
 
 

 

  

Abstract—The species conservation technique is a relatively 
new approach to finding multiple solutions of a multimodal 
optimization problem. When adopting such a technique, a 
species is defined as a group of individuals in a population that 
have similar characteristics and are dominated by the best 
individual, called the species seed. Species conservation 
techniques are used to identify species within a population and 
to conserve the identified species in the current generation. A 
‘species-based evolutionary algorithm’ (SEA) is the 
combination of a species conservation technique with an 
evolutionary algorithm, such as genetic algorithms, particle 
swarm optimization, or differential evolution. These SEAs have 
been demonstrated to be effective in searching multiple 
solutions of a multimodal optimization problem. This paper will 
briefly review its principles and its variants developed to date. 
These methods had been used to solve engineering optimization 
problems and found some new solutions. 
Keywords - Species conservation technique, species 

optimization, evolutionary computation, genetic 
algorithm. 

I. INTRODUCTION 
any real-world optimization problems are multimodal 

by nature, where many equally good solutions exist. 
Finding multiple solutions can help designers to understand 
the design space more thoroughly and to create alternative 
designs to satisfy design requirements. 

Nature has inspired the development of many computational 
models, amongst which Evolutionary Computation (EC) is a 
good example. Even though the majority of EC algorithms 
are specifically designed for locating a single global 
optimum, there are many techniques that have been 
developed to solve multimodal optimization problems: 

 iterative methods address the problem of locating 
multiple optima of a multimodal function by repeatedly 
applying the same optimization algorithm. Several 
techniques have been used to avoid iterations towards 
local minima, such as the tabu technique [1], the 
Sequential Niche technique [2] and jump techniques [3]; 

 explicit parallel sub-population methods attempt to 
produce multiple solutions to a multimodal optimization 
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problem by dividing a population into sub-populations 
that evolve in parallel, such as Multiple-National GA 
[4], Island Gas [5], the Adaptive Isolation Model [6], 
and Particle Swarm Optimization [7]. Without 
communications among the populations, these methods 
are similar to iterative methods; 

 implicit parallel sub-population methods attempt to 
produce multiple solutions by introducing 
niche/speciation techniques so that a population 
diversity is maintained and many niches survive in a 
single population, such as crowding ([8], [9]), fitness 
sharing ([10]-[11]), restricted tournament selection [12] 
and species conservation techniques [13], Genetic 
Sampler [14]. The crowding and fitness sharing are 
well-known methods but cannot guarantee that all 
niches survive in a new population. 

Species conservation is a relatively new technique for 
solving multimodal optimization problems [13] and has been 
proved to be effective to obtain multiple solutions of tested 
multimodal problems. In a recent work by Stoean et al. [15] it 
was shown that the species conservation algorithm can 
efficiently keep track of several good search space regions at 
once. 

The aim of this paper is to introduce the basic principles of 
species conservation techniques and briefly review the 
progress of research in this area. This paper is constructed as 
follows: Section 2 defines the concept of species. Section 3 
and 4 present some species-based evolutionary algorithms. 
Section 5 summarizes the performance of species 
conservation techniques. Finally, some conclusions are 
presented in Section 6.  

II. SPECIES CONCEPT 

A. Species with Fixed Species Distance 
Species conservation techniques are based on the species 

concept. A species is defined as a group of individuals in a 
population that have similar characteristics and are dominated 
by the best individual, called the species seed. A species will 
depend on a parameter, called the species distance and 
denoted by sσ  

The distance between two individuals ],,,[ 21 iniii xxx "=x  
and ],,,[ 21 jnjjj xxx "=x  can be defined by the Euclidean 
distance: 
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This is not the only way in which the distance between two 
individuals represented by vectors of real numbers can be 
defined. Sometimes, the distance term can be defined 
according to specific domain knowledge ([17]-[18]). 

Intuitively the similarity threshold specifies the upper bound 
on the distance between two individuals for which they are 
considered to be similar. In the approach the similarity 
threshold will also be used to determine which individuals are 
worth preserving from one generation to the next. 

A species is defined with respect to a finite population 
{ }NNP xxx ,,, 21 …=  and the best individual in the species is 

called its species seed, which dominates all the individuals in 
the species. Briefly, a species iS  is centered upon its 

dominating individual (the species seed) *x  if, for every 
individual iS∈y , 

 
2/)( *

sd σ<y,x  (2) 
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)()( *xy ff ≤  (3) 
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Fig. 1  A sample distribution of species in a two-dimensional domain. 

Fig. 1  illustrates a sample distribution of species in a 
two-dimensional domain. A species is formed of actual 
individuals and occupies  a region of the feasibility domain.  

B. Adaptive Species 
Without prior knowledge of a problem, it is impossible to 

choose a single value of niche radius/species distance for all 
species [2], since species in a problem will not, in general, be 
the same size. To overcome the dilemma of selecting a 
suitable species distance, some researchers are studying 
adaptive techniques. Bird and Li [19] used the average 
distance among members in a population as its ‘species’ 
radius so that no species radius parameter needs to be 
specified by users. Parmee [20] proposed a Cluster Oriented 
Genetic Algorithms (COGA) to identify high-performance 
regions of complex designs rather than to explore all 
solutions. Yao et al. [21] developed a Recursive Middling 
Algorithm to detect if there is a valley between two given 

points, in which there are three clustering actions: migration, 
splitting, and merging. Hua et al. [22] proposed a Detecting 
Peak's Number (DPN) technique to explore new possible 
species by using heuristic methods to check each orthogonal 
direction from an individual.  

Li and Wood ([23] and [24]) developed an adaptive species 
concept, which we will describe as follows.  

Adaptive species, denoted by ),,( bfr xxxs , was defined with: 
species seed ( x ), species radius ( xr ) and species boundary 

fitness ( bf x ).  Again, a species is dominated by its species 
seed and is centered upon the species seed x . For any points 

),,( bfr xxxsy ∈  and ),,( bfr xxxsz ∈ , we have 
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In this definition of species, there is one more parameter. 
However, the new species definition aims to develop some 
algorithms to automatically adjust those parameters. 

It is assumed that the fitness (objective) function is 
symmetric to the species seed within the species domain. A 
typical species in one-dimensional space is shown in Fig. 2 

n
xd  represents the distance between the species seed and the 

nearest neighbor species seed. 
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Fig. 2   Distributions of species in one-dimensional space. 

From the optimization point of view, a species is an area 
occupied by a local optimal solution. Its species seed is the 
local optimal solution and so there is only one peak in a 
species. The maximum number of species is equal to the 
number of local (including global) solutions of the problem, 
while in the definition of adaptive species there may be more 
than one peak in a species, defined by using a fixed species 
distance ( sσ ). 
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From the genetic algorithm point of view, an adaptive 
species is a group of individuals that have similar 
characteristics. Let ksss ,...,, 21  be a partitioning of a feasible 
region into species. Each species has its own parameters. To 
illustrate this, Fig. 3 shows a possible distribution of species 
in a two-dimensional domain. There are some intersections 
and spaces among species, because a species is defined by a 
radius. Therefore, the union of all species sets is part of the 
feasible region of a problem. 

Rsi ∈∪  (5) 
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Fig. 3  Definition of a species. 

III. SPECIES-BASED EVOLUTIONARY COMPUTATIONS WITH 
FIXED SPECIES DISTANCE 

A. Species Conserving Genetic Algorithm 
 Begin  

  0=t ; 
  Initialize )(tG ; 
  Evaluate )(tG ; 
  while (not termination condition) do  
   Determine species seeds sX ; 
   Select )1( +tG ; 
   Crossover )1( +tG ; 
   Mutate )1( +tG ; 
   Evaluate )1( +tG ; 
   Conserve species from sX  in )1( +tG ; 
   1+= tt ; 
  end (while) 
  Identify global optima; 
 end 

Fig. 4  The structure of the SCGA 

In a Species Conserving Genetic Algorithm (SCGA) [13], 
the population is divided into several species according to 
their similarity and each of these species is built around a 
dominating individual/species seed. Species seeds found in 
the current generation are conserved by moving them into the 
next generation. The GA using species conservation is based 
on the structure of a classical Simple GA (SGA) and is shown 
in Fig. 4 . 

The only significant differences between the SCGA and the 
SGA are (i) that, within the generation loop, first the species 
seeds are determined, and (ii) that, after the genetic operators 
(selection, crossover, mutation) have been applied and the 
population evaluated, the species conservation process is 
performed. In the above algorithm sX  denotes the set of 
species seeds found in the current generation, )(tG . 

There are three special procedures in SCGA: 

 Determine species seeds: This procedure is developed to 
determine species seeds from a current population. 

 Conserve species seeds: The new generation is 
constructed by applying the usual genetic operations: 
selection, crossover and mutation and by “copying” the 
found species into the population to keep its diversity. 

 Identify global solutions: The global solutions are the 
most fit individual in SX  (the species seed set) and all 
the individuals in SX  that have a fitness “close to” the 
maximal fitness. For this purpose a solution acceptance 
threshold fr  )10( ≤< fr  is introduced and an 

individual in SX  will be identified as a solution, which 
satisfies the following inequality: 

 
frff ×≥ max)(x  (6) 

 

The above SCGA has been shown to be effective to find all 
the global solutions of tested multimodal functions. But it is 
not very efficient for higher dimensional problems. Dong et 
al. [25] presented a mixed mutation strategy of five different 
mutations (Gaussian, Cauchy, Levy, single-point, and chaos 
mutation) by combining them with the SCGA to improve 
performance of the SCGA in searching multiple solutions. 
The authors claimed that this mixed mutation strategy is 
superior to any pure mutation strategy. 

Im et al. [26] presented a “restricted evolution” concept and 
proposed a related algorithm for multimodal optimization. 
Actually, the restricted evolution is very similar to the above 
species.  

B. Species-based Particle Swarm Optimisation 
Particle swarm optimization, originally proposed by 

Kennedy and Eberhart [7], is inspired from the metaphor of 
social interaction observed among insects or animals. The 
population is consisted of particles. Each particle “flies” 
though the search space, depending on two important factors: 
the personal best position (pbest) ip found by the current 
particle and the global best position (gbest)  gp  identified 
from the entire population. The rate of position change of i-th 
particle is given by its velocity iv  calculated by the 
following equation: 

[ ] [ ]{ })1()1()1()( 21 −−+−−+−= txptxptvtv idgdidididid ϕϕχ  (7) 

)()1()( tvtxtx ididid +−=  (8) 

4158



 
 

 

 
where: 

ϕϕϕ
χ

42

2
2 −−−

=    and 21 ϕϕϕ += ,   0.4>ϕ  

Using the above species conservation technique, Parrott and 
Li ([26]-[29]) proposed the following species-based particle 
swarm optimization (SPSO):  

1) Generate the initial particles, 
2) Evaluate all the particles in the population, 
3) Sort the particles in descending order of their fitness 

values, 
4) Determine species from the current particles. 
5) Assign to each member of a species its ‘local’ gbest 

(ie., the species seed) to all the individuals in that 
species, 

6) Adjust particle position by using equation (7) and (8), 
7) Go back to step (2), unless the termination condition is 

met. 
The same procedure of identifying species developed in Li 

et al. [13] is adopted. Species seed set S is initially set to φ . 
All the particles are checked in turn against the species seed 
found so far. If a particle does not fall within the radius sr of 
all the seeds, then the particle will become a new seed. There 
is no need to pre-specify the number of species seeds. They 
are automatically generated during a run. Particles from each 
identified species follow a chosen neighborhood to move 
towards a promising region of the search space. Multiple 
species are able to converge towards different optima in 
parallel without interference.  

Yuan et al. [30] modified the SPSO and proposed a 
multi-scale PSO (MPSO) algorithm in which particles are 
dynamically divided into several subgroups of different size 
in order to explore variable space using various step sizes 
simultaneously. This increases the possibility of finding more 
global solutions. In order to divide a particle into several 
subgroups, authors introduced another three parameters: a 
minimum distance between new seeds and the seed of 
subgroup, max number and min number of subgroups in the 
population, respectively MINDIS, MAXSPEC and MINSPEC. 
Özcan and Yılmaz [31] proposed a PSO with Craziness and 
Hill Climbing (CPSO) using the similar idea of the MPSO. 
The main swarm is divided into sub-swarms of size n 
according to their geographical positions. The CPSO uses a 
random walk component and a hill climber to enhance the 
exploration and exploitation capabilities of PSO, 
respectively. 

Parrott and Li [32] presented an extension to a 
speciation-based particle swarm optimizer (SPSO) to 
improve performances in dynamic environments. This 
improved SPSO adopted several proven useful techniques: 
limiting the number of particles in a species, quantum swarm, 
replacing the worst species and particle diversification within 
a species. These techniques can further improve SPSO’s 
adaptability in maintaining a good balance between 
convergence and diversity within each species. 

Iwamatsu [33] proposes a multi-species particle swarm 
optimizer (MSPSO) for locating all the global minima of 
multi-modal functions by spatially dividing the partial swarm 
into a multiple cluster, called a species, in a 
multi-dimensional search space. Each species explores a 
different area of the search space and tries to find the global 
solution or local solution of that area. 

k-means particle swarm optimization (kPSO) [34] uses the 
k-means clustering algorithm to identify niches and the 
Bayesian information criterion to determine the number of 
clusters. Each sub-swarm created by the clustering process 
performs a local search with the same efficiency as the 
standard PSO. The authors claimed that kPSO is better than 
the SPSO, in term of the number of function evaluations 
needed to discover all the optima of the test functions. 
However, the computational cost of the clustering procedure 
in kPSO is higher than that of SPSO. 

In order to let particles move towards different global 
solutions, the local best is replaced with a nearest species and 
the global best is replaced with a local global best, the new 
velocity update formula is modified and a Species 
Conserving Particle Swarm Optimization (SCPSO) was 
developed[35]. A particle’s velocity is influenced by its 
nearest species and the nearest global solution. Numeric 
examples illustrate that the proposed SCPSO can comfortably 
outperform other related existing algorithms. 

C. Species-based Differential Evolution 

Differential evolution (DE) is a relatively new optimization 
technique compared with other established evolutionary 
computations, such as genetic algorithm, evolutionary 
strategy and genetic programming. The basic differential 
evolution algorithm was described in [36]. 

In the DE initial population, each vector/ individual x is 
generated by the sampling along each dimension of the 
variable vector a random value uniformly between the lower 
and upper bounds of the variable range. An offspring is then 
generated after initialization, according to the following 
procedure shown in Fig. 5 . 

 
 Randomly select parents 
 irrrmrrr ≠≠≠∈ 321321 |,,2,1{,, "  

 1}]1,0([int[ +⋅= mUjrand  
 For  j=1 to m do 
  If CRU <]1,0[   or randjj =   then 
      

  [ ])1,2()1,1()1,3()1,( ++++ −⋅+= tr
j

tr
j

tr
j

ti
j xxFxx  

  Else 

   )1,()1,( ++ = ti
j

ti
j xx   

  End if 
 End for 

Fig. 5   Differential Evolution 

The above procedure is applied to all individuals of the 
current population for generating the next population. The 
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population size must be greater than 3. CR and F are 
user-specified control parameters, ranging from [0,1] and 
(0,1) respectively. 

Species-based Differential Evolution (SDE) [37] which 
makes use of the algorithm for determining species in 
conjunction with a basic DE can be used effectively to solve 
multimodal optimization problems. The procedure can be 
summarized as follows: 

1) Generate an initial population. 
2) Evaluate all individuals in the population. 
3) Sort all individuals in descending order of their fitness 

values. 
4) Determine the species seeds for the current 

population. 
5) For each species as identified via its species seed, run 

a basic DE. 
6) Keep only the n fitter individuals from the combined 

population. 
7) Go back to step 2, unless the termination criteria are 

met. 
Note that in Step 5, it is possible that an identified species 

has less then 3 individuals. If so, some new individuals are 
generated randomly within the radius of species seed and 
added to that species so that no species has less than 4 
individuals. 

Due to SDE takes a long time for complicated problems to 
acquire all global optima, Shibasaka et al. [38] proposed a 
SDE with switching search strategies. This method 
switches global search and local search so that the species 
will not be extinguished and the stagnation of evolution will 
not occur. 

D. Species Conservation Stochastic Optimization 
The species conservation technique can be combined with a 

simple random optimization. This method was called as 
species conservation stochastic optimization (SCSO) [41] and 
its population size is one. The structure of the SCSO is shown 
as: 

The results demonstrate that the proposed SCSO is able to 
locate all the global solutions of the test functions and seems 
to be more efficient than existing species conservation 
techniques for multimodal optimizations. 

Begin 
 Randomly initialize x  and φ=sX ; 
 ss XX ∪← x  
 while (not termination condition) do 
  Randomly select x  from SX ; 
  Generate a random vector r ; 
  rxx +←  
  Update species SX ; 
 end do 
 Identify global optima; 
end 

Fig. 6   Structure of the Stochastic approach with species conservation 

IV. ADAPTIVE SPECIES CONSERVATION GENETIC 
ALGORITHM 

An adaptive species conservation [24], which can adjust the 
parameters (see Section II) of each found species, makes 
species to be adaptive to a problem and is integrated with a 
conventional genetic algorithm to search multiple solutions of 
the problem. The structure of the Adaptive Species 
Conservation Genetic Algorithm (ASCGA) is illustrated in 
Fig. 7 . Users do not need to set any parameters and the 
programs can automatically adjust the parameters of each 
species, therefore, species will be adaptive to a problem. 
Experimental results demonstrate that this ASCGA is capable 
of finding the global and local optima of test multimodal 
optimization problems with a higher efficiency than methods 
from the literature. 

Input: Optimization problem 
Output: solutions 
Begin 
 φ←)0(S  
 Initialise G(t); 
 Evaluate G(t); 
 Identify species S(t); 
 While (not termination condition) do 
  Conserve species Seeds from    Select 

G(t+1) ; 
  Crossover G(t+1); 
  Mutate G(t+1); 
  Evaluate G(t+1); 
  Identify and Update species   End (while) 
 Identify global optima; 
End 

Fig. 7   Structure of the ASCGA 

V. PERFORMANCE AND ANALYSIS 

A. Capability in searching multiple solutions 
All the above species-based evolutionary algorithms have 

been reported to be capable of finding multiple global 
solutions of a multimodal problem. It is conjectured that the 
n-dimensional Shubert function where 10≤x  has nn 3⋅  
unevenly distributed global optima and a lot of local 
solutions. SCGA was able to successfully obtain all the global 
solutions for 1, 2 and 3-dimensional Shubert functions. 

Stoean et al. [15] compared the species conservation 
technique and multinational algorithms, and said that the 
species conservation algorithm efficiently keeps track of 
several good search space regions at once, and can give better 
solutions than multinational algorithms ([39], [40]). 

The two-dimensional Shubert function [42] is defined by 
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where 2,1for    1010 =≤≤− ixi . It is estimated to have 760 
local minima, 18 of which are global minima with the 
objective function value of -186.73. It is very interesting to 
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notice that the ASCGA with the population size of 1000 found 
all 761 solutions within 1005 generations, shown in Fig. 8 The 
ASCGA has the capability of finding global and local 
solutions for tested functions. 
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Fig. 8   Distribution of species for the 2-D Shubert function. 

B. Effects of selection of species distance 
The performance of species-based evolutionary 

computations depends upon the selection of the species 
distance ( sσ ): 

 smaller species distance leads to an increase in the 
number of species and a decrease in the efficiency of 
the algorithm. For an n-dimensional problems, the 
maximum number of species seeds [43] will be: 
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Fig. 9   Variation in the average number of solutions found with species 

distance for the two-dimensional Shubert function. 

 Larger species distance results in the algorithm being 
unable to find all global solutions of the test problems. 
Fig. 9  illustrates that as the species distance is 
increased, the numbers of global solutions found 
decreases when SCGA [13] is used to solve the 
2-dimensional Shubert function. 

C. Different species definitions 
An artificial problem ([17], [18], [44]) is used to 

demonstrate how the SCGA is able to explore the design 
space for multiple meaningful solutions that are significantly 
different in a domain- specific sense. 

b 

f 

α 
t 

h 

 
Fig. 10   A simple wing design (b = base – fixed size, f = front edge length, 

α = angle of attack, t = thickness). 

The problem is to design a triangular wing of the shape 
given in Fig. 10 . The wing has a fixed length base (b) of 10 
m and its design is defined by three real-valued attributes: 
the front edge length m)200( ≤≤ f , the angle of attack 

radians)0( π≤≤ α , and the thickness cm)200( ≤≤ t . It 
was supposed that the fitness of a wing ),,( tfF α  can be 
evaluated as 

 
)()π/20()(),,( thhfhtfF ⋅⋅= αα  (11) 

 
using a modified version of the 3-D Shubert function with 
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Table 1 shows the effects of different practical species 
definitions on solutions. Using Euclidean distance, SCGA 
can find all the global solutions (81), but this definition has no 
practical meaning. When some practical species definitions 
are applied, such as different in wing length, the SCGA can 
find 6 global solutions. Therefore, users can define some 
meaningful measurement of species distance based on design 
requirements and let a SCGA obtain required solutions. 

VI. CONCLUSIONS 
Species-based evolutionary algorithms (SEAs) are one of 

several niching techniques for finding multiple solutions of 
complex optimization problems. This method is based on the 
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notion of species, which defines a group of individuals that 
have similar characters. All individuals within each species 
are dominated by the best individual in the species, 
commonly referred to as species seed. Species are naturally 
emerged to the population after applying evolutionary 
operations, such as selection, mutation and crossover in a 
genetic algorithm. 

TABLE I.  EFFECTS OF SPECIES DEFINITIONS 

Distance Distribution of global 
solutions(/species) 

solut
ions 

Euclidean distance 
2

21
2

21
2

2121 )()()(),( ttffd −+−+−= ααww
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Difference in wing length 
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Difference in weight 
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Direction of travel 

k = 1 k = 2 k = 3 

k = 4 k = 5 k = 6 
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Difference in shape 
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Direction of travel 

k = 2 k = 3 

k = 1 

 

3 

Species conservation techniques have been applied to 
different evolutionary algorithms to develop related SEAs, 
such as species conservation genetic algorithm, species-based 
particle swarm optimization and species-based differential 
evolution. Those SEAs have been demonstrated to be effective 
in searching all the global solutions of tested multimodal 
functions.  
Species distance/radius is an important control parameter in a 

species-based evolutionary algorithm and has large effects on 
their performances. Choosing a very small species distance 
may decrease an  SEA’s efficiency, while a very large species 
distance could result in the SEA being unable to distinguish 
the several possible solutions. 
Euclidean distance is a common way to measure species 

distance. It may not be, however, meaningful in some 
application domains. Some specific measurement of species 
distance should be applied to obtain meaningful solutions in 
solving practical problems.  
Adaptive species evolutionary algorithms can automatically 

adjust species parameters. 
For higher dimensional problems, the species-based 

evolutionary computations are not as effective as other 
niching techniques. More work should be done in improving 
efficiency so that they can be used in real-world engineering 
problems. 
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