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Abstract—In this paper, we propose a metric for evaluating
the performance of user-preference based evolutionary multi-
objective algorithms by defining a preferred region based on
the location of a user-supplied reference point. This metric uses
a composite front which is a type of reference set and is used
as a replacement for the Pareto-optimal front. This composite
front is constructed by extracting the non-dominated solutions
from the merged solution sets of all algorithms that are to be
compared. A preferred region is then defined on the composite
front based on the location of a reference point. Once the
preferred region is defined, existing evolutionary multi-objective
performance metrics can be applied with respect to the preferred
region. In this paper the performance of a cardinality-based
metric, a distance-based metric, and a volume-based metric
are compared against a baseline which relies on knowledge of
the Pareto-optimal front. The experimental results show that
the distance-based and the volume-based metrics are consistent
with the baseline, showing meaningful comparisons. However, the
cardinality-based approach shows some inconsistencies and is not
suitable for comparing the algorithms.

I. INTRODUCTION

Several user-preference based evolutionary multi-objective
algorithms (EMO) have been proposed in the past decade [1],
[2], [3], [4], [5], [6], [7]. Incorporating the user-preference
information into the optimization process is an appealing idea
for several major reasons: 1) it allows a more directed search
which results in faster convergence than in cases where the
entire Pareto-optimal front needs to be approximated; 2) it
allows tackling of problems with relatively higher numbers of
objectives (better scalability); 3) it allows the user to search
for better solutions in the vicinity of an existing solution.

Despite the growing interest in developing user-preference
based algorithms, very few performance measures have been
developed to facilitate a fair comparison of such algorithms. A
metric which has been recently developed by Wickramasinghe
et al. [8] is specifically designed for comparing user-preference
based EMO algorithms. However, a major drawback of this
metric is that its results can be misleading, depending on the
choice of the reference point (cf. section III). An ideal metric
for user-preference based algorithms should have the following
properties:

1) Form a preferred region closest to the reference point
provided by the user;

2) Measure both convergence and diversity of the solu-
tions with respect to the preferred region;

3) Be independent of knowledge of Pareto-optimal front
for its calculation;

4) Scale well as the number of objectives increases.

Many performance metrics have been proposed for comparing
EMO algorithms. However, there has not been any suitable
metric for evaluating user-preference based EMO algorithms
that satisfy all four properties listed above. For example,
cardinality-based metrics [9], [10] do not depend on knowl-
edge of the Pareto-optimal front, but they cannot measure
the diversity of obtained solutions. On the other hand, some
distance-based metrics [9], [11], take both the convergence
and the diversity of solutions into account, but they rely on
knowledge of the Pareto-optimal front for their calculations.
The techniques that rely on sampling of the Pareto-optimal
front generally do not scale well as the number of objectives
increases. This is because of exponential growth in the number
of sample points required on the Pareto-optimal front.

In this paper, we propose a performance metric for com-
paring user-preference based EMO algorithms that borrows
the idea of a reference set [12] from cardinality-based metrics
to form a composite front that acts as a replacement for the
Pareto-optimal front. This composite front is then used to
define a preferred region based on the location of a user-
supplied reference point. Once the preferred region is defined,
existing EMO metrics can be applied to the preferred region.

The paper is organized in the following way. Section II
briefly describes various existing performance metrics for
the EMO algorithms. Section III gives a survey of the ex-
isting performance metrics for user-preference based EMO
algorithms. Section IV describes the details of the proposed
metric. Experimental results and their analysis are presented
in Section V, and Section VI concludes the paper.

II. BACKGROUND

This section gives an overview of some widely used metrics
for evaluating multi-objective evolutionary algorithms.

The performance of EMO algorithms are typically mea-
sured on the following two aspects: 1) closeness of the solu-
tions to the Pareto-optimal front (convergence); 2) the diversity
and the spread of the solutions. A property which is often over-
looked is that the metric should measure the performance of a
set of algorithms without relying on knowledge of the Pareto-
optimal front. This problem becomes more serious especially
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when the Pareto-optimal front is difficult to compute, or when
it is unknown, which is mostly the case in many real-world
problems. In the remainder of this section, we review some
existing performance metrics for EMO algorithms. The major
classifications of metrics presented in this section are adopted
from [13].

A. Cardinality-based Metrics

These metrics measure the performance of various algo-
rithms by counting the total number of non-dominated solu-
tions found by each algorithm [9], [10]. However, producing
a large number of non-dominated solutions does not neces-
sarily make an algorithm better than another. For example,
an algorithm may have only one solution that dominates
all the solutions of another algorithm. In order to alleviate
this problem, many cardinality-based approaches rely on a
reference set and measure the contribution from each algorithm
with respect to this reference set [9], [14], [15], [16], [17].

There are many different ways of constructing a reference
set. For example, a reference set may be formed by aggregating
all known solutions to a problem by various means, or by
merging the solution sets that are generated by a set of
algorithms that are to be compared [12]. These reference
sets may contain all possible solutions, or just the non-
dominated solutions. It should be noted that the ranking of
a set of algorithms may change depending on the choice of
the reference set [12]. The reference set used in this paper is
formed by taking the non-dominated solutions from the merged
solution sets of several algorithms.

1) Set Convergence Metric: This metric is used to measure
the relative convergence of two solution sets with respect to
each other [18]. Let A, and B be the solution sets of two
different algorithms. C(A,B) is calculated as follows:

C(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
, (1)

If C(A,B) = 1 then A dominates all members of B, and if
C(A,B) = 0, none of the solutions from B are dominated by
A. The result of C metric is not always reliable. For instance,
there are cases where the surface covered by two fronts are
equal, but one front is closer to the Pareto-optimal front than
the other.

2) Convergence Difference Of Two Sets: This metric, which
is called D metric [15], is an improved version of the C metric.
Let A and B be the solution sets of two different algorithms.
Then D(A,B) is the size of the region which is only dominated
by solutions in A, and D(B,A) is the size of the region
which is only dominated by solutions in B. For a maximization
problem if D(A,B) < D(B,A), then it is concluded that B
dominates A.

Both C and D metrics do not measure the diversity and
spread of the solutions. Additionally, these two metrics are not
efficient when comparing more than two algorithms. Another
major drawback of these two metrics is that they become
increasingly inaccurate as the number of objectives increases.
The values for C(A,B) converge to C(B,A) as the number
of objectives increases. This is due to the fact that most of
the solutions in many-objective problems are non-dominated
to each other. Therefore, the areas covered by the two sets of
solutions become equal.

B. Distance-based Metrics

Generational Distance (GD) [9] is a metric used widely
to measure the convergence of EMO algorithms by calcu-
lating the average closest distances of obtained solutions to
the Pareto-optimal front. More precisely, the GD value is
calculated in the following way. Let Q be the obtained solution
set and P ∗ a set of non-dominated solutions on the Pareto-
optimal front. Then,

GD(Q,P ∗) =

∑

v∈Q d(v, P ∗)

|Q|
(2)

where |Q| is the number of solutions in Q, and d(v, P ∗) is
the closest Euclidean distance from point v to a point in P ∗.
Since GD is calculated based on the Pareto-optimal front, it
gives an accurate measure for the convergence of an algorithm.
However, GD does not measure the diversity and spread of the
solutions on the Pareto-optimal front. Another disadvantage of
GD is that it becomes difficult to calculate when dealing with
many-objective problems. For a reasonable sampling of the
Pareto-optimal front, a large number of points are required,
which makes the calculation of GD computationally expensive.
It should be noted that GD cannot be applied without the
existence of a reference front such as the Pareto-optimal front.

Inverted Generational Distance (IGD) [11] is an improved
version of GD that takes both diversity and convergence of
solutions into account. However unlike GD, which calculates
the average closest distance of solutions to the Pareto-optimal
front, it calculates the average closest distance of sample
points on the Pareto-optimal front to the obtained solutions.
Therefore,

IGD(P ∗, Q) =

∑

v∈P∗ d(v,Q)

|P ∗|
. (3)

A major advantage of IGD is that it can measure both conver-
gence and diversity of the solutions simultaneously. Similar to
GD, IGD becomes exponentially expensive as the number of
objectives increases.

C. Volume-based Metrics

Hypervolume Metric (HV) [9], [19] is a metric which
measures the volume between all solutions in an obtained non-
dominated set and a nadir point. A nadir point is a vector of
the worst objective function values obtained by the solution
set. To calculate the HV value, a set of hypercubes (ci) is
constructed by taking a solution i and the nadir point as its
diagonal corners. Finally, the HV value is the total volume of
all hypercubes.

HV = volume





|Q|
⋃

i=1

ci



 , (4)

where Q is the solution set. Higher HV values indicate a better
convergence and diversity of solutions on the Pareto-optimal
front. A major advantage of HV is that it does not depend on
knowledge of the Pareto-optimal front.
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Fig. 1. An example to depict the deficiency of the metric proposed in [8].

III. RELATED WORK

All of the metrics discussed so far were designed to
measure the performance of EMO algorithms that approximate
the entire Pareto-optimal front. There has been limited work on
developing metrics for comparing user-preference based EMO
algorithms.

To the best of our knowledge, Wickramasinghe et al. [8]
were the first to propose a metric for comparing user-
preference based EMO algorithms. This metric works by
combining the solution sets of all algorithms that need to be
compared. Then, the closest solution to the ideal point is used
as the center of a hypercube that defines a preferred region.
Figure 1 shows how a preferred region is defined for two
different reference points. The size of the preferred region is
determined by a parameter, δ, which is half the edge length
of the hypercube. Finally, for each of the algorithms, HV is
calculated with respect to a nadir point for all the solutions that
fall within the preferred region. To calculate the nadir point,
this metric uses the solutions from all algorithms inside the
preferred region. The choice of the ideal point is the origin of
the coordinate system for minimization problems.

An advantage of this metric is that it does not require
knowledge of the Pareto-optimal front. However, its major
drawback is that it defines the preferred region based on the
location of the ideal point. This causes misleading results when
the reference point is biased towards one objective more than
the other objectives. This effect is shown in Figure 1. It can
be seen that the solutions for reference point A converged
on the Pareto-optimal front with a minimum distance to the
reference point. However, a bad choice of the ideal point causes
many high quality solutions to fall outside the preferred region.
This shows that the results of this metric can be misleading
depending on the location of the reference point.

Pareto−optimal Front

Reference Point

Preferred Region

Mid−point

f1

f2

2r

Fig. 2. An example of a composite front which is used to define a preferred
region.

IV. PROPOSED METRIC

In this section, we propose a metric to evaluate the perfor-
mance of user-preference based multi-objective evolutionary
algorithms.

In a nutshell, the proposed metric which hereafter is called
user-preference metric based on a composite front (UPCF),
merges the solution set of all algorithms and uses the non-
dominated solutions of the merged solution sets as a replace-
ment for the Pareto-optimal front. This so-called composite
front is a type of reference set commonly used in several
cardinality-based metrics. The composite front is then used
to form a preferred region based on the position of a reference
point provided by the decision maker. Finally, the performance
of each algorithm is measured by calculating IGD or HV for
solutions of each algorithm which are within the preferred
region. UPCF can be coupled with either IGD or HV. In
this paper both of these two popular techniques are used
for the sake of comparison. Measuring both convergence and
diversity of the solution set makes both IGD and HV desirable
candidates for this new metric. The detailed procedure for
applying UPCF is as follows:

Step 1 - Generating a Composite Front: The solution
set of all the algorithms to be compared are merged, and all
non-dominated solutions from this merged set are placed in
another set called the composite front. In Figure 2, squares and
circles show the solution sets for two different user-preference
based algorithms. The solutions shown as black squares form
the composite front, and the solutions shown as gray circles
are those dominated by at least one solution in the composite
front.

Step 2 - Generating a Preferred Region For Each
Reference Point: To define the preferred region, the Euclidean
distances between all the solutions in the composite front and
a reference point is calculated. Then the solution with the
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least distance to the reference point is identified. This point
is called mid-point as shown in Figure 2. Finally, the solutions
within r distance of the mid-point are considered to be in
the preferred region. The parameter r is specified by the user,
which determines the size of the preferred region. In the real-
world applications where objectives do not have the same units,
objectives should be normalized otherwise the parameter r will
not be meaningful.

Step 3 - Calculating IGD and HV: IGD and HV are
calculated based on the solutions inside the preferred region.
To calculate the IGD values, instead of using sample points on
the Pareto-optimal front, the solutions in the composite front
are used. The IGD based on the composite front is abbreviated
as IGD-CF.

A major advantage of UPCF is that it can be applied in
situations where the Pareto-optimal front is unknown. This
property has significant implications for the scalability and
computational cost of the metric. For example, many distance-
based approaches, such as GD and IGD, require a set of sample
points on the Pareto-optimal front. For small problems with
two or three objectives, it is easy to generate a set of points on
the Pareto-optimal front. However, as the number of objectives
increases, the cost of this process grows exponentially. In
addition to the computational cost of sampling the Pareto-
optimal front, for many real-world problems the Pareto-optimal
front is either very difficult to generate or completely unknown.

V. SIMULATION RESULTS

In order to evaluate the effectiveness of the proposed
metric, it has been tested on three user-preference based
algorithms namely R-NSGA-II [4], R-MEAD-Te [5], and R-
MEAD-Ws [5]. R-NSGA-II is a modified version of the
popular NSGA-II [20] algorithm that can handle multiple
reference points. R-MEAD-Te and R-MEAD-Ws are two
user-preference based algorithms which are based on the
MOEA/D algorithm [21]. R-MEAD-Te and R-MEAD-Ws rely
on the Tchebycheff [22] and Weighted-Sum [22] decom-
position methods respectively, to convert a multi-objective
optimization problem into a single-objective problem.

To understand whether UPCF coupled with IGD-CF and
HV is an accurate metric to measure the performance of a user-
preference based algorithm, their results have been compared
with IGD based on the Pareto-optimal front (IGD-OF). In
addition to IGD-CF and HV, the average number of solutions
that each algorithm contributes to the composite front (NS-CF)
is also reported for further analysis.

The benchmark problems that are used in this paper are
two-objective ZDT1-ZDT4 and ZDT6 functions, and three-
objective DTLZ1-DTLZ6 functions. We used (0.7, 0.2) and
(0.2, 0.2, 0.6) as reference points for two-objective and three-
objective test problems respectively. A different reference point
(0.2, 0.4, 0.9) is used for DTLZ1 since the point (0.2, 0.2, 0.6)
is located on its Pareto-optimal front. The population size for
two-objective test problems has been set to 50. The number
of iterations in each run is 150 for ZDT1 and ZDT2, 300 for
ZDT3, and 500 for ZDT4 and ZDT6.

The population size is set to 200 for three-objective prob-
lems. The number of iterations in each run is 200 for DTLZ1,
DTLZ2, DTLZ5 and DTLZ6, and 400 for DTLZ3 and DTLZ4.

TABLE III. NADIR POINTS FOR ALL TEST PROBLEMS

Test problem Nadir Point

ZDT1 (0.87, 0.30)
ZDT2 (1.00, 0.60)
ZDT3 (0.85, 1.00)
ZDT4 (1.00, 28.59)
ZDT6 (1.00, 2.77)

DTLZ1 (2.00, 1.03, 2.00)
DTLZ2 (0.37, 0.37, 1.00)
DTLZ3 (0.85, 1.00, 1.00)
DTLZ4 (1.00, 1.00, 0.96)
DTLZ5 (0.48, 0.48, 1.00)
DTLZ6 (0.43, 0.43, 1.00)

To specify the size of the preferred region on the com-
posite front and the Pareto-optimal front, the parameter r (see
Section IV) is set to 0.1 for all test problems. The ǫ parameter
of R-NSGA-II is set to 0.001 and 0.002 for two- and three-
objective problems respectively. The radius parameter of R-
MEAD-Te and R-MEAD-Ws, which can be used to control
the size of the preferred region, is set to 0.05 and 0.02 for
Tchebycheff and Weighted-Sum approaches respectively. The
initial population size is set to 100 and 250 for two- and three-
objective problems respectively. The nadir point used by HV is
calculated by taking the worst objective value for each of the
objective functions from all solutions generated by all three
algorithms in 25 independent runs. Table III shows the nadir
points calculated for different problems.

Tables I and II show the mean and the standard deviation
for 25 independent runs of R-NSGA-II, R-MEAD-Te and R-
MEAD-Ws using four different performance measures. As
mentioned previously, IGD-OF is not part of the proposed
metric and is solely used as a baseline against which other
algorithms are compared. The last three columns are the results
of t-test (p-values) using a 95% confidence interval.

A. Two-Objective Test Problems

The ZDT1 test problem has a convex Pareto-optimal front.
Table I shows the result of R-NSGA-II, R-MEAD-Te and
R-MEAD-Ws on this test problem. The results of statistical
test shows that R-NSGA-II and R-MEAD-Te are not signifi-
cantly different using the HV, IGD-OF and IGD-CF measures.
However, we can significantly distinguish the performance of
R-MEAD-Ws from R-NSGA-II and R-MEAD-Te. Results of
IGD-CF and HV are consistent with IGD-OF, which suggests
that R-MEAD-Ws performs significantly better than the other
two algorithms. However, the conclusion is different when NS-
CF is used. Figures 3(a), 3(b), and 3(c) also show this behavior.

The next test problem is ZDT2, which has a non-convex
Pareto-optimal front. According to p-values in Table I, all
three methods are significantly different. The results of all
three measures are consistent with IGD-OF, which suggests
that R-MEAD-Te outperforms the other two algorithms. Fig-
ures 3(d), 3(f) and 3(e) visually confirm the results gener-
ated by the metrics. On ZDT3, the only measure which is
consistent with IGD-OF is IGD-CF. The test results of IGD-
CF and IGD-OF show that none of the algorithms performs
significantly better than the others. However, the conclusion
is different when HV and NS-CF measures are used. On the
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TABLE I. RESULTS ON THE 2-OBJECTIVE TEST PROBLEMS. THE MEAN AND STANDARD DEVIATION OF 25 INDEPENDENT RUNS ARE REPORTED. THE

STATISTICAL SIGNIFICANCE RESULTS ARE BASED ON THE T-TEST USING A 95% CONFIDENCE INTERVAL.

R-MEAD-Te R-MEAD-Te R-MEAD-Ws
Func. Metric R-MEAD-Te R-MEAD-Ws R-NSGA-II vs vs vs

R-NSGA-II R-MEAD-Ws R-NSGA-II

ZDT1
HV 2.67e-02 (6.10e-03) 3.66e-02 (8.56e-04) 2.70e-02 (2.20e-03) 8.30e-01 4.79e-08 1.84e-16

IGD-CF 5.70e-03 (1.43e-02) 4.31e-04 (2.70e-04) 2.50e-03 (1.00e-03) 2.74e-01 2.57e-09 1.24e-11
NS-CF 3.96e+01 (1.21e+01) 3.68e+01 (3.60e+00) 4.95e+01 (9.18e-01) 4.44e-04 3.24e-01 2.32e-15

IGD-OF 5.60e-03 (1.02e-02) 7.44e-04 (3.28e-04) 3.50e-03 (7.06e-04) 3.18e-01 2.81e-02 2.99e-14

ZDT2
HV 5.81e-02 (1.20e-03) 0.00e+00 (0.00e+00) 5.16e-02 (1.13e-02) 9.20e-03 1.88e-42 8.45e-18

IGD-CF 3.60e-03 (1.30e-03) 1.04e-01 (1.23e-02) 1.05e-02 (2.42e-02) 6.60e-03 6.61e-23 4.42e-17
NS-CF 4.75e+01 (3.51e+00) 0.00e+00 (0.00e+00) 2.77e+01 (1.61e+01) 3.93e-06 6.61e-29 8.90e-09

IGD-OF 1.00e-03 (1.01e-04) 2.80e-02 (7.08e-18) 3.60e-03 (5.10e-03) 1.60e-09 5.40e-60 3.18e-18

ZDT3
HV 1.12e-01 (1.33e-01) 7.77e-02 (1.12e-01) 3.16e-02 (6.64e-02) 2.83e-02 1.39e-01 1.34e-01

IGD-CF 3.12e-01 (7.46e-01) 3.12e-01 (7.47e-01) 3.11e-01 (7.29e-01) 8.49e-01 6.67e-01 9.13e-01
NS-CF 2.15e+01 (2.40e+01) 2.20e+01(2.53e+01) 4.80e+00 (9.46e+00) 9.50e-03 9.40e-01 1.02e-02

IGD-OF 1.74e-01 (4.84e-02) 1.80e-01 (4.42e-02) 1.78e-01 (6.04e-02) 8.65e-01 9.77e-01 8.80e-01

ZDT4
HV 9.63e+00 (1.17e-01) 0.00e+00 (0.00e+00) 9.48e+00 (6.57e-01) 3.40e-01 1.06e-47 1.43e-29

IGD-CF 7.20e-04 (6.49e-04) 8.96e-02 (1.23e-02) 1.00e-03 (7.42e-04) 1.56e-01 1.38e-22 1.30e-22
NS-CF 3.32e+01 (1.34e+01) 0.00e+00 (0.00e+00) 3.26e+01 (1.96e+01) 9.32e-01 6.94e-12 1.62e-08

IGD-OF 2.60e-03 (1.34e-04) 5.42e-02 (2.83e-17) 2.60e-03 (1.00e-03) 8.67e-01 9.70e-64 8.66e-43

ZDT6
HV 4.22e-01 (1.95e-02) 0.00e+00 (0.00e+00) 2.94e-01 (2.32e-01) 1.01e-02 9.06e-34 1.54e-06

IGD-CF 8.50e-04 (1.10e-03) 1.23e-01 (4.50e-03) 4.81e-02 (5.97e-02) 6.46e-04 4.51e-34 9.71e-07
NS-CF 5.00e+01 (0.00e+00) 0.00e+00 (0.00e+00) 2.68e+00 (3.92e+00) 1.02e-27 0.00e+00 2.30e-03

IGD-OF 4.40e-03 (1.80e-03) 9.86e-02 (5.67e-17) 3.94e-02 (4.54e-02) 7.86e-04 3.40e-43 9.78e-07

TABLE II. RESULTS ON THE 3-OBJECTIVE TEST PROBLEMS. THE MEAN AND STANDARD DEVIATION OF 25 INDEPENDENT RUNS ARE REPORTED. THE

STATISTICAL SIGNIFICANCE RESULTS ARE BASED ON THE T-TEST USING A 95% CONFIDENCE INTERVAL.

R-MEAD-Te R-MEAD-Te R-MEAD-Ws
Func. Metric R-MEAD-Te R-MEAD-Ws R-NSGA-II vs vs vs

R-NSGA-II R-MEAD-Ws R-NSGA-II

DTLZ1
HV 7.33e-01 (9.98e-01) 0.00e+00 (0.00e+00) 1.93e+00 (7.18e-02) 4.00e-06 1.20e-03 5.12e-36

IGD-CF 4.69e-02 (5.52e-02) 6.46e-02 (4.57e-02) 1.20e-03 (2.70e-03) 2.90e-04 2.00e-03 1.63e-07
NS-CF 3.94e+01 (6.77e+01) 0.00e+00 (0.00e+00) 1.70e+02 (5.98e+01) 4.27e-07 7.70e-03 3.28e-13

IGD-OF 4.12e-02 (2.73e-02) 6.12e-02 (1.42e-17) 4.20e-03 (1.20e-03) 6.54e-07 1.20e-03 9.25e-42

DTLZ2
HV 5.06e-04 (1.01e-04) 0.00e+00 (0.00e+00) 4.28e-04 (1.07e-05) 7.45e-04 1.06e-18 3.46e-04

IGD-CF 1.46e-04 (1.65e-05) 5.12e-02 (3.60e-04) 8.83e-04 (3.73e-05) 7.97e-32 1.85e-53 2.36e-53
NS-CF 1.82e+02 (5.34e+00) 0.00e+00 (0.00e+00) 2.00e+02 (0.00e+00) 1.04e-14 1.61e-38 0.00e+00

IGD-OF 2.10e-03 (4.42e-05) 5.94e-02 (0.00e+00) 3.00e-03 (3.96e-05) 7.11e-03 1.95e-76 2.01e-77

DTLZ3
HV 2.11e-02 (1.94e-02) 0.00e+00 (0.00e+00) 3.74e-02 (3.28e-04) 3.08e-04 1.42e-05 4.44e-51

IGD-CF 3.22e-02 (3.49e-02) 6.12e-02 (1.00e-02) 7.64e-04 (8.05e-04) 1.79e-04 1.25e-05 5.22e-02
NS-CF 8.94e+01 (9.51e+01) 0.00e+00 (0.00e+00) 2.00e+02 (0.00e+00) 5.39e-06 8.82e-05 0.00e+00

IGD-OF 2.85e-02 (2.80e-02) 5.94e-02 (0.00e+00) 3.10e-03 (2.48e-04) 1.46e-04 1.11e-05 2.70e-58

DTLZ4
HV 2.02e-02 (1.57e-02) 0.00e+00 (0.00e+00) 2.97e-02 (1.80e-03) 5.70e-03 1.10e-06 4.24e-31

IGD-CF 2.69e-02 (3.36e-02) 6.09e-02 (9.00e-03) 8.95e-04 (8.83e-04) 8.82e-04 1.07e-06 4.32e-21
NS-CF 8.74e+01 (8.45e+01) 0.00e+00 (0.00e+00) 2.00e+02 (6.24e-01) 7.24e-07 2.67e-05 7.43e-62

IGD-OF 2.42e-02 (2.70e-02) 5.94e-02 (0.00e+00) 3.00e-03 (1.16e-04) 6.31e-04 2.90e-66 9.50e-07

DTLZ5
HV 2.90e-03 (4.86e-04) 0.00e+00 (0.00e+00) 4.00e-03 (3.60e-05) 4.00e-11 1.86e-02 8.82e-51

IGD-CF 2.03e-04 (3.31e-05) 5.79e-02 (1.90e-03) 4.92e-05 (5.45e-06) 1.22e-18 2.32e-37 2.58e-37
NS-CF 1.33e+02 (1.96e+01) 0.00e+00 (0.00e+00) 1.66e+02 (2.33e+00) 1.25e-08 8.61e-22 3.19e-46

IGD-OF 2.16e-04 (3.70e-05) 2.76e-02 (7.08e-18) 3.12e-05 (5.39e-06) 9.09e-19 1.39e-07 9.75e-91

DTLZ6
HV 1.50e-03 (2.63e-05) 0.00e+00 (0.00e+00) 2.00e-03 (8.13e-06) 4.24e-32 1.13e-43 4.49e-59

IGD-CF 1.77e-04 (2.86e-05) 5.02e-02 (1.35e-04) 3.92e-05 (4.46e-06) 8.28e-19 1.63e-63 1.99e-63
NS-CF 2.00e+02 (0.00e+00) 0.00e+00 (0.00e+00) 1.98e+02 (2.14e+00) 9.06e-06 0.00e+00 6.75e-49

IGD-OF 2.77e-04 (2.19e-05) 2.76e-02 (7.08e-18) 3.42e-05 (9.85e-06) 7.20e-26 5.06e-76 1.84e-84

2829



ZDT4 function, the results of all three measures are consistent
with IGD-OF. The t-test shows that R-MEAD-Te and R-
NSGA-II exhibit similar performance, and both algorithms
outperform R-MEAD-Ws. ZDT6 test problem has a concave
Pareto-optimal front. Similar to ZDT4, all three measures
are consistent with IGD-OF which suggests that R-MEAD-
Te performs significantly better than the other algorithms.
Figures 3(j), 3(k), and 3(l) also confirm the numerical results.

B. Three-Objective Test Problems

According to the t-test results shown in Table II, all
algorithms are statistically distinguishable. Except for NS-CF
on DTLZ2 and DTLZ6, all the other measures are consistent
with IGD-OF on all functions. It can be seen from Table II
that R-NSGA-II outperforms other algorithms on almost all of
the functions. It is interesting to note that R-MEAD-Ws fails
to converge on all functions. Consequently the HV and NS-
CF for R-MEAD-Ws are consistently zero for all functions.
Figure 4 shows the performance of all three algorithms on the
two selected functions.

C. Result Analysis

According to Tables I and II we can see that the results
of IGD-CF are consistent with IGD-OF on all benchmark
functions. However, HV is inconsistent on 10 out of 11
functions and NS-CF on 7 out of 11 functions. These results
are summarized in Table IV. This may suggest that IGD-
CF is the best of the three performance measures reported
in this paper. However, it should be noted that for almost
all of the benchmarks used in this paper, the solutions which
are obtained by the algorithms are fairly close to the Pareto-
optimal front. In other words, the composite front is very
similar to the Pareto-optimal front in the preferred region.
Therefore, on more difficult problems with more complex
Pareto-optimal fronts, or on problems with a large number
of objectives, it is likely that the composite front is not very
accurate, and this may affect the performance of IGD-CF.

It can be seen from Table IV that a cardinality-based
approach is less reliable than HV and IGD-CF. The results
tend to be worse when dealing with many-objective problems.
As the number of objectives increases, a greater portion of
the solutions becomes non-dominated, causing different algo-
rithms to make a very close or even identical contribution to
the composite front. This makes cardinality-based approaches
less accurate as the number of objectives increases and may
lead to an incorrect conclusion.

VI. CONCLUSION

This paper proposes a metric (UPCF) for measuring the
performance of user-preference based EMO algorithms. UPCF
works by combining the solution sets of the algorithms that
are to be compared and extracting the non-dominated solutions
into a composite front which is then used to define a preferred
region based on the location of a user-supplied reference point.
Once the preferred region is defined, existing EMO metrics
such as IGD and HV can be used to measure the convergence
and diversity of the solution set of each algorithm with respect
to the preferred region. For distance-based metrics that require

TABLE IV. THE TABLE SHOWS THE CONSISTENCY OF EACH MEASURE

WITH IGD-OF (X: CONSISTENT, ×: INCONSISTENT).

Function IGD-CF HV NS-CF

ZDT1 X X ×
ZDT2 X X X

ZDT3 X × ×
ZDT4 X X X

ZDT6 X X X

DTLZ1 X X X

DTLZ2 X X ×
DTLZ3 X X X

DTLZ4 X X X

DTLZ5 X X X

DTLZ6 X X ×

Total 11 10 7

knowledge of the Pareto-optimal front, the composite front can
be used as a replacement.

To ensure the effectiveness of the proposed metric, three
metrics – namely IGD based on the composite front (IGD-CF),
hypervolume (HV), and a cardinality-based approach (NS-
CF) – were compared with a baseline metric that uses the
Pareto-optimal front information (IGD-OF). It is assumed that
an algorithm is accurate if its performance is consistent with
IGD-OF. The experimental results suggest that both IGD-CF
and HV are consistent with IGD-OF, but NS-CF shows some
inconsistency. These inconsistencies tend to be magnified when
dealing with problems with a higher number of objectives.

Although IGD-CF shows the highest level of consistency
with IGD-OF, we speculate that this behavior is due to
convergence of the algorithms on the Pareto-optimal front. In
other words, the composite front happens to closely resemble
a desired portion of the Pareto-optimal front. This might not
be the case if the algorithms do not fully converge. This will
be the subject of future investigations.
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Fig. 3. Results on ZDT1, ZDT2, ZDT4 and ZDT6 functions using R-NSGA-II, R-MEAD-Te and R-MEAD-Ws. Preferred region on Pareto-optimal front is
shown in light blue color and solutions found by each algorithm in the region are shown in red.
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