
A Genetic Programming-based Hyper-heuristic
Approach for Storage Location Assignment Problem

Jing Xie∗, Yi Mei ∗, Andreas T. Ernst †, Xiaodong Li ∗ ,Andy Song∗
∗School of Computer Science and Information Technology, RMIT University, Melbourne, 3001, Victoria, Australia

Email:{jing.xie, yi.mei, xiaodong.li, andy.song}@rmit.edu.au
†Commonwealth Scientific and Industrial Research Organisation (CSIRO), Melbourne, Australia

Email:Andreas.Ernst@csiro.au

Abstract—This study proposes a method for solving real-world
warehouse Storage Location Assignment Problem (SLAP) under
grouping constraints by Genetic Programming (GP). Integer
Linear Programming (ILP) formulation is used to define the
problem. By the proposed GP method, a subset of the items
is repeatedly selected and placed into the available current best
location of the shelves in the warehouse, until all the items have
been assigned with locations. A heuristic matching function is
evolved by GP to guide the selection of the subsets of items.
Our comparison between the proposed GP approach and the
traditional ILP approach shows that GP can obtain near-optimal
solutions on the training data within a short period of time.
Moreover, the evolved heuristics can achieve good optimization
results on unseen scenarios, comparable to that on the scenario
used for training. This shows that the evolved heuristics have
good reusability and can be directly applied for slightly different
scenarios without any new search process.

I. INTRODUCTION

Warehouses are essential facilities in industry. The im-
provement of productivity in daily warehouse operations is
of great importance. Typical activities in a warehouse in-
clude receiving, storing, picking and delivering. Among these
operations, product storage and retrieval are considered as
the most crucial and resource-consuming activities [1]. One
problem associated with both activities is known as the Storage
Location Assignment Problem (SLAP) [2].

Briefly speaking, SLAP aims to determine the optimal
storage arrangement strategy for a warehouse so that the total
picking cost, or the total picking travel distance, would be
minimal. To achieve this goal, it would be ideal to be able to
predict the future ordering status, which is especially difficult
to foresee. In practice, one can estimate the picking frequency
of the items and correlations between them (the likelihood
that they are ordered together) based on historical ordering
lists from a certain period of time in the past, assuming
the distributions of data remain the same in the near future.
Consequently SLAP can be simplified as minimizing the
frequency-weighted total distance from the storage locations
of the items to the Pick-up/Drop-off (P/D) point or the loading
zone subject to the correlation constraints and other case-based
constraints. In general, the items with higher demand rates
are picked more frequently, which should be stored in more
accessible locations. In addition items with stronger correlation
(e.g., they are more likely to be ordered simultaneously) should
be located closer to each other [3].

Given the past ordering lists, the picking frequency can

be calculated directly based on the occurrence of the items.
However, the definition of correlation between items is not
straightforward. To identify the correlation between items,
the Bill Of Material (BOM) information is the most popular
and convincing data to be used if available. Products or
raw-materials appeared on the same BOM are expected to
be picked together more frequently [4] [5] and thus have
higher correlation. In the cases where BOM information is
unavailable, the correlation may be defined according to the
association rule of products found by data mining techniques
[6] [7] or sophisticate measurements such as the cube-per-order
index [8]. These studies are all conducted under an assumption
that correlated items should be stored to closer locations. In a
warehouse storing school wear or work wear, this assumption
is no longer reasonable. Items with the same Stock Keeping
Unit (SKU) number but different color and size are considered
strongly correlated and these items are often required to be
stored to adjacent bins. However, simply assigning the same
SKU number items next to each other may lead to counter-
intuitive solutions, especially when the picking frequencies of
different items of the same product are far away from each
other. For example, given T-shirts of same style, size L may
have a large demand of 1000 and the demand of size XXXL
may be only 10. Hence, a more plausible way is to split them
into multiple groups and locate the items based on groups
rather than putting all the items together. To this end, a new
approach for SLAP with the grouping constraint on products
is needed. In this paper we propose a novel method based on
Genetic Programming (GP).

Various approaches have been developed to solve SLAPs
in literature. Exhaustive search methods such as branch-and-
bound are only applicable to small sized instances [9]. For
large scale real-world scenarios, heuristic techniques such
as simulated annealing [10] and tabu search [11] are often
adopted to obtain near-optimal solutions within a reasonable
time frame. All these methods aim to find solutions for a
particular scenario, e.g., an optimal storage plan for a given
set of items. However in practice, solutions obtained for one
scenario may not be applicable for a different scenario, e.g.
a future scenario. In this case, a decision rule that can be
generalized to past, present and future would be much more
desirable than a specific storage solution. A prominent Evo-
lutionary Computation (EC) method, Genetic Programming
is capable of learning rules or heuristics rather than finding
solutions. For example GP has been successfully applied to
the job shop scheduling problems [12][13], and demonstrated
to be capable of evolving efficient and reusable dispatching

3000

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Fig. 1. Example of Warehouse Layout

rules that outperform other frequently used human-designed
rules on some criteria [14]. We expect that GP can also
achieve competitive performance on SLAPs, which does share
similar properties of combinatorial optimization with job shop
scheduling problems.

The rest of the paper is organized as follows: the problem
is described in Section II. The proposed GP-based method is
described in Section III. The experimental studies are carried
out in Section IV. The comprehensibility of evolved heuristics
and the comparison with manually constructed heuristics are
discussed in Section V. Section VI concludes the study and
discusses several directions of future work.

II. PROBLEM DESCRIPTION

This section describes the SLAP with grouping constraint
in a warehouse with a rectangular shape.

A. SLAP with Grouping Constraint

In SLAP, there is a set of products, each consisting of a
number of different items with their own picking frequencies,
to be located into a given warehouse. A simplified layout
of the warehouse is shown in Fig. 1. The warehouse has a
rectangular shape and a P/D point. M homogeneous shelves
each consisting of C storage bins are placed in the warehouse,
illustrated as columns of blocks. Each block indicates a storage
bin. Each bin l is labelled with a unique integer from 1
to N . The width of aisles between shelves can be ignored.
The distance from P/D point to a storage bin is defined as
the Manhattan distance between these two points, which can
be calculated by Vl + Hl (Vl and Hl are the vertical and
horizontal distances between location l and the P/D point).
The SLAP with grouping constraint aims at minimizing the
frequency-weighted distance, which is defined as

∑N
i=1 PiDi,

where Pi stands for the picking frequency of item i and Di

indicates the distance from the P/D point to the location of
item i. This measure is widely employed as an approximation
of operational cost in a warehouse in the field of operational
research [9] [10] [15] [16]. The following constraints need to
be satisfied:

• Each item is placed in exactly one storage bin;

• Each product can be split into at most k groups and
each item should be located adjacent to at least one
of the other items in the same group. Here, only the
sequential bins on the same shelf are considered as
adjacent locations. For example, in Fig. 1, locations 1
and 2 are adjacent locations, while locations 6 and 11
are not. This is referred to as the grouping constraint
in this paper.

B. An ILP Formulation

The 0 − 1 decision variables of xil(i = 1, ..., N ; l =
1, ..., N) and ysl(s = 1, ..., S; l = 1, ..., N) are defined to
develop the ILP model of the described SLAP, where N is
the number of items/bins and S is the number of products. xil
equals 1 if item i is assigned to location l, and 0 otherwise.
ysl equals 1 if location l is a starting point of product s, and
0 otherwise. Given xil = 1 (item i is from product s), the
location l is called a starting point of product s either no other
item of product s is located to location l − 1 or location l is
the first bin on the shelf.

Then, the ILP model of the SLAP with grouping constraints
can be stated as follows:

min ς(x) =
N∑
i=1

N∑
l=1

Pi × 2(Vl +Hl)× xil (1)

s.t. :
N∑
i=1

xil = 1, l = 1, ..., N (2)

N∑
l=1

xil = 1, i = 1, ..., N (3)

N∑
l=1

ysl ≤ k, s = 1, ..., S (4)

xil ≤
S∑

s=1

Ais

ysl + N∑
j=1

Ajsxj,l−1

 , i, l = 1, ..., N

(5)
S∑

s=1

ysl = 1, ∀lmod C = 1 (6)

S∑
s=1

Bisxil ≤
S∑

s=1

Bis

(
S∑

s=1

Aisysl

)
, i = 1, ..., N

(7)
N∑
i=1

Aisxil ≥ ysl, s = 1, ..., S, l = 1, ..., N (8)

xil, ysl ∈ {0, 1}. (9)

where

• Ais is 1 if item i is from product s; 0, otherwise.

• Bis is 1 if item i is the most popular item in product
s; 0, otherwise.

The objective function is to minimize the total picking
frequency-weighted travelling cost. The distance of location
l to the P/D point is calculated by the vertical and horizontal
distance of these two points, which is 2(Vl +Hl). Constraint
(2) ensures that each item is assigned to exact one storage
location. Constraint (3) ensures that one storage location is
occupied by exact one item. Constraint (4) ensures that each
product has no more than k starting points. Constraint (5)
ensures that each location is either a starting point of a product
or preceded by the location of another item from the same
product. Constraint (6) ensures that the first bin of each shelf
must be a starting point. Constraint (7) ensures that for each

3001

product, the item with the largest picking frequency is located
at a starting location. Constraint (8) ensures that the number
of starting points for each product does not exceed the total
number of items in it. It also guarantee that the starting points
of a product are assigned with items from the product.

C. Discussion

The value of parameter k affects the quality of the solution.
Theoretically, a large k yields a good solution. In the extreme
cases where k ≥

∑N
i=1Ais(∀s = 1, ..., S), the correlation

between items can be ignored and a trivial solution can be
found by sorting the items from most to least frequent and
putting them from the nearest location to the farthest. On the
contrary, a small k is desirable by decision makers as it causes
fewer management difficulties. However, when k is 1, no split
is allowed and the described SLAP is NP-complete. A special
case of the problem is a PARTITION PROBLEM [17], which is
known to be NP-complete, by assuming the warehouse only
has two shelves and all items have exactly the same picking
frequency. Based on the above considerations, we set k to 2
to achieve a good tradeoff between quality of solutions and
management difficulties.

III. A GP-BASED APPROACH

As described in Section II, the investigated SLAP involves
two interdependent tasks: item grouping and assigning. On
one hand, the problem of grouping items is not evaluable
until these items are assigned to locations. On the other
hand, the assignment of items should not violate the grouping
constraints. In this section, we present a GP-based hyper-
heuristic approach to address the investigated SLAP, which has
two phases. First, a matching function, which is also referred to
as heuristics in previous sections, is evolved by GP to evaluate
the candidate subsets of items. Then, a greedy assignment
strategy is employed to locate all the items onto the shelves
repeatedly until all the items have been assigned. Specifically,
at each step, the best subset of unallocated items identified by
the matching function is selected and assigned to the current
best empty location on the shelves. Details of the proposed
method is presented in the following.

A. GP Representations

We use a tree-based GP to evolve the matching function.
A matching function matches a set of sequential locations and
a set of items (denoted as s′) and returns a value reflecting
the degree of suitability of locating the set of items to the set
of locations. A higher value implies that it is more suitable to
locate the set of items to the set of locations.

To evolve the matching functions, three arithmetic operator
+,−,× and the following two simple customized functions are
used.

1) IF : This function accepts three parameters (α, β, γ).
It returns β if α ≥ 1, and γ otherwise.

2) ≤: This function accepts two parameters (α, β). It
returns 1 if α ≤ β, and −1 otherwise.

Information about the locations and items is summarized
and used as terminals. The basic features of s′ are summarized
and described by several commonly used statistical properties

TABLE I. TERMINAL SET OF GP

Terminal Meaning
Mean Average picking frequency of s′

Card Cardinality of s′

Min The picking frequency of the least popular item
in s′

Max The picking frequency of the most popular item
in s′

Sum The total picking frequency of s′

Std The standard deviation of picking frequencies in
s′

AB Number of bins available on the shelf
C Number of bins on each shelf
Pr This value is set to 1 if and only if the cardinality

of s′ is equal to AB; 0, otherwise
0,1 0 and 1

such as sum, mean and standard deviation. This representation
ensures that the matching function can handle item sets with
arbitrary size. Details of the terminal set is given in Table I.

B. Fitness Evaluation

The evaluation of a matching function f consists of two
steps: solution construction and fitness calculation. First, a
solution is constructed by the greedy assignment strategy based
on the matching function. It keeps identifying the best subset
of the unallocated items using the matching function and locate
it at the current best available location until all the bins have
been occupied. It is described in Algorithm 1.

Algorithm 1 Solution Construction Procedure for an Evolved
Matching Function f

1: Mark all the items as unlocated and all bins as empty;
2: repeat
3: Obtain the current best available location l0 based on

the status of the bins;
4: Identify the best subset of unlocated items using the

matching function and locate them to sequential locations
starting from l0;

5: Mark all the items in the assigned subset as located,
and set corresponding xil’s to 1;

6: until All the items are located;
7: return xil’s

In line 3, the empty bin with the shortest Manhattan
distance to the P/D point is selected as l0. In line 4, a pre-
selection scheme is applied to remove the subsets of items
that is not optimal in the current scenario. For example, given
l0 with a distance of 2 to the P/D point, a second best
location l1 with distance of 4 to the P/D point, and a product
θ = {θ1, θ2, θ3} with picking frequencies of {300, 200, 100},
there are seven different non-empty subsets of θ: {θ1}, {θ2},
{θ3}, {θ1, θ2}, {θ1, θ3}, {θ2, θ3}, {θ1, θ2, θ3}. Among these
subsets, we can prove that some subsets must lead to better
solutions than others without evaluating the entire solution
based on the following property: For each pair of items (i, j)
satisfying Ais = Ajs(∀s = 1, . . . , S) (that is, they belong to
the same product), Pi > Pj and Di > Dj , a better solution
can be obtained by exchanging the locations of item i and item
j. In the above example, if the subset of {θ1, θ3} is selected

3002

TABLE II. RUNTIME PARAMETERS OF GP

Parameter Value Parameter Value
Population Size 1000 Elitism Rate 5%
Generations 30 Crossover Rate 76%
Penalty Coefficient (δ) N Mutation Rate 19%
Max-depth 7 Min-depth 4

and placed to locations l0 and l0 + 1, respectively, the best
location available for θ2 is l1. Then, we have D1 = 2, D3 = 3
and D2 = 4. In this case, the pair of items (θ2, θ3) satisfies
the above condition. Thus, exchanging θ2 and θ3 leads to a
better solution, which can be obtained by selecting the subset
of {θ1, θ2} in the first place. In this sense, {θ1, θ2} is better
than {θ1, θ3}. Similarly, we have {θ1} is better than {θ2} and
{θ3}, and {θ1, θ2} is better than {θ2, θ3}. As a result, only
(θ1), (θ1, θ2) and (θ1, θ2, θ3) are retained.

With the above pre-selection scheme, the number of subsets
to be evaluated by the matching function can be much reduced.
After the pre-selection, the remaining subsets are evaluated by
the matching function and the subset with the biggest return
value is selected. When there are multiple subsets with the
same return value, the subset with biggest cardinality that is
smaller than or equal to the number of the residual number of
bins on that shelf is selected.

After the solution is constructed by the above greedy
algorithm, the fitness of the matching function is then defined
by Eq. (10).

Fitness = ς(x) +
N∑
i=1

N ′∑
l=N+1

Pi × 2(Vl +Hl + δ)× xil (10)

where the xil’s are the decision variables of the constructed
solution, ς(x) is defined by Eq. (2). Note that in the constructed
solution, the number of items located on a shelf may exceed
its capacity when the size of the located subset is larger than
the residual number of bins of the shelf. In this case, a set
of imaginary bins are introduced and indexed from N + 1 to
N ′ (N ′ is a sufficiently large number, e.g., MN). The items
outside the shelves are then punished by the penalty function
Pi × 2(Vl +Hl + δ)× xil, where δ is the penalty coefficient.

IV. EXPERIMENTS AND RESULTS

Various GP settings have been examined in preliminary
experiments to find the best configuration. The results show
that the search converges quickly at the early stage of evo-
lution. Hence, the number of generations is set to 30 in the
subsequent experiments, which is adequate for the convergence
of the algorithm. The results also show that different settings
of mutation and crossover rates do not have significant impact
on the quality of the solution. The maximal depth of the tree
is set to 7, because the computational time increases rapidly
with the maximal depth of the tree but the quality of solutions
change little when the depth is bigger than 7. The penalty
coefficient is set to N , which is the total number of storage
bins. The details of parameter settings are listed in Table II.

We used the data collected from a real warehouse oper-
ation. This includes over 12000 unique items of nearly 500
different products. Each item has a color, size and total picking

TABLE III. EXAMPLE DATA SET

Item No. SKU Color Size Picking Frequency
1 AK001 BLACK S 221
2 AK001 BLACK M 1070
3 AK001 BLACK L 293
4 AK001 WHITE S 15
5 AK001 WHITE M 2200
6 AK001 WHITE L 378
7 BL78 BLUE XS 735
8 BL78 BLUE S 467
- - - - -

frequency within one year. As the real data is confidential,
we exhibit an example data set in Table III for reference. It
can be seen that the items from the same product can have
significantly different picking frequency (e.g., No. 4 versus No.
5). Twenty artificial data sets are generated based on the real
data by random sampling. Then, the proposed GP is compared
with the ILP on the data to evaluate its training performance.
Additionally, to evaluate the test performance, the original data
set is also randomly split into several equally sized subsets for
cross validation.

A. Optimization Performance

In this section, we evaluate the optimization performance in
terms of solution quality by comparing with the branch-and-cut
method. The comparison is only conducted on small data sets
due to the scalability issue of the branch-and-cut. The branch-
and-cut is coded in Java using the Gurobi 5.5.0 library [18] and
run on a PC with Intel Core i7 − 3770 CPU with 8GB RAM.
The GP system used to train matching functions is coded using
ECJ21 library [19] and run on the same computational plat-
form. Twenty problems with different number of items ranging
from 25 to 900 are randomly generated. Five independent runs
are conducted for GP, and the best and average results are
recorded.

Table IV shows the results of the branch-and-cut approach
and the proposed GP method. The difference Diff between
fitnesses of two solutions f1, f2 is defined as follows:

Diff (f1 , f2) =
f1 − f2

f2
× 100% (11)

Note that the exact branch-and-cut approach is only applicable
to the instances with N ≤ 100 due to the restriction of
computational resources. Thus, the column for optimal fitness
is unavailable and marked as “−” for the larger instances with
N ≥ 400. Alternatively, a best lower bound is computed pro-
vided a reasonable time limit for each instance with N ≥ 400
for comparison.

It is seen that the branch-and-cut approach obtained the
global optima of small sized (N ≤ 64) instances in a short
time. However, its computational time increased significantly
with the increase of N and became prohibitive on our exper-
imental platform due to memory limitation. On the contrary,
the proposed GP showed much better scalability, and managed
to reach nearly optimal performance (Diff < 0.4% on the
instances with N ≤ 100, Diff < 1.2% on instances with

3003

TABLE IV. SOLUTION QUALITY OF THE PROPOSED HYPER-HEURISTIC METHOD

Gurobi MIP Solver Proposed GP
No. N BestBound Optimal ElapsedTime Best Mean Std Difference ElapsedTime

1 25 1685 1685 2s 1685 1685 0 0.000% 2s

2 25 2554 2554 < 1s 2554 2554 0 0.000% 3s

3 25 2280 2280 < 1s 2280 2280 0 0.000% 3s

4 25 2350 2350 < 1s 2350 2350 0 0.000% 4s

5 64 7522 7522 10s 7523 7526 3.58 0.013% 12s

6 64 9506 9506 7s 9506 9506 0 0.000% 13s

7 64 9231 9231 4s 9233 9237 2.91 0.022% 10s

8 64 11279 11280 91s 11289 11294 6.67 0.080% 11s

9 100 31340 31342 4s 31364 31384 18.41 0.070% 20s

10 100 15780 15781 27s 15786 15789 1.82 0.031% 19s

11 100 32997 32997 10s 33036 33064 17.71 0.012% 20s

12 100 15546 15561 7200s 15616 15669 34.88 0.353% 16s

13 400 195046 − 3600s 196636 196810 118.67 0.815% 348s

14 400 133017 − 3600s 134436 134772 207.74 1.067% 351s

15 400 57876 − 3600s 58575 58788 427.63 1.208% 267s

16 400 288651 − 3600s 290241 290541 246.43 0.551% 266s

17 900 643104 − 34251s 648221 649060 512.40 0.796% 1720s

18 900 592862 − 28812s 599890 600205 434.80 1.186% 1472s

19 900 603347 − 31690s 610375 611147 652.20 1.165% 1491s

20 900 614520 − 28884s 621154 621845 468.01 1.080% 2101s
1. Best , Mean , Std are statistical data of the fitnesses during the run
2. For instance 1 − 12 , Difference is calculated by Diff (Best,Optimal). For instance 13 − 20 , Difference is calculated by
Diff (Best,BestBound).

N ≥ 400). Moreover, for the larger instances, it can be seen
that the proposed GP showed quite stable performance, as the
standard deviations are much smaller than the corresponding
Mean values. In summary, for the training data, the proposed
GP method obtained nearly optimal solutions reliably and
showed good scalability to the problem size.

B. Performance on Unseen Scenarios

The major goal of the proposed hyper-heuristic methodol-
ogy is to find heuristics that can be reused on unseen situations
(test data) by training on existing data (training data). The
problem is investigated under the assumption that training
data and test data have the same distribution, which means
the demand rates of products do not change dramatically. To
validate this, the original data is split into five subsets by
random selection for 5-fold cross validation. Fig. 2 shows the
cumulative distribution functions (CDFs) of picking frequen-
cies of items in these subsets. We can see that these subsets
have almost the same CDF curve, which means that they
have very similar distribution on picking frequency. This is
consistent with our assumption.

To evaluate a given matching function, four solutions are
first constructed using the matching function, each for one
training data set. Their fitnesses are then calculated by Eq. (10)
and the mean of the four fitnesses is used as the fitness of the
matching function. In each generation, the best individual is
used to evaluate the test data. This approach is similar to the
real scenario, e.g. given the past four year’s data for training
to find heuristics that can be used in next year. We conduct 30
independent runs and Fig. 3 shows the convergence curves of
the average fitness of the best GP individuals on the training

Fig. 2. Average fitness of the GP individuals on the training and test data

and test data. It can be seen that the convergence curve on
the test data is consistent with that on the training data. This
implies that if a matching function is considered to be better
on the training data, it is also better on the test data. In other
words, the quality of the matching function can generalize from
the training data (past) to the test data (future).

Table V shows the details of the results. The ith row
indicates that the ith subset is selected as the test data, and the
other four subsets are used as the training data. It is seen that
the feasible solutions can always be obtained on the training
data (ε = 100%). For the test data, the probability of obtaining
feasible solution is still high (ε ≥ 66.7%), which means there
are at least two feasible solutions out of three runs of the GP.
Besides, the small Diff value (Diff ≤ 0.78%) indicates that
the test performance is very close to the training performance.

3004

Fig. 3. Cumulative Distribution Functions (CDFs) of Frequency of the Items in the Subsets for Five-fold Cross Validation.

TABLE V. PERFORMANCE OF TRAINING AND TEST OF DIFFERENT
DATA SETS

Training Test
No. ε Mean ± Std ε Mean ± Std Diff

1 100% 3046462± 8121 73.3% 3070166± 44932 0.78%

2 100% 3000394± 7906 86.7% 3008722± 11540 0.28%

3 100% 3105142± 7241 66.7% 3118174± 26309 0.42%

4 100% 2927105± 5977 90% 2931468± 9416 0.15%

5 100% 3133088± 8307 100% 3136116± 8868 0.097%
1. ε is the proportion of feasible solutions.
2. Diff is the difference of average fitnesses for training and test, which is
calculated by Diff (Meantest ,Meantraining).

V. DISCUSSIONS

In this section, we firstly discuss several simple manually-
designed matching functions and compare them with the best
heuristics evolved by the GP, as shown in Table VI. Secondly,
we investigate the comprehensiveness of the evolved tree.

A. Comparison with Manually Constructed Heuristics

1) Heuristic 1: Mean: Intuitively, the items with higher
picking frequencies should be located to better locations.
Hence, we tried Mean first. When using this heuristic, more
than half of the 20 instances failed to get feasible solutions and
obvious gaps can be observed comparing with the proposed
GP method. Even for the best case, there still exists 1.26%
difference.

2) Heuristic 2: Mean × Sum: Another factor that worth
considering is the Sum . Several calculations of Mean and
Sum such as Mean + Sum and Sum −Mean have been

tried and we only exhibit the one with the best result. This
heuristic performs better than the previous one. The results
for 8 instances are almost as good as the proposed GP one
(less than 1% difference). But it still requires considerable
improvement considering that 6 instances failed to get feasible
solutions.

3) Heuristic 3: (1 + Pr)×Mean × Sum: To increase the
chance of getting feasible solutions, we add term Pr when
constructing the third heuristic. When constructing solutions
the chance of getting feasible solutions is increased as each
time when there exists a set of items that can fill all the empty
bins on the shelf for l0, the return value for that set of items
provided by the matching function is doubled. The results show
that the number of feasible solution increase from 14 out of
20 to 19 out of 20. However, the solution quality of some
instances is not as good as previous one.

4) Heuristic 4: (1 + Pr)×Mean × Sum + Max ×Min:
In this matching function, term Max and Min is taken into
consideration. The rough idea is putting items with similar
picking frequency into same group, especially those popular
items. Although some instance failed to get feasible solutions,
the quality of the solutions for most of the instance is improved
considerably.

As we can see, it is not a very easy task to design heuristics
for good feasible solutions. The results generated by manually
constructed matching functions are always worse (difference
range from 0.04% to 46.43%) than the solutions obtained by
the proposed GP method. Although for instance 2 and heuristic
3 or instance 10 and heuristic 4, of which the difference is
below 0.1%, the proposed GP method still shows advantage

3005

in terms of ease of use as it only need simple terminals and
functions. This task could be extremely difficult for a person
when there is not enough domain knowledge.

B. Analysis of Evolved GP Programs

Fig. 4 illustrates an example of evolved tree in Section
IV-B. We can see that the terminals related to the picking
frequency (Mean, Sum, Max) of items have been identified
as important factors in this function. For example, Max is
squared and has a great contribution to the return value.
The multiplication of Mean and Max or Sum and Max
indicates that subsets with bigger Mean, Sum, Max tend to
be accepted. This is partially consistent with those manually
constricted heuristics in Section V.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we investigate a SLAP with grouping con-
straint of items in stock. The problem is defined with an
ILP formulation to find the optimal assignment of items at
minimum operational cost. Matching functions are evolved to
address aforementioned novel SLAP. This method is demon-
strated to be able to find near optimal solutions within a
reasonable time period on different-scaled problems. Such
good training performance can also generalize to the scenarios
with similar properties. This opens up the possibility of using
this GP approach on SLAPs in dynamic environments in future
study. For example, matching functions trained by last winter’s
data may also perform well for different seasons although the
data for each season are not exactly the same.

In future, several possible extensions of this study can be
developed. First, the selection of terminal sets can be further
explored. In current approach, we include all the possible
factors that might be useful when designing the methodology
which may lead to a huge search space. Some redundancies
will increase the difficulty of reaching the global optimum. On
the contrary, if the terminal set is too small, some essential
factors may be excluded. Second, besides the correlation
of items, dependencies of products will also be taken into
consideration to build a more realistic model, as well as the
relocation cost required for rearrangement.

REFERENCES

[1] JP van den Berg and WHM Zijm. Models for warehouse management:
Classification and examples. International Journal of Production
Economics, 59(1):519–528, 1999.

[2] Jinxiang Gu, Marc Goetschalckx, and Leon F McGinnis. Research on
warehouse operation: A comprehensive review. European Journal of
Operational Research, 177(1):1–21, 2007.

[3] EA Frazele and Gunter P Sharp. Correlated assignment strategy can
improve any order-picking operation. Industrial Engineering, 21(4):33–
37, 1989.

[4] S Hsieh and K-C Tsai. A bom oriented class-based storage assignment
in an automated storage/retrieval system. The international journal of
advanced manufacturing technology, 17(9):683–691, 2001.

[5] Jian Xiao and Li Zheng. A correlated storage location assignment
problem in a single-block-multi-aisles warehouse considering bom
information. International Journal of Production Research, 48(5):1321–
1338, 2010.

[6] David Ming-Huang Chiang, Chia-Ping Lin, and Mu-Chen Chen. The
adaptive approach for storage assignment by mining data of warehouse
management system for distribution centres. Enterprise Information
Systems, 5(2):219–234, 2011.

[7] David Ming-Huang Chiang, Chia-Ping Lin, and Mu-Chen Chen. Data
mining based storage assignment heuristics for travel distance reduction.
Expert Systems, 2012.

[8] James L Heskett. Cube-per-order index-a key to warehouse stock
location. Transportation and distribution Management, 3(4):27–31,
1963.

[9] Gajendra Kumar Adil et al. A branch and bound algorithm for class
based storage location assignment. European Journal of Operational
Research, 189(2):492–507, 2008.

[10] Gajendra Kumar Adil et al. Efficient formation of storage classes for
warehouse storage location assignment: a simulated annealing approach.
Omega, 36(4):609–618, 2008.

[11] Lu Chen, André Langevin, and Diane Riopel. A tabu search algorithm
for the relocation problem in a warehousing system. International
Journal of Production Economics, 129(1):147–156, 2011.

[12] Su Nguyen, Mengjie Zhang, Mark Johnston, and Kay Chen Tan. A
coevolution genetic programming method to evolve scheduling policies
for dynamic multi-objective job shop scheduling problems. In Evolu-
tionary Computation (CEC), 2012 IEEE Congress on, pages 1–8. IEEE,
2012.

[13] Su Nguyen, Mengjie Zhang, M Johnston, and K Tan. A computational
study of representations in genetic programming to evolve dispatching
rules for the job shop scheduling problem.

[14] Joc Cing Tay and Nhu Binh Ho. Evolving dispatching rules using
genetic programming for solving multi-objective flexible job-shop prob-
lems. Computers & Industrial Engineering, 54(3):453–473, 2008.

[15] KK Lai, Jue Xue, and Guoqing Zhang. Layout design for a paper reel
warehouse: A two-stage heuristic approach. International Journal of
Production Economics, 75(3):231–243, 2002.

[16] GQ Zhang, J Xue, and KK Lai. A class of genetic algorithms for
multiple-level warehouse layout problems. International Journal of
Production Research, 40(3):731–744, 2002.

[17] Peter van Emde-Boas. Another NP-complete partition problem and the
complexity of computing short vectors in a lattice. Department, Univ.,
1981.

[18] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2013.
[19] David R White. Software review: the ecj toolkit. Genetic Programming

and Evolvable Machines, 13(1):65–67, 2012.

3006

Fig. 4. Example of Evolved Tree

TABLE VI. COMPARISON BETWEEN PROPOSED GP AND MANUALLY CONSTRUCTED HEURISTICS

No N Proposed GP
Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4

Fitness DiffGP Feasible Fitness DiffGP Feasible Fitness DiffGP Feasible Fitness DiffGP Feasible

1 25 1685 1735 2.97% Y 1698 0.77% Y 1698 0.77% Y 1698 0.77% Y

2 25 2554 2642 3.45% N 2582 1.10% N 2555 0.04% Y 2582 1.10% N

3 25 2280 2399 5.22% N 2289 0.39% Y 2306 1.14% Y 2289 0.39% Y

4 25 2350 2380 1.28% Y 2366 0.68% Y 2366 0.68% Y 2366 0.68% Y

5 64 7523 7655 1.75% Y 7576 0.70% Y 7579 0.74% Y 7585 0.82% Y

6 64 9506 10171 7.00% N 10131 6.57% N 10134 6.61% N 9725 2.30% N

7 64 9233 9439 2.23% Y 9254 0.23% Y 9286 0.57% Y 9248 0.16% Y

8 64 11289 15638 38.52% N 11395 0.94% Y 11544 2.26% Y 11399 0.97% Y

9 100 31364 31794 1.37% Y 31821 1.46% Y 31839 1.51% Y 31398 0.11% Y

10 100 15786 16102 2.00% Y 15854 0.43% Y 15926 0.89% Y 15797 0.07% Y

11 100 33036 36092 9.25% N 33449 1.25% Y 33443 1.23% Y 33297 0.79% Y

12 100 15616 22347 43.10% N 16155 3.45% N 16068 2.89% Y 17131 9.70% N

13 400 196636 242378 23.26% N 215714 9.70% N 200337 1.88% Y 198688 1.04% Y

14 400 134436 209310 55.69% N 145239 8.04% N 141682 5.39% N 135168 0.54% Y

15 400 58575 109343 86.67% N 70857 20.97% N 60144 2.68% Y 61612 5.18% N

16 400 290241 367776 26.71% N 291693 0.50% Y 293913 1.27% Y 291934 0.58% Y

17 900 648221 662282 2.17% Y 657537 1.44% Y 658590 1.60% Y 653285 0.78% Y

18 900 599890 612510 2.10% Y 606103 1.04% Y 607272 1.23% Y 603890 0.67% Y

19 900 610375 623241 2.11% Y 620811 1.71% Y 621707 1.86% Y 615063 0.77% Y

20 900 621154 634193 2.10% Y 628742 1.22% Y 629294 1.31% Y 624564 0.55% Y
1. DiffGP is calculated by Diff (FitnessGP ,FitnessHeuristic)
2. Feasible displays Y if the solution is feasible; otherwise N .

3007

