

97. P. Kuntz, D. Snyers, and P. Layzell. A stochastic heuristic for visualizing graph
clusters in a bi-dimensional space prior to partitioning. Journal of Heuristics,
5(3):327–351, 1998.

98. D. Lambrinos, R. Möller, T. Labhart, R. Pfeifer, and R. Wehner. A mobile
robot employing insect strategies for navigation. Robotics and Autonomous
Systems, 30:39–64, 2000.

99. E. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The
Travelling Salesman Problem. John Wiley & Sons, New York, NY, 1985.

100. X. Li. A Non-dominated Sorting Particle Swarm Optimizer for Multiobjec-
tive Optimization. In E. Cantú-Paz et al., editor, Genetic and Evolutionary
Computation—GECCO 2003. Proceedings, Part I, pages 37–48. Springer. Lec-
ture Notes in Computer Science Vol. 2723, July 2003.

101. X. Li. Adaptively choosing neighbourhood bests using species in a parti-
cle swarm optimizer for multimodal function optimization. In K. Deb, edi-
tor, Proceedings of Genetic and Evolutionary Computation Conference 2004
(GECCO’04) (LNCS 3102), pages 105–116, 2004.

102. X. Li, J. Branke, and T. Blackwell. Particle swarm with speciation and adap-
tation in a dynamic environment. In Mike Cattolico, editor, Genetic and Evo-
lutionary Computation Conference, GECCO 2006, Proceedings, Seattle, Wash-
ington, USA, July 8-12, 2006, pages 51–58. ACM, 2006.

103. X. Li and K.H. Dam. Comparing particle swarms for tracking extrema in
dynamic environments. In Proc. of the 2003 IEEE Congress on Evolutionary
Computation, pages 1772–1779, 2003.

104. J. J. Liang and P. N. Suganthan. Dynamic multi-swarm particle swarm opti-
mizer with a novel constraint-handling mechanism. In Proc. of the 2006 IEEE
Congress on Evolutionary Computation, pages 9–16. IEEE Press, 2006.

105. J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar. Comprehensive learn-
ing particle swarm optimizer for global optimization of multimodal functions.
IEEE Trans. Evol. Comput., 10(3):281–295, June 2006.

106. M. López-Ibáñez, L. Paquete, and T. Stützle. On the design of ACO for
the biobjective quadratic assignment problem. In M. Dorigo, M. Birattari,



80 C. Blum and X. Li

C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors, Proceedings
of ANTS 2004 – Fourth International Workshop on Ant Colony Optimization
and Swarm Intelligence, volume 3172 of Lecture Notes in Computer Science,
pages 214–225. Springer, Berlin, Germany, 2004.

107. M. Lovbjerg and T. Krink. Extending particle swarm optimizers with self-
organized criticality. In Proc. of the 2002 IEEE Congr. Evol. Comput., pages
1588–1593. IEEE Press, 2002.

108. E. D. Lumer and B. Faieta. Diversity and adaptation in populations of clus-
tering ants. In D. Cliff, P. Husbands, J.-A. Meyer, and S. W. Wilson, editors,
Proceedings of the 3rd International Conference on Simulation of Adaptive Be-
haviour: From Animals to Animats 3 (SAB 94), pages 501–508. MIT Press,
1994.

109. V. Maniezzo. Exact and approximate nondeterministic tree-search procedures
for the quadratic assignment problem. INFORMS Journal on Computing,
11(4):358–369, 1999.

110. V. Maniezzo, M. Boschetti, and M. Jelasity. An ant approach to membership
overlay design. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella,
F. Mondada, and T. Stützle, editors, Proceedings of ANTS 2004 – Fourth
International Workshop on Ant Colony Optimization and Swarm Intelligence,
volume 3172 of Lecture Notes in Computer Science, pages 37–48. Springer,
Berlin, Germany, 2004.

111. V. Maniezzo and A. Colorni. The Ant System applied to the quadratic as-
signment problem. IEEE Transactions on Data and Knowledge Engineering,
11(5):769–778, 1999.

112. V. Maniezzo and M. Milandri. An ant-based framework for very strongly
constrained problems. In M. Dorigo, G. Di Caro, and M. Sampels, editors,
Ant Algorithms – Proceedings of ANTS 2002 – Third International Workshop,
volume 2463 of Lecture Notes in Computer Science, pages 222–227. Springer,
Berlin, Germany, 2002.

113. R. Marinke, I. Matiko, E. Araujo, and L. Coelho. Particle swarm optimization
(PSO) applied to fuzzy modeling in a thermal-vacuum system. In Fifth In-
ternational Conference on Hybrid Intelligent Systems (HIS’05), pages 67–72.
IEEE Computer Society, 2005.

114. K. Marriott and P. Stuckey. Programming With Constraints. MIT Press,
Cambridge, MA, 1998.

115. R. Mendes, P. Cortez, M. Rocha, and J. Neves. Particle swarms for feedfor-
ward neural networks training. In International Joint Conference on Neural
Networks, pages 1895–1889. Honolulu (Hawaii), USA, 2002.

116. R. Mendes, J. Kennedy, and J. Neves. The fully informed particle swarm:
simpler, maybe better. IEEE Transactions on Evolutionary Computation,
8(3):204–210, June 2004.

117. D. Merkle and M. Middendorf. Modelling ACO: Composed permutation prob-
lems. In M. Dorigo, G. Di Caro, and M. Sampels, editors, Ant Algorithms –
Proceedings of ANTS 2002 – Third International Workshop, volume 2463 of
Lecture Notes in Computer Science, pages 149–162. Springer, Berlin, Germany,
2002.

118. D. Merkle and M. Middendorf. Modelling the dynamics of ant colony opti-
mization algorithms. Evolutionary Computation, 10(3):235–262, 2002.

119. D. Merkle, M. Middendorf, and A. Scheidler. Self-organized task allocation for
computing systems with reconfigurable components. In Proceedings of the 20th



Swarm Intelligence in Optimization 81

International Parallel and Distributed Processing Symposium (IPDPS 2006), 8
pages, IEEE press, 2006.

120. D. Merkle, M. Middendorf, and H. Schmeck. Ant colony optimization for
resource-constrained project scheduling. IEEE Transactions on Evolutionary
Computation, 6(4):333–346, 2002.

121. N. Meuleau and M. Dorigo. Ant colony optimization and stochastic gradient
descent. Artificial Life, 8(2):103–121, 2002.

122. B. Meyer and A. Ernst. Integrating ACO and constraint propagation. In
M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and
T. Stützle, editors, Proceedings of ANTS 2004 – Fourth International Work-
shop on Ant Colony Optimization and Swarm Intelligence, volume 3172 of
Lecture Notes in Computer Science, pages 166–177. Springer, Berlin, Germany,
2004.

123. R. Michel and M. Middendorf. An island model based ant system with
lookahead for the shortest supersequence problem. In A. E. Eiben, T. Bäck,
M. Schoenauer, and H.-P. Schwefel, editors, Proceedings of PPSN-V, Fifth In-
ternational Conference on Parallel Problem Solving from Nature, volume 1498
of Lecture Notes in Computer Science, pages 692–701. Springer, Berlin, Ger-
many, 1998.

124. S. Mikki and A. Kishk. Investigation of the quantum particle swarm optimiza-
tion technique for electromagnetic applications. In 2005 IEEE Antennas and
Propagation Society International Symposium, volume 2A, pages 45–48, 2005.

125. N. Monmarché, G. Venturini, and M. Slimane. On how Pachycondyla apicalis
ants suggest a new search algorithm. Future Generation Computer Systems,
16:937–946, 2000.

126. J. Moore and R. Chapman. Application of particle swarm to multiobjective
optimization. Department of Computer Science and Software Engineering,
Auburn University, 1999.

127. J. D. Moss and C. G. Johnson. An ant colony algorithm for multiple sequence
alignment in bioinformatics. In D. W. Pearson, N. C. Steele, and R. F. Albrecht,
editors, Artificial Neural Networks and Genetic Algorithms, pages 182–186.
Springer, Berlin, Germany, 2003.

128. G. L. Nemhauser and A. L. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, New York, 1988.

129. S. Nouyan, R. Ghizzioli, M. Birattari, and M. Dorigo. An insect-based algo-
rithm for the dynamic task allocation problem. Künstliche Intelligenz, 4:25–31,
2005.

130. G. Onwubolu and M. Clerc. Optimal path for automated drilling operations
by a new heuristic approach using particle swarm optimization. International
Journal of Production Research, 42(3/01):473–491, February 2004.

131. P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International
Journal of Production Research, 26:297–307, 1988.

132. E. Ozcan and C.K. Mohan. Analysis of a simple particle swarm optimization
system. In Intelligent Engineering Systems Through Artificial Neural Networks,
pages 253–258, 1998.

133. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization—
Algorithms and Complexity. Dover Publications, Inc., New York, NY, 1982.

134. R. S. Parpinelli, H. S. Lopes, and A. A. Freitas. Data mining with an ant colony
optimization algorithm. IEEE Transactions on Evolutionary Computation,
6(4):321–332, 2002.



82 C. Blum and X. Li

135. D. Parrott and X. Li. Locating and tracking multiple dynamic optima by a
particle swarm model using speciation. IEEE Transactions on Evolutionary
Computation, 10(4):440–458, August 2006.

136. K. Parsopoulos and M. Vrahatis. Particle swarm optimization method for
constrained optimization problems. Intelligent Technologies—Theory and Ap-
plications: New Trends in Intelligent Technologies, 76:214–220, 2002.

137. K. Parsopoulos and M. Vrahatis. Particle swarm optimization method in mul-
tiobjective problems. In Proceedings of the 2002 ACM Symposium on Applied
Computing (SAC 2002), pages 603–607. Madrid, Spain, ACM Press, 2002.

138. K. Parsopoulos and M. Vrahatis. On the computation of all global minimiz-
ers through particle swarm optimization. IEEE Transactions on Evolutionary
Computation, 8(3):211–224, June 2004.

139. A. Pétrowski. A clearing procedure as a niching method for genetic algorithms.
In Proceedings of the 3rd IEEE International Conference on Evolutionary Com-
putation, pages 798–803, 1996.

140. G. Pulido and C. Coello Coello. A constraint-handling mechanism for particle
swarm optimization. In Proc. of the 2004 IEEE Congress on Evolutionary
Computation, pages 1396–1403. IEEE Press, 2004.

141. G. T. Pulido and C. Coello Coello. A constraint-handling mechanism for par-
ticle swarm optimization. In Proceedings of the 2004 IEEE Congress on Evo-
lutionary Computation, pages 1396–1403, Portland, Oregon, 20-23 June 2004.
IEEE Press.

142. A. P. Engelbrecht, R. Brits and F. van den Bergh. A niching particle swarm
optimizer. In Proceedings of the 4th Asia-Pacific Conference on Simulated
Evolution and Learning 2002 (SEAL 2002), pages 692–696, 2002.

143. K. Rameshkumar, R. Suresh, and K. Mohanasundaram. Discrete particle
swarm optimization (DPSO) algorithm for permutation flowshop scheduling
to minimize makespan. In First International Conference of Advances in Nat-
ural Computation, pages 572–581, 2005.

144. C. R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Prob-
lems. John Wiley & Sons, Inc., New York, NY, 1993.

145. M. Reimann, K. Doerner, and R. F. Hartl. D-ants: Savings based ants divide
and conquer the vehicle routing problems. Computers & Operations Research,
31(4):563–591, 2004.

146. C.W. Reynolds. Flocks, herds and schools: a distributed behavioral model.
Computer Graphics, 21(4):25–34, 1987.

147. T. Richer and T. Blackwell. The Lévy particle swarm. In Congress on Evolu-
tionary Computation (CEC 2006), pages 808– 815. IEEE press, 2006.

148. J. Riget and J. Vesterstroem. A diversity-guided particle swarm optimizer—
the ARPSO. Technical Report 2002-02, Department of Computer Science,
University of Aarhus, 2002.

149. R. Rucker. Seek! Four Walls Eight Windows, New York, 1999.
150. A. Salman, A. Imtiaz, and S. Al-Madani. Particle swarm optimization for

task assignment problem. In IASTED International Conference on Artificial
Intelligence and Applications (AIA 2001), Marbella, Spain, 2001.

151. M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara. Effective methods for
scalable and continuous media streaming on peer-to-peer networks. European
Transactions on Telecommunications, 15:549–558, 2004.



Swarm Intelligence in Optimization 83

152. M. Settles, B. Rodebaugh, and T. Soule. Comparison of genetic algorithm and
particle swarm optimizer when evolving a recurrent neural network. In Genetic
and Evolutionary Computation Conference 2003 (GECCO 2003), pages 151–
152, Chicago, USA, 2003.

153. A. Shmygelska, R. Aguirre-Hernández, and H. H. Hoos. An ant colony opti-
mization algorithm for the 2D HP protein folding problem. In M. Dorigo, G. Di
Caro, and M. Sampels, editors, Ant Algorithms – Proceedings of ANTS 2002
– Third International Workshop, volume 2463 of Lecture Notes in Computer
Science, pages 40–52. Springer, Berlin, Germany, 2002.

154. A. Shmygelska and H. H. Hoos. An ant colony optimisation algorithm for the
2D and 3D hydrophobic polar protein folding problem. BMC Bioinformatics,
6(30):1–22, 2005.

155. M. Reyes Sierra and C. Coello Coello. Multi-objective particle swarm optimiz-
ers: A survey of the state-of-the-art. International Journal of Computational
Intelligence Research, 2(3):287–308, 2006.

156. C. A. Silva, T. A. Runkler, J. M. Sousa, and R. Palm. Ant colonies as logistic
processes optimizers. In M. Dorigo, G. Di Caro, and M. Sampels, editors,
Ant Algorithms – Proceedings of ANTS 2002 – Third International Workshop,
volume 2463 of Lecture Notes in Computer Science, pages 76–87. Springer,
Berlin, Germany, 2002.

157. K. Socha. ACO for continuous and mixed-variable optimization. In M. Dorigo,
M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, ed-
itors, Proceedings of ANTS 2004 – Fourth International Workshop on Ant
Colony Optimization and Swarm Intelligence, volume 3172 of Lecture Notes in
Computer Science, pages 25–36. Springer, Berlin, Germany, 2004.

158. K. Socha and C. Blum. An ant colony optimization algorithm for continuous
optimization: An application to feed-forward neural network training. Neural
Computing & Applications, 2007. In press.

159. K. Socha and M. Dorigo. Ant colony optimization for continuous domains.
European Journal of Operational Research, 2007. In press.

160. K. Socha, M. Sampels, and M. Manfrin. Ant algorithms for the university
course timetabling problem with regard to the state-of-the-art. In S. Cagnoni,
J. J. Romero Cardalda, D. W. Corne, J. Gottlieb, A. Guillot, E. Hart, C. G.
Johnson, E. Marchiori, J.-A. Meyer, M. Middendorf, and G. R. Raidl, editors,
Applications of Evolutionary Computing, Proceedings of EvoWorkshops 2003,
volume 2611 of Lecture Notes in Computer Science, pages 334–345. Springer,
Berlin, Germany, 2003.

161. C. Solnon. Ant can solve constraint satisfaction problems. IEEE Transactions
on Evolutionary Computation, 6(4):347–357, 2002.

162. T. Stützle. An ant approach to the flow shop problem. In Proceedings of the 6th
European Congress on Intelligent Techniques & Soft Computing (EUFIT’98),
pages 1560–1564. Verlag Mainz, Aachen, Germany, 1998.

163. T. Stützle and M. Dorigo. A short convergence proof for a class of ACO
algorithms. IEEE Transactions on Evolutionary Computation, 6(4):358–365,
2002.

164. T. Stützle and H. H. Hoos. MAX -MIN Ant System. Future Generation
Computer Systems, 16(8):889–914, 2000.

165. P.N. Suganthan. Particle swarm optimiser with neighbourhood operator. In
Congress on Evolutionary Computation (CEC 1999), pages 1958–1962, Wash-
ington, USA, 1999.



84 C. Blum and X. Li

166. T.-Y. Sun, S.-T. Hsieh, H.-M. Wang, and C.-W. Lin. Floorplanning based on
particle swarm optimization. In IEEE Computer Society Annual Symposium on
Emerging VLSI Technologies and Architectures 2006, pages 5–10. IEEE Press,
2006.

167. G. Theraulaz, E. Bonabeau, and J.-L. Deneubourg. Response threshold re-
inforcement and division of labour in insect societies. Proceedings: Biological
Sciences, 265(1393):327–332, 1998.

168. I. C. Trelea. The particle swarm optimization algorithm: convergence analysis
and parameter selection, 2003.

169. R. Unger and J. Moult. Finding the lowest free-energy conformation of a pro-
tein is an NP -hard problem: Proofs and implications. Bulletin of Mathematical
Biology, 55(6):1183–1198, 1993.

170. F. van den Bergh. Analysis of Particle Swarm Optimizers. PhD thesis, De-
partment of Computer Science, University of Pretoria, Pretoria, South Africa,
2002.

171. F. van den Bergh and A.P. Engelbrecht. A cooperative approach to particle
swarm optimization. IEEE Trans. Evol. Compu., 8:225–239, Jun. 2004.

172. F. van den Bergh and A.P. Engelbrecht. A study of particle swarm optimization
particle trajectories. Information Sciences, 176:937–971, 2006.

173. K. Veeramachaneni, T. Peram, C. Mohan, and L. Osadciw. Optimization
using particle swarm with near neighbor interactions. In Proc. of Genetic and
Evolutionary Computation Conference, pages 110 – 121, Chicago, Illinois, 2003.

174. G. K. Venayagamoorthy. Optimal control parameters for a UPFC in a multima-
chine using PSO. In Proceedings of the 13th International Intelligent Systems
Application to Power Systems 2005, pages 488–493, 2005.

175. M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall, Englewood Cliffs,
NJ, 1993.

176. M. Wachowiak, R. Smolikova, Y. Zheng, J. Zurada, and A. Elmaghraby. An
approach to multimodal biomedical image registration utilizing particle swarm
optimization. IEEE Transactions on Evolutionary Computation, 8(3):289–301,
June 2004.

177. C. Walshaw and M. Cross. Mesh partitioning: A multilevel balancing and
refinement algorithm. SIAM Journal on Scientific Computing, 22(1):63–80,
2000.

178. E. O. Wilson. The relation between caste ratios and division of labour in the
ant genus phedoile. Behavioral Ecology and Sociobiology, 16(1):89–98, 1984.

179. X. Xie, W. Zhang, and Z. Yang. A dissipative particle swarm optimization. In
Proc. Congr. Evol. Comput. 2002 (CEC 2002), pages 1456–1461. IEEE Press,
2002.

180. H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi. A parti-
cle swarm optimization for reactive power and voltage control considering volt-
age security assessment. IEEE Transactions on Power Systems, 15(4):1232–
1239, November 2001.

181. X. Yu and B. Ram. Bio-inspired scheduling for dynamic job shops with flexible
routing and sequence-dependent setups. International Journal of Production
Research, 44(22):4793–4813, 2006.

182. W. Zha and G. K. Venayagamoorthy. Neural networks based non-uniform
scalar quantizer design with particle swarm optimization. In Proceedings 2005
IEEE Swarm Intelligence Symposium (SIS 2005), pages 143–148. IEEE Press,
2005.



Swarm Intelligence in Optimization 85

183. M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for
combinatorial optimization: A critical survey. Annals of Operations Research,
131(1–4):373–395, 2004.


